Join IoT Central | Join our LinkedIn Group | Post on IoT Central


All Posts (1069)

Sort by

Mesh Networking Application of E104-BT10

 

E104-BT10 is a SIG MESH-based networking module that supports SIG MESH's Generic on/off, HSL model, and data transparent transmission model. Users can use it to quickly build a MESH network, which can be used in smart homes, parking lots, warehouse logistics, building lighting control and other scenarios.

 

The following picture shows the concept of mesh network

ble module

Application scenario introduction

 

  scene one

  As shown in the following scenario, the E104-BT10 is in the smart home application block diagram.

ble mesh module

  In the above figure, the E104-BT10 is applied to the smart home. The advantage is that the E104-BT10 can transmit the information of the entire network to any node in the network. You can add a networked device to any node to The status information of the network is transmitted to the cloud, or the cloud sends instructions to control the home appliance. The entire network only needs one gateway to make the smart home network. In addition, the mobile phone Bluetooth can be used to connect any node to control and collect the entire network.

  Compared with the traditional wifi solution, the E104-BT10 uses Bluetooth mesh to reduce the burden on the home router and reduce the hardware cost of the smart home appliance.

  Scene two

  The following scenario shows the use of E104-BT10 in building automation.

ble module

  In the above picture, we use E104-BT10 in building automation. Each “small white point” in the above figure represents an E104-BT10, and the dotted line represents the message transmission path. Send out the control node using any E104-BT10 node! The entire network can respond in a very short time. In the place where the message cannot be directly delivered, the intranet module will automatically relay the message.

  Scene three

  The following scene shows the use of E104-BT10 in the intelligent parking lot.

wirelss module

  In the above picture, we apply E104-BT10 to the intelligent parking lot. The number of E104-BT10 network can reach 10922, and the signal is Bluetooth signal, suitable for all kinds of large underground parking lots.

  Detailed application: Install one user's own detection device on each parking space. The information exchange between the devices adopts E104-BT10, so that the information between each device can be quickly exchanged. Users can install E104- on the terminal monitoring device. BT10, collect parking space information! It can also be used for fire extinguishing pipe valves and underground light switch control. As long as you are on a network, messages are relayed.

 

Ssummary

  The E104-BT10 is suitable for a variety of complex networking environments. When a single wireless device has insufficient signal coverage, it can be used to build a peer-to-peer network. E104-BT10 has the following advantages: support data relay multi-hop, support 10922 maximum number of networking, single node removal does not affect the overall communication, low data delay, primary distribution network lifetime network access, network access quickly.

 

Read more…

In battery-powered microcontroller applications, energy savings are critical. Reduce battery charging times and replacement time by reducing current consumption. Microcontroller software design should follow these guidelines to reduce current consumption:

1、Using the appropriate energy model

Utilize low-energy peripherals

Close unused modules/peripherals

Disable clock to unused modules/peripherals

Reduce the clock frequenc

Operating voltage reduction

Optimize the code

2、Using the appropriate energy model

The most effective way to save energy is to spend as little time as possible in active mode.

Five custom energy modes allow the microcontroller to operate in an energy-optimal state at any given time.

3、Utilize low-energy peripherals

All peripherals are built on energy consumption and can be used in a variety of energy modes. Whenever possible, select the appropriate peripheral to let it work while the CPU is sleeping (or performing other tasks).

A few examples:

Use RTC and sleep instead of waiting for a certain loop

Transfer data between memory and U(S) using DMA

Monitor sensors with low energy sensor interface (LESENSE) instead of wake up and poll

4、Close unused modules/peripherals

There are modules/peripherals that are not in use at any given time for each microcontroller application. Turn these off and save energy. This also applies to the CPU itself. If the core is idle (for example, waiting for data reception), you can turn it off and save energy. This is one of the main features of the different EFM32 energy modes. Remember to consider start and stop conditions when disabling peripherals. For example, if it is completely turned off, the ADC needs some time to warm up before the conversion can be initiated. Similarly, USART simultaneous transmissions should be allowed on the progress. Thus, the receiver's shift register will not be in an indeterminate state.

5、Disable clocks to unused modules/peripherals

Even if a module/peripheral device is disabled (for example, TIMER0 stops), the various circuits in the module will still consume energy if its clock is running. Therefore, it is important to turn off the clocks of all unused modules.

6、Reduce clock frequency

Current is plotted at clock frequency. Generally speaking, a task or peripheral device should run at the lowest possible frequency.

For example, if a timer requests interruption every few milliseconds, it should be locked at several kHz instead of several MHz. This can be easily achieved by pre-scaling in CMU. Similarly, one way to choose CPU frequency is that it should be so low that the CPU will not be idle (some blanks should be added). However, in many cases, it is best to complete the current task quickly and then enter the appropriate energy model until new tasks have to be addressed.

7、Reduce working voltage

By reducing the working voltage, the energy consumption is further reduced. The Gecko series of microcontrollers can operate at low voltage.

There are absolute minimum values in the data table of each device

8、Optimization code

Optimizing code usually reduces energy consumption byincreasing the speed and efficiency of programs.A faster program spends less time in active mode, and in amore efficient program, each task executes fewer instructions. A simple way tooptimize code is to build it in release mode with the highest optimizationsettings rather than in debug mode.

9、Energy model

The EFR32 provides features that make it easier to configurelow-power peripherals and switch between energy modes. The EFR32 providesfeatures that make it easier to configure low-power peripherals and switchbetween energy modes.
Let's take a look at several modes

9.1 Operation mode (EM0)

This is the default mode. In this mode, the CPU fetches and executesinstructions from flash or RAM, all peripherals may be enabled, and theoperating power consumption is only 63 μA/MHz.

9.2 Sleep mode (EM1)

In sleep mode, the CPU's clock is disabled. All peripherals, as wellas RAM and flash memory, are available. Automated execution of multipleoperations can be achieved by using a Peripheral Reflection System (PRS) andDMA. For example, a timer can trigger an ADC conversion at regular intervals.When the conversion is complete, the result is moved to RAM by the DMA. When agiven number of conversions are performed, the DMA can request and interrupt towake up the CPU. Enter the sleep mode or the "Wait for Event (WFE)"instruction by executing "Wait for Interrupt (WFI)". Use the functionEMUILATEMEM1 () to enter sleep mode

9.3 Deep sleep mode (EM2)

In deep sleep mode, no high frequency oscillator is running, whichmeans only asynchronous and low frequency peripherals are available.This model further increases energy efficiency while still allowing arange of activities, including:

Low energy sensor interface(LESENSE) monitoring sensor,

LCD monitor drives LCD monitor,

LEUART that receives ortransmits one byte of data,

Perform address matching check.

RTC wakes up the CPU after theprogram is coded.

Analog Comparator (ACMP) tocompare voltage to programmed threshold

A GPIO to check the conversionon the I/O line.

The deep sleep mode isto first set the sleep depth in the system control register (SCR), and thenexecute the "Wait for Interrupt (WFI)" or "Wait for Event(WFE)" instruction. Use the function EMU_EnterEM2() to enter the deepsleep mode.

9.4 Stop mode (EM3)

The stop modediffers from the deep sleep mode in that no oscillator (except ULFRCO orAUXHFRCO) is running.
Modules/functions, if present on the device, canstill be used in stop mode when the appropriate clock source remains active:

I2C address

Supervision

GPIO interrupt

Pulse counter (fund)

Low energy timer (LETIMER)

Low energy sensor interface (LESENSE)

Real-time counter and calendar (RTCC)

Analog comparator (ACMP)

Voltage monitoring (VMON)

Ultra-low energy timer/counter(CRYOTIMER)

TemperatureSensor

Stop mode is the same as deep sleepmode, except that the low frequency oscillator must be manually disabled

9.5 Sleep mode (EM4H)

This feature is called EFM32'shibernate mode and wireless SoC Series 1, and is enabled using dedicatedcontrol register logic. Write the sequence 0x2, 0x3, 0x2, 0x3, 0x2, 0x3, 0x2,0x2, 0x2, 0x2, 0x2 to the EM4ENTRY bit field in the EMU_EM4CTRL register, andplace the device in hibernate mode when the EM4STATE bit is set; otherwise, Thedevice enters shutdown mode as usual. In sleep mode, most peripherals areturned off to reduce leakage power. There are some selected peripheralsavailable. System memory and registers do not retain values. The GPIO PADstatus and RTCC RAM are reserved. Wake up from EM4 sleep requires a reset tothe system and return to the EM0 activity. Sleep mode wake-up is possible, fromthe same shutdown mode to the power loop, nRESET, and the user-specified pinsource, as well as:

RTCC

CRYOTIMER

 

Measuretemperature outside the defined range (TEMPCHANGE)

9.6 Shutdown mode (EM4S)

The shutdown mode is the lowest energystate of the EFM32 Series 0, EFM32 or Wireless SoC Series 1 microcontroller.
The power is turned off to most devices, includinginternal RAM, and all clocks are disabled. Only recovery logic, if the GPIO padstatus is explicitly enabled, is retained. Wake up from off mode alwaysrequires a reset. When resetting from a RESETn pin or through one of a set ofdevice-specific pins explicitly enabled for this purpose, the current drawingin off mode can be as low as 20na. Some devices can replace pin-based wakeups;however, waking up from these sources requires a low-frequency oscillator toremain active, increasing the current attractiveness.

Read more…

Against the backdrop of digital technology and the industrial revolution, the Internet of Things has become the most influential and disruptive of all the latest technologies. As an advanced technology, IoT is showing a palpable difference in how businesses operate. 

Although the Fourth Industrial Revolution is still in its infancy, early adopters of this advanced technology are edging out the competition with their competitive advantage. 

Businesses eager to become a part of this disruptive technology are jostling against each other to implement IoT solutions. Yet, they are unaware of the steps in effective implementation and the challenges they might face during the process. 

This is a complete guide– the only one you’ll need – that focuses on delivering effective and uncomplicated IoT implementation. 

 

Key Elements of IoT

There are three main elements of IoT technology:

  • Connectivity:

IoT devices are connected to the internet and have a URI – Unique Resource Identifier – that can relay data to the connected network. The devices can be connected among themselves to a centralized server, a cloud, or a network of servers.

  • Data Communication:

IoT devices continuously share data with other devices in the network or the server. 

  • Interaction

IoT devices do not simply gather data. They transmit it to their endpoints or server. There is no point in collecting data if it is not put to good use. The collected data is used to deliver IoT smart solutions in automation, take real-time business decisions, formulate strategies, or monitor processes. 

How Does IoT work?

IoT devices have URI and come with embedded sensors. With these sensors, the devices sense their environment and gather information. For example, the devices could be air conditioners, smart watches, cars, etc. Then, all the devices dump their collected data into the IoT platform or gateway. 

The IoT platform then performs analytics on the data from various sources and derives useful information per the requirement

What are the Layers in IoT Architecture?

Although there isn’t a standard IoT structure that’s universally accepted, the 4-layer architecture is considered to be the basic form. The four layers include perception, network, middleware, and application.

  • Perception:

Perception is the first or the physical layer of IoT architecture. All the sensors, edge devices, and actuators gather useful information based on the project needs in this layer. The purpose of this layer is to gather data and transfer it to the next layer. 

  • Network:

It is the connecting layer between perception and application. This layer gathers information from the perception and transmits the data to other devices or servers. 

  • Middleware

The middleware layer offers storage and processing capabilities. It stores the incoming data and applies appropriate analytics based on requirements. 

  • Application

The user interacts with the application layer, responsible for taking specific services to the end-user. 

Implementation Requirements

Effective and seamless implementation of IoT depends on specific tools, such as:

  • High-Level Security 

Security is one of the fundamental IoT implementation requirements. Since the IoT devices gather real-time sensitive data about the environment, it is critical to put in place high-level security measures that ensure that sensitive information stays protected and confidential.  

  • Asset Management

Asset management includes the software, hardware, and processes that ensure that the devices are registered, upgraded, secured, and well-managed. 

  • Cloud Computing

Since massive amounts of structured and unstructured data are gathered and processed, it is stored in the cloud. The cloud acts as a centralized repository of resources that allows the data to be accessed easily. Cloud computing ensures seamless communication between various IoT devices. 

  • Data Analytics

With advanced algorithms, large amounts of data are processed and analyzed from the cloud platform. As a result, you can derive trends based on the analytics, and corrective action can be taken. 

What are the IoT Implementation Steps?

Knowing the appropriate IoT implementation steps will help your business align your goals and expectations against the solution. You can also ensure the entire process is time-bound, cost-efficient, and satisfies all your business needs. 

10661243654?profile=RESIZE_710x

Set Business Objectives 

IoT implementation should serve your business goals and objectives. Unfortunately, not every entrepreneur is an accomplished technician or computer-savvy. You can hire experts if you lack the practical know-how regarding IoT, the components needed, and specialist knowledge. 

Think of what you will accomplish with IoT, such as improving customer experience, eliminating operational inconsistencies, reducing costs, etc. With a clear understanding of IoT technology, you should be able to align your business needs to IoT applications. 

Hardware Components and Tools

Selecting the necessary tools, components, hardware, and software systems needed for the implementation is the next critical step. First, you must choose the tools and technology, keeping in mind connectivity and interoperability. 

You should also select the right IoT platform that acts as a centralized repository for collecting and controlling all aspects of the network and devices. You can choose to have a custom-made platform or get one from suppliers. 

Some of the major components you require for implementation include,

  • Sensors
  • Gateways
  • Communication protocols
  • IoT platforms
  • Analytics and data management software

Implementation

Before initiating the implementation process, it is recommended that you put together a team of IoT experts and professionals with selected use case experience and knowledge. Make sure that the team comprises experts from operations and IT with a specific skill set in IoT. 

A typical team should be experts with skills in mechanical engineering, embedded system design, electrical and industrial design, technical expertise, and front/back-end development. 

Prototyping

Before giving the go-ahead, the team must develop an Internet of Things implementation prototype. 

A prototype will help you experiment and identify fault lines, connectivity, and compatibility issues. After testing the prototype, you can include modified design ideas. 

Integrate with Advanced technologies

After the sensors gather useful data, you can add layers of other technologies such as analytics, edge computing, and machine learning. 

The amount of unstructured data collected by the sensors far exceeds structured data. However, both structured and unstructured, machine learning, deep learning neural systems, and cognitive computing technologies can be used for improvement. 

Take Security Measures

Security is one of the top concerns of most businesses. With IoT depending predominantly on the internet for functioning, it is prone to security attacks. However, communication protocols, endpoint security, encryption, and access control management can minimize security breaches. 

Although there are no standardized IoT implementation steps, most projects follow these processes. But the exact sequence of IoT implementation depends on your project’s specific needs.

Challenges in IoT Implementation

Every new technology comes with its own set of implementation challenges. 

10661244498?profile=RESIZE_710x

When you keep these challenges of IoT implementation in mind, you’ll be better equipped to handle them. 

  • Lack of Network Security

When your entire system is dependent on the network connectivity for functioning, you are just adding another layer of security concern to deal with. 

Unless you have a robust network security system, you are bound to face issues such as hacking into the servers or devices. Unfortunately, the IoT hacking statistics are rising, with over 1.5 million security breaches reported in 2021 alone. 

  • Data Retention and Storage 

IoT devices continually gather data, and over time the data becomes unwieldy to handle. Such massive amounts of data need high-capacity storage units and advanced IoT analytics technologies. 

  • Lack of Compatibility 

IoT implementation involves several sensors, devices, and tools, and a successful implementation largely depends on the seamless integration between these systems. In addition, since there are no standards for devices or protocols, there could be major compatibility issues during implementation. 

IoT is the latest technology that is delivering promising results. Yet, similar to any technology, without proper implementation, your businesses can’t hope to leverage its immense benefits. 

Taking chances with IoT implementation is not a smart business move, as your productivity, security, customer experience, and future depend on proper and effective implementation. The only way to harness this technology would be to seek a reliable IoT app development company that can take your initiatives towards success.

Read more…

MEMS Sensor Advantages and Applications

MEMS sensor (Microelectro Mechanical Systems) refers to an industrial technology that combines microelectronic circuit technology with micromechanical systems. Its internal structure is generally in the order of micrometers or even nanometers. Simply put, MEMS is to miniaturize the mechanical components of traditional sensors, and then fix the device on the silicon wafer through three-dimensional stacking technology, such as three-dimensional through-silicon TSV technology, and finally adopt special customized packaging forms according to different applications. Cut and assembled.

Advantages
1.) Miniaturization:
MEMS devices are small in size, and generally the size of a single MEMS sensor is measured in millimeters or even micrometers. Light weight and low energy consumption. At the same time, the miniaturized mechanical components have the advantages of small inertia, high resonance frequency, and short response time. MEMS have a higher surface-to-volume ratio, which can increase the sensitivity of surface sensors


2.) Silicon-based processing technology:
Compatible with traditional IC production processes: Silicon has strength, hardness, and Young's modulus comparable to iron, density is similar to aluminum, and thermal conductivity is similar to molybdenum and tungsten.


3.) Mass production:
Taking a single 5mm*5mm MEMS sensor as an example, about 1000 MEMS chips can be cut simultaneously on an 8-inch silicon wafer by silicon micromachining technology, and mass production can greatly reduce the production cost of a single MEMS.


4.) Integration:
Generally speaking, a single MEMS often integrates an ASIC chip while packaging a mechanical sensor, controls the MEMS chip, and converts analog to digital output. At the same time, different packaging processes can integrate multiple sensors or actuators with different functions, different sensitive directions or actuation directions into one, or form micro-sensor arrays, micro-actuator arrays, and even integrate devices with multiple functions. form complex microsystems.
图片16.png

For example, the inertial sensor MPU6050 integrates a 3-axis MEMS gyroscope, a 3-axis MEMS accelerometer, and a scalable digital motion processor DMP.

5.) Multi-domain crossover:
MEMS involves a variety of disciplines such as electronics, mechanics, materials, manufacturing, information and automatic control, physics, chemistry and biology, and integrates many cutting-edge achievements in today's scientific and technological development


Application
1.) Medical field: Based on the MEMS acceleration sensor of VTI Company, a non-invasive fetal heart rate detection method is proposed, and an easy-to-learn, intuitive and accurate clinical diagnosis and pregnant woman between the fetal heart stethoscope and the Doppler fetal monitor are developed. Self-checking medical aids. The fetal heart rate is converted into an analog voltage signal by the acceleration sensor, and the difference is amplified by the instrument amplifier used for pre-amplification. Then a series of intermediate signal processing such as filtering is performed, and the analog voltage signal is converted into a digital signal with an A/D converter. The optical isolation device is input to the single-chip microcomputer for analysis and processing, and finally the processing result Sensor is output.


2.) The field of mobile phone photography: With the breakthrough of MEMS in volume and power consumption, the latest technology MEMS Drive senses the instantaneous jitter during the photographing process through the gyroscope, and relies on precise algorithms to calculate the movement range of the motor and make quick compensation. . This series of actions must be completed within one hundredth of a second, and the image you get will not be blurred by jitter.


3.) Motion tracking system: In the daily training of athletes, MEMS sensors can be used to measure 3D human movement, record each movement, and coaches analyze the results and formulate corresponding training plans to improve the performance of athletes.


4.) Prospects
It can be foreseen that large-scale downstream applications in the future will mainly use new consumer electronics such as AR/VR, and the Internet of Things such as smart driving, smart logistics, and smart home. As the perception layer, sensors are an indispensable part of the key basic physical layer. The rapid development of the Internet of Things will bring huge development dividends to the MEMS industry!

Read more…

The advent of the internet of things on Metaverse is expected to change its overall market outlook in the future. The IoT Includes a plethora of features which, in turn, will highly benefit the Metaverse Market in the upcoming years. With a growth rate of 38.25 per cent CAGR, the metaverse market size was estimated to be worth USD 124.04 billion in 2022 and USD 1655.29 billion in 2030.

The IoT, which was first launched in 1999, links hundreds of devices, including thermostats, voice-activated speakers, and medical equipment, to a variety of data. IoT is now poised to revolutionize the Metaverse as it effortlessly connects the 3D environment to a wide range of physical objects. One of the renowned & largest private software firms in the UK, IRIS Software Group, offers software solutions and services that significantly improve operational compliance, efficiency, and accuracy.

The identity environment will expand enormously as the Metaverse takes traction and new applications and access points emerge alongside it, creating additional entry points for potential bad market players. Already, 84% of corporate executives concur that their company now manages significantly more digital identities than it did ten years ago (up to 10x). Additionally, 95% of firms say they have trouble keeping track of all the identities that are currently a part of their organization (human and machine). We have a perfect storm of rising complexity and expanding threat vectors that may be exploited, which can lead to breaches, business disruption, and material expenses when we add in the Metaverse and the rise in IoT usage that will accompany it.

Top features of IoT:

 a.) A 360-degree enhanced and real-world training: 

Using the IoT, we are able to develop and test training methods in situations where we are unable to do so in the real world due to the scope and authenticity of training on extreme real-world situations (such as severe weather or cyber events) that can be done through virtual simulations using digital twins in the Metaverse. Io Train-sim will aid in preparing people and AI/software to cooperate to better recognize issues and lessen the impact in real life as virtual metaverse environments develop to more closely resemble reality.

b.) Smarter and better long-term planning along with its near-term response: 

The metaverse system will increasingly closely resemble our real world as it fills up with digital duplicates of real-world objects (such as cars, buildings, factories, and people). We will be able to run different long-term planning scenarios, identify the most optimal designs for our energy, transportation, and healthcare systems, and dynamically operate these techniques as the real world evolves thanks to this system-of-systems complicated virtual simulation (e.g., more renewable sources, new diseases, population migrations or demographic changes). These simulations will assist teams of humans in responding to current events and solving an issue utilizing monthly, weekly, or day-ahead planning, in addition to long-term planning. AI will then be used to learn from the outcome and enhance the response during the next event.

Conclusion

Brands are utilizing a variety of cutting-edge technologies to fuel the Metaverse with the aim of making the virtual as real-time and authentic as possible. These technologies include AR, VR, Blockchain, AI, and IoT. Sensors, cameras, and wearables are already implemented and in use due to the present IoT development. These gadgets are the engines that make it possible for the Metaverse to reflect the real world in real-time when they are connected to it. A metaverse representation of a physical site, such as Samsung's 837x recreation of its 837 Washington St. experience centre in New York City's Meatpacking District, might, for instance, be updated continuously and in real-time as objects enter and exit the physical location

Read more…

The wireless module is a modular product of digital data transmission radio. It refers to a high-performance professional data transmission radio module realized with the help of single-chip microcomputer technology and radio technology. The wireless transceiver module is mainly used to control wireless data transmission and reception through a single-chip microcomputer. Generally, it is FSK, GFSK modulation mode. If it is divided by operating frequency, there are 170MHz, 230MHz, 315MHz, 433MHz, 868MHz, 915MHz, 2.4GHz and so on.

 

The Internet of Things is an important part of the new generation of information technology and an important stage of development in the "informatization" era. The Internet of Things is a network that extends and expands its user end to any item and item for information communication and exchange to achieve intelligence.


With the increasing number of IoT product forms, on the one hand, module prices will continue to fall; on the other hand, IoT modules will continue to develop in a diversified direction to meet the functional requirements of more and more different types of equipment. In the next few years, wireless communication modules for the Internet of Things will develop in the direction of more integration and miniaturization, and more and more chips and functions will be integrated into the IoT module.

 

From the current development situation, the typical applications of wireless modules in the field of Internet of Things are as follows:

 

Industrial applications

Industry is an important area for wireless module applications in the Internet of Things. Various types of terminal sensors with environmental awareness capabilities communicate data collected through wireless modules to achieve intelligent monitoring and intelligent control in the production process. This greatly improves production efficiency, improves product quality, reduces production costs, and reduces traditional industrial Ascension to a new stage of smart industry.

  

For example, parts processing enterprises use various sensors and wireless modules to achieve real-time monitoring of the width, thickness, and temperature of processed parts during the production process, thereby improving production efficiency and optimizing production processes.

  

Agricultural applications

The application of the wireless module in the agricultural field is to collect the temperature, humidity signals and environmental parameters such as light, soil temperature, leaf surface humidity, etc. in the greenhouse in real time, and realize the automatic stop or start of specified equipment through the Internet of Things technology. It can be processed at any time according to user needs, providing a scientific basis for automatic monitoring of agricultural ecological information, automatic control of the environment, and intelligent management. The temperature and humidity signals are collected through sensors, and the data is transmitted through the wireless module to achieve remote control of the temperature and humidity in the greenhouse, and record the scene conditions to ensure the temperature and humidity balance in the greenhouse.

  

Smart home applications

Smart home is the automation of various home devices (such as audio and video equipment, network appliances, curtain control, air conditioning control, lighting systems, security systems, etc.) through smart home network networking. Through wireless networks, remote control of home devices can be realized. . Smart home is an important area for wireless module applications. Compared with ordinary homes, smart homes not only provide comfortable, pleasant and high-quality home living spaces, and realize more intelligent home security systems; they also transform the home environment from the original passive still structure into a tool with active wisdom, providing a full range of tools Information interaction function makes you feel more comfortable and worry-free.

  

Smart medical applications

The intelligent medical system uses simple and practical home medical sensing equipment to monitor the physiological indicators of the patients or the elderly in the home in real time, and transmits the generated physiological indicator data to the caregiver or the relevant medical unit through the wireless module. According to customer needs, relevant value-added services have now begun to be provided, such as emergency call assistance services and expert consulting services.

  

Smart city security application

Smart city security system is a unified monitoring of the safety of the city. The electronic equipment equipped with wireless modules is used to network decentralized and independent image collection points to remotely monitor, transmit, store, and manage in real time, to achieve unified monitoring, unified storage and unified management of city security, and to provide city management and builders with A new, intuitive, and extended audiovisual management tool.

  

Environmental monitoring applications

The environmental monitoring system monitors the water quality of the earth's surface water in real time, thereby realizing timely grasp of the water quality status of the main sections of the main river basin, early warning and forecast of major or river basin water pollution accidents, resolving water pollution accident disputes across administrative regions, and monitoring the total Implementation of control system. The West Lake Environmental Monitoring Project provides water quality data of West Lake to environmental protection departments through various monitoring wireless modules installed in the West Lake area, monitors the water quality of West Lake waters in real time, and reports the data of monitoring points to relevant management departments via the Internet. .

  

Intelligent transportation applications

Intelligent transportation system is the real-time monitoring and management of the car's position and speed, image information inside and outside the car, and other vehicle parameters, effectively meeting the various needs of vehicle owners for vehicle management. The wireless video surveillance system for the bus industry uses the wireless video surveillance and GPS positioning functions of on-board equipment to monitor the running status of the bus in real time. The intelligent bus station interacts with the data of the electronic station board through the media distribution center, and realizes the functions of public transport dispatch information data and multimedia data. It can also use the electronic station board to realize the function of advertising.

Read more…

 The internet-based global digital landscape comprises a plethora of complex software and hardware systems spread on-premise and across the cloud. Also, there are software applications within embedded devices that are connected to the internet a la the Internet of Things (IoT). When we envision the future of the digital world, the IoT, along with other technologies, seems to be the harbinger. It has the potential to usher in a world driven by smart technologies to make lives more convenient and qualitatively superior. According to statistics, the number of IoT devices is likely to surpass 25.4 billion by 2030. Also, the IoT can generate an economic value ranging from $4 - $11 trillion by 2025 (Source: dataprot.net). The data shows how the Internet of Things (IoT) is going to define the digitized future of the world. 

However, notwithstanding the tremendous potential of IoT as a technology to drive the next digital revolution, it offers several challenges as well. IoT testing has become critical given that the success of the IoT ecosystem depends on the seamless functioning of its associated software and hardware systems. Let us discuss the challenges in some detail in the below-mentioned segment: 

Digitalization Challenges with IoT

The Internet of Things QA testing ensures IoT devices function safely and reliably. However, this type of testing has a host of challenges to grapple with, as mentioned below:

Testing in an omnichannel environment: The IoT ecosystem comprises various devices, platforms, and systems spread across on-premise and cloud environments. To ensure effective utilization of such systems, IoT testing should be conducted rigorously. Since IoT devices generate data at high velocity, their veracity needs to be ensured in real-time. However, this can be easier said than done, for the data generated is mostly unstructured. Also, IoT testing services need to test several devices with varying capabilities across platforms. Hence, creating a real IoT environment for testing can be a challenge, for there are many devices that require testing on the platform they operate upon. Besides, there are device upgrades in terms of software and firmware, which need to be considered by IoT device testing solutions for effective test outcomes. Thus, cross testing for IoT devices in an omnichannel environment comprising various versions and platforms can be an uphill task.

Cybersecurity risks: Given that IoT devices generate a large quantum of data (structured and unstructured), they may be vulnerable to hacking. Even so, statistics suggest that around seventy percent of IoT devices have security-related issues. Therefore, such devices should be subjected to rigorous IoT security testing. It involves identifying vulnerabilities in the architecture of devices using IoT penetration testing and fixing them. Testers should focus on checking and verifying the devices’ passwords and authorization policies.

Different protocols of IoT communications: IoT devices follow a range of protocols when it comes to communicating among themselves and with the server. These may include AMPQ, XMPP, CoAP, and MQTT. Besides, various components in an IoT ecosystem can use different protocols for communication. Hence, such components need to be tested over communication protocols to preclude functional and security risks. For instance, when embedded software within devices runs on low memory due to higher loading requests, they balance load requests among components using an IoT gateway. Testing IoT applications can verify the load balance among different components, thereby ensuring their smooth functioning.

Lack of standardization: Creating standards for IoT devices can be a challenge across four levels - application, business model, connectivity, and platform. The lack of a uniform standard across the IoT landscape makes it a difficult case for testers. This is because different companies build devices with competing and often conflicting standards. The common IoT testing approach is based on the intended use of the system or the use case. The best way to wriggle out of the situation is to establish uniform standardization across the above-mentioned levels.

Battery life: A large number of IoT devices are powered by batteries, which need to function at their optimum at all times. To ensure IoT devices are energy efficient, they need to have low-power components. Thus, the battery needs to be tested under different conditions and scenarios to maximize the life of such devices. Also, testers should check whether the device is able to report the low-battery status to the cloud platform properly.

Conclusion

The quality of an IoT ecosystem can only be ensured if the above-mentioned challenges are addressed by stringently testing IoT applications. Business enterprises building and utilizing IoT devices can look at various benefits by implementing stringent IoT testing. These include driving innovation and speeding up risk-free initiatives; facilitating time-to-market; improving interoperability; and achieving a higher ROI.

Read more…

I remember when the Arduino Uno first came out circa 2005. Even though this 8-bit processor employs only a 16-MHz clock and offers only 32KB of Flash memory and 2KB of RAM, I still use these little rascals in a lot of my hobby projects to this day.

Of course, things have moved on since those days of yore. For example, one of the latest and greatest offerings from the folks at Arduino Pro is the Portenta X8.

maxncb-0408-01-arduino-portenta-x8-300x210.jpg?profile=RESIZE_400x

Portenta X8 (Click image to see a larger version — Image source: Arduino)

Oh, my goodness gracious me! Have you seen this little beauty, which is described as being an “Industrial-grade, secure system-on-module (SOM) with outstanding computational density”?

What we are talking about here is something that’s only around the size of a stick of chewing gum (66.04 x 25.40 mm) while boasting nine processor cores and coming pre-loaded with the Linux operating system (OS).

According to the web, it has a Cortex-A53 quad-core up to 1.8GHz per core + a Cortex-M4 up to 400MHz, along with a dual-core Cortex-M7 up to 480Mhz + another Cortex-M4 up to 240MHz.

Either I’m losing the ability to count, or the above adds up to only eight cores. Where’s the missing core?

Well, I am in a great position to learn the answer to this conundrum, because I’m going to be hosting a webinar on this little scamp — Arduino Portenta X8: Superpower Your Linux Applications with Real-Time Execution — tomorrow as I pen these words.

During this webinar, which will be presented by IoT Central, I will be chatting with Andrea Richetta, who is the Head of Customer Success at Arduino Pro, and who will be introducing the Portenta X8 and answering all of our questions.

This 1-hour webinar will commence at 10:00am USA Central Time (so that’s 8:00am Pacific Time and 11:00am Eastern Time). And, speaking of time, now would be a great time to register before all of the good seats are taken.

I’ll be the one in the Hawaiian shirt. Dare I hope to see you there? Register here.

Read more…

The Internet of Things network of interconnected devices such as sensors, gateways, and computers that transfer the data over a wireless network eliminates the need for human intervention. IoT devices can be remotely tracked, and controlled in real-time. It also enables users to connect and interact with others over the internet. The applications of IoT are tremendous and it can be found in every part of human life, ranging from smartwatches to self-driving cars.

What Is IoT Device Management?

IoT device management refers to the ability to remotely accessing, monitoring, tracking and managing the functionality of IoT devices in order to ensure the deployed devices are secure, up to date and compliant. Here’s a breakdown of the reasons why businesses need an IoT device management platform:

  • Accelerate time to market

One of the biggest perks of the IoT device management platform is that it helps developers to reduce the time frame of product development and testing, thereby enabling them to release products to market on time. Furthermore, streamlining and automating network and device management tasks enables businesses to concentrate on their core competencies while lowering costs.

  • Secure device on and off boarding

A smart device is not, and should not be, automatically connected to an IoT network. A secure approach is required to configure and add only authorized devices to the network architecture, and a network and device management tool makes this simple and straightforward. End nodes can be authenticated and secure communications established via a web interface by registering and attaching them to the authorized base station using their network keys and identification credentials. Only after the node has completed the onboarding process it will be allowed to join the network and securely transmit data using network-level encryption. Similarly, if deployed nodes are no longer required, they can be easily offboarded from the web UI – without having to travel to the field.

  • Streamline network monitoring and troubleshooting

IoT device management platform enables firms to gain a top to bottom view of all registered nodes, network traffic and their status in a single interface. It acts as a central hub for data aggregation across base stations in a network with multiple base stations. This is especially useful for monitoring and identifying unexpected network and device problems. Businesses can quickly identify and determine the root causes of bottlenecks with real-time visibility into incoming data, battery level, and keep-alive messages from individual nodes. For example, if a node fails to deliver messages on a regular basis, the radio traffic may be overloaded. If, on the other hand, it completely disconnects from the network and stops sending messages, it could be due to a hardware or firmware flaw. Similarly, by continuously monitoring battery levels, firms can schedule maintenance for multiple devices at the same time, saving time and money.

  • Simplifies downstream application deployment

IoT device management platform serves as a link between the edge network, downstream data servers of users and enterprise applications. Using protocols like MQTT and API calls, a versatile IoT device management solution allows for easy integration with any backend system, whether on-premises or in the cloud. As a result, firms can easily deploy and scale IoT applications to meet changing business needs, whether by adding new devices to an existing app or connecting to a new analytics platform. It also enables businesses to gain a better view of all current integrations and applications from a single window thereby simplifying the management of an entire IoT project.

  • Eliminate security risks

Considering the ever-increasing complexity of cyber-attacks, it is critical to equip connected IoT network components such as base stations and routers with the most up-to-date security features. A manual approach cannot keep up with the demand for continuous and timely updates to these critical network infrastructures, particularly those deployed remotely - Here comes the need for an IoT device management tool. It will enable businesses to update operating systems automatically and run security updates from afar, helping them to save money while also ensuring their remote base stations are well-prepared against malicious attacks. Furthermore, round-the-clock monitoring of the network assists firms in the early detection of unusual patterns, such as an increase in data traffic, which could indicate a breach and eliminate security hazards.

 

Conclusion

The advancements in IoT and AI services have made it critical for businesses to rely on efficient and secure methods to manage and control their networks and devices at scale. An IoT device management platform helps businesses to track, manage and gain real-time insights into all devices and stay on top of their deployment. When combined with a robust wireless solution, it enables firms to seamlessly expand their IoT network and solutions at minimal cost and complexity.

Read more…

Over the last few years, layers-3 switching has become quite popular. Though layer-3 switches are costlier than layer-2 or other traditional switches, layer-3 switches are way more beneficial for large companies.

Layer-3 switches not only solve the problems in large companies and networks but, also make IoT apps perform better. I have recently worked on an IOT project and for that project, we used layer-3 switches.

First of all, let's discuss layer-3 switches.

The layer-3 switches are a step ahead of the layer-2 switches. The smartness of these switches is their biggest advantage. When a company is facing a lot of traffic in their network then considering a layer-3 switch can be the right option. The only disadvantage of choosing a layer-3 switch is that they are complicated to set up and require a lot of time. Along with that, a layer-3 switch is costlier than the traditional switch. You need to be an expert in computer networking to configure this type of switch.

A layer-3 switch is a smart switch. Here with a smart switch, we mean that the switch has the ability to take a decision on its own. Instead of sending requests to all the systems connected to LAN, this switch sends requests to just a few systems that are connected to a specified network.

For example, a company network contains different departments like Sales, purchase, marketing, HR, testing, web development, and mobile app development. A layer-2 switch sends requests to all the networks while a layer-3 switch sends the request to just one network and the systems connected to that network. This switch determines for which network a request is sent with the help of the map. Once determined, it sends a request to just one network. This reduces the traffic on the network and increases speed.

Along with these advantages, with the help of the virtual-routing option one can change the hexadecimal number in the MAC address. With the help of this routing scheme, it is easier to convert hex to numbers easily. Hexadecimal to decimal number converter helps a person to read a MAC address in a better way easily.

Why did we use these switches in an IoT project?

We were developing an IoT project for a car garage. At this garage, there were more than 500 cars parked at any time. Our server used to receive more than 100 requests at the same time. Apart from that, the app was running on the Local area network along with the layer-2 switch. At that time, we assumed that the reason behind this might be the server and the switch were not able to handle these many requests at the same time. So, we insisted on the switches. Once they were replaced, our IoT app was working just fine.

So, this was our experience of working on an IOT app that used a layer-3 switch. If you have also worked on such an app then do share your experience here. It would be great for this community to know more about computer networking in detail.

Read more…

How Doews IoT help in Retail? Continuous and seamless communication is now a reality between people, processes and things.  IoT has been enabling retailers to connect with people and businesses and gain useful insight about product performance and engagement of people with such products. 

Importance of IoT in Retail

  • It helps improve customer experience in new ways and helps brick and mortar shops compete with their online counterparts by engaging customers in different ways.
  • IoT can track customer preferences, analyze their habits and share relevant information with the marketing teams and help improve the product or brand features and design and keep the customer updated on new products, delivery status etc.
  • Using IoT retailers can increase efficiency and profitability in various ways for their benefit.
  • IoT can significantly improve the overall customer experience, like automated checkouts and integration with messaging platforms and order systems.
  • It helps increase efficiency in transportation and logistics by reducing the time to deliver goods to market or store. It helps in vehicle management, and tracking deliveries. This helps in reducing costs, improving the bottom line and increasing customer satisfaction.
  • Inventory management becomes easier with IoT. Tracking inventory is much easier and simpler from the stocking of goods to initiating a purchase.
  • It helps increase operational efficiency in warehouses, by optimizing temperature controls, improving maintenance, and managing the warehouse. 

Use Cases of IoT in Retail

  1. IoT is used in Facility management to ensure day-to-day areas are clean and can be used to monitor consumable supplies levels. It can be used to monitor store environments like temperature, lighting, ventilation and refrigeration. IoT can identify key areas that can provide a complete 360 degrees view of facility management.
  2. It can help in tracking the number of persons entering a facility. This is especially useful because of the pandemic situation, to ensure that no overcrowding takes place.
    Occupancy sensors provide vital data on store traffic patterns and also on the time spent in any particular area. This helps retailers with better planning and product placement strategies. This helps in guided selling with more effective display setups, layouts, and space management.
  3. IoT helps in a big way for Supply chain and logistics, by providing information on the stock levels. 
  4. IoT helps in asset tracking in items like shopping carts and baskets. Sensors can ensure that location data is available for all carts making retrieval easy. It can help lock carts if they are taken out of location.
  5. IoT devices can and are being used to personalize user experience. Bluetooth beacons are used to send personalized real-time alerts to phones when the customer is near an aisle or a store. This can prompt a customer to enter the store or look at the aisle area and take advantage of offers etc. IoT-based beacons, helps Target, collect user data and also send hyper-personalized content to customers.
  6. Smart shelves are another example of innovative IoT ideas. Maintaining shelves to refill products or ensure correct items are placed on the right shelves is a time-consuming task. Smart shelves automate these tasks easily. They can help save time and resolve manual errors.

Businesses should utilize new technologies to revolutionize the retail sector in a better way. Digitalization or digital transformation of brick and mortar stores is not a new concept. With every industry wanting to improve its services and facilities and trying to stay ahead of the competition, digitalization in retail industry is playing a big role in this transformation. To summarize, digitalization helps in enhanced data collection, helps data-driven customer insights, gives a better customer experience, and increases profits and productivity. It encourages a digital culture.

Read more…

The Internet of Things has grown in popularity over the previous few decades. It has converted robots into lifelike assets, and its influence is expanding by the day. Today, communication gadgets outnumber humans, and they make our lives more convenient and intelligent than ever before. So, if you're thinking of developing an IoT app and want to know how much it will cost, this article is for you.

Furthermore, research forecasts that by 2025, there will be around 21 billion linked gadgets. However, this isn't the only reason that IoT app development is growing in popularity; there are other reasons as well. It emphasizes every aspect of the cost of producing an IoT app.

Market Statistics of IoT App Development

  • In the next years, 65 percent of marketers feel that firms that do not have IoT-based apps would fall behind.
  • According to Gartner, there will be around 20 billion connected devices in 2020, which will more than quadruple by 2024-25.
  • Approximately 95% of decision-makers anticipate their companies to use IoT applications by the end of 2025.
  • The base installation for 5G IoT endpoints was 3.5 billion in 2020 and is expected to reach 49 billion by 2024.
  • By 2025, the number of internet-connected devices is expected to reach 28 billion.
  • These figures demonstrate the ever-increasing need for high-quality IoT applications, as well as their relevance in driving company development and productivity. So, now that you know why you should go into IoT mobile app development, let's get started.

Most Significant Applications Of IoT By Industry 

  • IoT apps For the Retail Sector

IoT apps have a promising future in the retail business. Retailers are investing in IoT solutions, namely to track and manage the supply chain and inventory operations.The need for IoT-powered mobile apps for supply chain management tracking is increasing. Retailers can remotely monitor and measure certain areas of supply chain activities. Such an automated procedure will assure high-level security, lower operating costs, and improve business outcomes.

On the other hand, IoT is rapidly being integrated into the creation of mobile apps to track and manage stocks. Warehouse management or inventory management software based on IoT tracks stock levels digitally, assisting shops in balancing demand and supply and improving sales outcomes.

  •  IoT Mobile Apps For Smart Home Automation

One of the key reasons for the increased demand for IoT mobile app development is smart home automation. Sensor-enabled smart home gadgets make people's lives more pleasant, convenient, easy, and intelligent. The incorporation of IoT in mobile apps allows users to operate all compatible smart home gadgets, such as LEDs, cameras, refrigerators, and so on, while on the road.

Here's a popular IoT app that allows users to control smart home devices from afar.

Amazon Alexa is an intelligence program that uses voice commands to operate smart home products. Users may use the Alexa mobile app to control switches, thermostats, and any Alexa-enabled smart electrical home products.

Applications Of IoT Technology For Healthcare Apps Development

IoT technology is quickly becoming a critical component of the healthcare app development market. IoT integration is becoming common in fitness applications, wearables, and other patient monitoring apps.

Yes. The development of IoT-based mobile apps for tracking and monitoring health is a market trend. As a result, the future of IoT mobile apps for smartwatches or wearables seems promising.

Leading enterprise-level software development firms, for example, are already on their way to providing futuristic IoT apps for wearables to measure pulse rate, body temperature, calories burned, sleep quality, steps walked, and so on. This information provided by sensor-equipped wearables is easily accessible via IoT smartphone apps.

What is the typical cost to build an Internet of Things app?

A typical Internet of Things app costs $20,167 to develop. The entire cost, however, might be as little as $5,000 or as high as $35,000. An Internet of Things app with fewer functionalities (also known as a "minimum viable product," or MVP) will be less expensive than an app with all planned capabilities.

For example, these are some current Crowdbotics Internet of Things app price quotes:

$27,500

$23,000

$10,000

However, the cost of IoT mobile app development or solution will be determined by a number of factors, including:

  • Types of applications that are long with the complicity
  • The cost of IoT app development is determined by the number of developers on your app application development team.
  • Depends on how long it takes to design, create, test, and post-develop an IoT app.
  • The cost of developing a mobile application varies depending on where you live. As an example:
  • South-East Asian custom mobile app development firms would charge between $20 and $40 per hour.
  • A mobile app development business in Eastern Europe will charge between $30 and $50.
  • The top mobile app development business in India would charge between $50 and $25 per hour.

IoT mobile application development is becoming popular due to the rising demand for IoT-based mobile apps from organizations across sectors. IoT app development has a promising future in areas such as automotive, healthcare, and smart home automation, as well as security.

 

Read more…

 

The Internet of Things is one of the technologies making yesterday’s science fiction the reality of today. It will act as a force multiplier for digitization and can potentially transform the world into a smart one - smart cities, smart vehicles, smart manufacturing, smart homes, and many others. According to IDC, spending on IoT by businesses and other entities is going to reach $1 trillion in 2022. Further, out of the projected connected devices of 29 billion by 2022, around 18 billion are expected to be related to IoT. And the data generated by these devices will be to the tune of 73.1 zettabytes by 2025.

In other words, ignoring the penetration of IoT across domains and not investing in its vast sweep could be detrimental to the competitiveness of business enterprises in the future. Even though the IoT will continue on its upward trajectory in use cases and device numbers, enterprises should take into account the challenges related to interoperability and security. Let us discuss the top IoT predictions that IoT testing services, or for that matter, the CIOs of enterprises, should acknowledge and incorporate in their value chain.

Top IoT Forecasts for CIOs to Recognize

As a smart technology, the Internet of Things is going to change the landscape of the digital world. The top IoT forecasts for the years to come are mentioned below:

# AI-based IoT data analysis: With IoT being adopted as a frontline technology by most organizations, there will be a need to gather, store, process, and analyze huge amounts of data generated by it. This is where AI-based data analysis will take over from traditional analysis wherein data mined by IoT devices will be analyzed for known patterns to draw insights about various aspects of an organization. AI is going to be applied to a host of IoT-generated data in the form of still images, video, speech, text, and network traffic activities. This should drive the CIOs of business enterprises to implement the necessary skills and tools to leverage AI in their IoT testing approach.

# IoT with legal, social, and ethical dimensions: With the increased adoption of IoT across business segments, a wide range of social, ethical, and legal issues may come to the fore. These may include privacy, regulatory compliance, algorithmic bias, and ownership of data, among others. In fact, the success of any IoT solution should not be based on its technical prowess or effectiveness alone, but on social acceptability as well. Hence, CIOs should review their corporate strategy, IoT and AI systems, and key algorithms by external agencies for any potential bias. In doing so, they may include external IoT testing services to not only validate the technical aspects of such systems but their social, ethical, and legal dimensions as well.

# Data broking and infonomics: According to a Gartner survey, businesses are going to include the buying and selling of IoT data as an essential part of their strategy. As per the theory of infonomics, the monetization of IoT data will be treated as a strategic asset by businesses and included in their accounts. CIOs should educate their staff on the opportunities and risks pertaining to data broking and set the appropriate IT policies, including incorporating mandatory IoT testing in the value chain.

# Transition from Intelligent Edge to Intelligent Mesh: The transition from cloud to edge architectures in the IoT space is underway and is likely to give way to a more unstructured architecture in the form of a dynamic mesh. The mesh architectures will lead to more intelligent, responsive, and flexible IoT systems, but with additional complexities. As a result, CIOs must prepare their organisations for the impact of mesh architectures on IoT systems. Consequently, the focus of the Internet of Things QA testing should be to ensure every aspect of the IoT and mesh architecture performs as desired.

# IoT Governance: With the expansion of the IoT space, a proper setup for governance, including an IoT testing framework, should be instituted. This is to ensure appropriate behavior in the generation, storage, deletion, and usage of IoT-related data. IoT governance would entail device audits, control of devices, firmware updates, and the usage of information delivered, among others. CIOs must educate their organizations on issues related to IoT governance.

Conclusion 

The Internet of Things will continue to expand and play an important role for business enterprises in areas such as data mining, analysis, and management, decision-making, privacy, security, and others. CIOs must make their enteprises ready to leverage the opportunities offered by the IoT as well as set up proper architectures, including IoT security testing, to mitigate any associated risks.

Read more…

The Internet of Things is one of the technologies making yesterday’s science fiction the reality of today. It will act as a force multiplier for digitization and can potentially transform the world into a smart one - smart cities, smart vehicles, smart manufacturing, smart homes, and many others. According to IDC, spending on IoT by businesses and other entities is going to reach $1 trillion in 2022. Further, out of the projected connected devices of 29 billion by 2022, around 18 billion are expected to be related to IoT. And the data generated by these devices will be to the tune of 73.1 zettabytes by 2025.

In other words, ignoring the penetration of IoT across domains and not investing in its vast sweep could be detrimental to the competitiveness of business enterprises in the future. Even though the IoT will continue on its upward trajectory in use cases and device numbers, enterprises should take into account the challenges related to interoperability and security. Let us discuss the top IoT predictions that IoT testing services, or for that matter, the CIOs of enterprises, should acknowledge and incorporate in their value chain.

Top IoT Forecasts for CIOs to Recognize

As a smart technology, the Internet of Things is going to change the landscape of the digital world. The top IoT forecasts for the years to come are mentioned below:

# AI-based IoT data analysis: With IoT being adopted as a frontline technology by most organizations, there will be a need to gather, store, process, and analyze huge amounts of data generated by it. This is where AI-based data analysis will take over from traditional analysis wherein data mined by IoT devices will be analyzed for known patterns to draw insights about various aspects of an organization. AI is going to be applied to a host of IoT-generated data in the form of still images, video, speech, text, and network traffic activities. This should drive the CIOs of business enterprises to implement the necessary skills and tools to leverage AI in their IoT testing approach.

# IoT with legal, social, and ethical dimensions: With the increased adoption of IoT across business segments, a wide range of social, ethical, and legal issues may come to the fore. These may include privacy, regulatory compliance, algorithmic bias, and ownership of data, among others. In fact, the success of any IoT solution should not be based on its technical prowess or effectiveness alone, but on social acceptability as well. Hence, CIOs should review their corporate strategy, IoT and AI systems, and key algorithms by external agencies for any potential bias. In doing so, they may include external IoT testing services to not only validate the technical aspects of such systems but their social, ethical, and legal dimensions as well.

# Data broking and infonomics: According to a Gartner survey, businesses are going to include the buying and selling of IoT data as an essential part of their strategy. As per the theory of infonomics, the monetization of IoT data will be treated as a strategic asset by businesses and included in their accounts. CIOs should educate their staff on the opportunities and risks pertaining to data broking and set the appropriate IT policies, including incorporating mandatory IoT testing in the value chain.

# Transition from Intelligent Edge to Intelligent Mesh: The transition from cloud to edge architectures in the IoT space is underway and is likely to give way to a more unstructured architecture in the form of a dynamic mesh. The mesh architectures will lead to more intelligent, responsive, and flexible IoT systems, but with additional complexities. As a result, CIOs must prepare their organisations for the impact of mesh architectures on IoT systems. Consequently, the focus of the Internet of Things QA testing should be to ensure every aspect of the IoT and mesh architecture performs as desired.

# IoT Governance: With the expansion of the IoT space, a proper setup for governance, including an IoT testing framework, should be instituted. This is to ensure appropriate behavior in the generation, storage, deletion, and usage of IoT-related data. IoT governance would entail device audits, control of devices, firmware updates, and the usage of information delivered, among others. CIOs must educate their organizations on issues related to IoT governance.

Conclusion 

The Internet of Things will continue to expand and play an important role for business enterprises in areas such as data mining, analysis, and management, decision-making, privacy, security, and others. CIOs must make their enteprises ready to leverage the opportunities offered by the IoT as well as set up proper architectures, including IoT security testing, to mitigate any associated risks.

Read more…

Widespread adoption of IoT has led to organizations pushing the boundaries of what’s possible using the technology. Monitoring of operational assets and IT/OT integration, while extremely valuable, has evolved into generating actionable insights and true autonomous machine-to-machine (m2m) interaction. From autonomous vehicles to predictive maintenance to remote patient monitoring to the metaverse, real-time is the key, requiring not only high-speed data aggregation, but also complex analytics on that same data as soon as the data is generated.

While advances in network technology have significantly reduced information flow latency, managing transactional data and analyzing it in real-time continues to be a major challenge. One strategy that is leading the charge to address this is Hybrid Transactional Analytical Processing (HTAP) powered by in-memory computing.

Two types of IoT processing – Analytical and Transactional

In the past, many IoT implementations and use cases were unidirectional. Streaming data coming in from all sorts of sensors and devices was pushed at high speeds to large data stores. This data was then analyzed using typical big data analytics technologies to draw relevant conclusions for appropriate human intervention.

For true m2m interaction, however, the communication must be bidirectional between sensors and devices, and the processing must be real-time to support decisions and subsequent actions – all in a matter of milliseconds.

Consider an example use case: managing an end-to-end protein manufacturing process at a biotech firm’s manufacturing plant using IoT. To enforce process quality control and avoid the possibility of losing an entire batch of protein, the system must continuously receive data from various sensors and controllers and analyze that data to make decisions and trigger control actions – all in real-time during the ongoing manufacturing process.

For the biotech firm, this bidirectional, real-time communication and action can save an entire batch worth millions of dollars. For other use cases, such as autonomous vehicles, the stakes are even higher. Lives are at stake, and a single millisecond delay could prove catastrophic.

HTAP: Simultaneous transaction processing and analytics

These types of “transactional” IoT use cases require not only writing or persisting data at high speeds, but also processing every single incoming piece of information, analyzing it contextually, making a decision and initiating an action, all in real-time.

This is where data stores with HTAP capabilities come into play. HTAP creates that centralized, highly scalable data storage and processing tier that can process transactions and also perform inline analytics on that rapidly changing transactional data. In the case of the protein manufacturing process, the data coming in from any sensor is contextualized with data coming from other sensors at that exact time, analyzed based on an intelligent anomaly detection model, for example, leading to an appropriate decision. This decision leads the IoT system to trigger an action that is then initiated on the appropriate part of the manufacturing process to bring it back within the overall process control limits.

This type of automated process control would not be possible without the aggregation and analysis of data, execution of some complex and intelligent anomaly detection model and then initiating an action based on that intelligence, all done in real-time within the transactional scope of that ongoing highly sensitive manufacturing process.

HTAP and in-memory computing

Currently, the most effective way to deploy HTAP is with in-memory computing. In-memory computing platforms are typically deployed on a cluster of commodity servers, either on-premises, in public or private clouds, or on hybrid architectures. By pooling the available memory and compute from across the cluster, the in-memory computing platform can store vast amounts of data in-memory and use massively parallel processing (MPP) to deliver up to 1,000x faster performance for applications that were built on disk-based databases.

Analyzing the data in the same in-memory computing cluster where it is being written eliminates the movement of data over the network between the traditional OLTP and OLAP systems. This is really the key to enabling real-time, “transalytic” processing and decision-making. Further, the computing cluster can scale horizontally to petabytes of in-memory data, and some in-memory computing platforms offer multi-tiered computing to allow seamless processing of data cached in memory or stored on disk.

As companies in a wide range of industries continue to explore the potential of IoT, the demand to implement real-time, bidirectional M2M use cases will soar. HTAP is a proven and cost-effective strategy for making the solutions to these use cases a reality.

Read more…

There have been various innovations that have caused a stir in the healthcare business. As we have Artificial Intelligence, Machine Learning, and Augmented Reality technologies. As a result, you see their applications in every field or business, however, some of them are just overhyped or gimmicks.

However, the Internet of Things (IoT) is the most thriving technology, and IoT in healthcare has brought in a plethora of applications that are more than simply gimmicks and are actually pretty beneficial. Aside from the healthcare industry, there is a high need for IoT developers in general. Businesses in a variety of industries, including healthcare, are investing heavily in IoT app development. Let's take a look at how IoT is progressing in the healthcare business.

 

The benefits of IoT in healthcare are:

1) Simultaneous Reporting and Monitoring

Real-time monitoring through linked devices has the potential to save a million lives in the case of a medical emergency such as heart failure, diabetes, asthma attacks, and so on. Connected devices can acquire relevant medical and health-related data by monitoring the state in real-time using a smart medical gadget connected to a smartphone app.

 The linked IoT gadget captures and transmits health data such as blood pressure, oxygen, and blood sugar levels, as well as weight and ECGs. The data is kept in the cloud and can be shared with an authorized individual according to the sharing access authorization.

 Furthermore, the mentioned individual may be a physician, an insurance company, a participating health firm, or an external consultant, and it will allow them to check into the situation.

2)  Data Assortment and Analysis

Managing a large volume of data is not as simple as it seems for healthcare practitioners. Data acquired in real-time by IoT-enabled mobile devices may be evaluated and separated using IoT-powered mobility solutions.

This will lower the amount of raw data collected while also enabling crucial healthcare analytics and data-driven insights, which will eventually reduce mistakes and speed up decision-making.

3.)Tracking and Alerts

In life-threatening situations, real-time tracking and alerts can be a lifesaver by protecting a crucial patient's health with continual notifications and real-time alerts for proper monitoring, analysis, and diagnosis. IoT-powered healthcare mobility solutions provide real-time tracking, alerting, and monitoring.

This allows for hands-on treatments, more precision, and appropriate intervention by doctors, thereby enhancing the overall patient care delivery results.

4.) Remote Medical Assistance

In the case of an emergency, users may use smart smartphone applications to call a doctor who is thousands of kilometers away. With mobility solutions in healthcare, doctors may check on patients and diagnose illnesses while they are on the road.

Furthermore, various IoT-based healthcare delivery chains are planning to construct machines that may administer medications based on a patient's prescription and ailment-related data available via connected devices. IoT will improve hospital patient care. As a result, people's healthcare costs will be reduced.

 

What are the challenges of IoT in healthcare?

1) Data Security and Privacy:

Data Security and Privacy are two of the most serious concerns that IoT faces. IoT-enabled mobile devices collect data in real-time, however, the majority of them do not follow data protocols and standards.

There is a great deal of uncertainty around data ownership and regulation. As a result, data held within IoT-enabled devices are vulnerable to data theft, making the data more vulnerable to hackers who can hack into the system and jeopardize sensitive health information.

Fraudulent health claims and the production of phony IDs for purchasing and selling pharmaceuticals are two instances of how IoT device data is being misused.

2) Data Overload and Accuracy:

It is difficult to total information for essential bits of knowledge and inquiry due to the inconsistency of information and correspondence protocols. IoT collects information in large quantities, and for proper information inquiry, the information should be isolated in parts without overburdening and with accurate accuracy for better results. Furthermore, overburdening of information may have an effect on the dynamic cycle in the accommodation area in the long term.

3) Cost

This point is probably not surprising to you. Costs are one of the most significant challenges when considering IoT application development for medical services flexible setups. In any event, the costs are well worth the effort if the IoT implementation addresses a genuine need.

While establishing an IoT application will cost you a lot of money and assets, the benefits will be significant when your company saves time and labor, all while further expanding the business processes, providing additional income streams, and opening up more business opportunities through IoT.

Applications of IoT in healthcare

The growth of IoT is fascinating for everyone because of its diverse range of applications in numerous industries. It has numerous applications in healthcare. Here are some notable Internet of Things (IoT) applications in healthcare: 

IoT applications in healthcare are intended not just for healthcare facilities, but also for patients! In a nutshell, IoT in healthcare accomplishes the following tasks:

  • reducing the length of time people have to wait at the emergency department
  • Keeping track of patients, employees, and inventory
  • Improving Drug Management
  • ensuring crucial hardware availability

IoT has also offered a number of wearables and devices that have made patients' lives easier. These are the gadgets listed below.

Wearables:

Nowadays, wearables are Bluetooth-enabled, allowing them to connect with your smartphone.

It gives you the ability to filter, equalize, and layer real-world sounds. Doppler Labs is the best illustration of this.

Ingestible sensors:

Ingestible sensors are truly a miracle of contemporary science. These are pill-sized sensors that monitor the medicine in our bodies and alert us if any anomalies are detected.

These sensors can aid diabetic patients by reducing symptoms and providing an early warning of significant health risks. One such example is Proteus Digital Health.

Moodables:

Moodables are mood-enhancing items that help us feel better throughout the day. It may seem like science fiction, but it's not that far off. Thync and Halo Neurosciences have already begun working on it and have made significant progress. Moodables are head-mounted wearables that deliver low-intensity electricity to the brain, therefore elevating our mood.

Computer Vision Technology:

PC Vision Technology, in conjunction with Artificial Intelligence, has resulted in drone innovation, which intends to replicate visual understanding in order to empower dynamic in view of it.

Drones like Skydio employ PC vision technologies to detect obstacles and navigate around them. This invention has also greatly aided externally disadvantaged folks in exploring effectively.

IoT-fueled gadgets lessen a significant part of the manual work. For example, a specialist needs to utilize IoT gadgets during patient graphing. Here, IoT sensors can gauge a wide range of od information, for example, circulatory strain, internal heat level, and so forth, and diagram everything into an application associated with estimation gadgets through IoT.

Furthermore, it makes the patient's information promptly available for audit. Such an IoT application could set aside to 15 hours/seven day stretch of a specialist's manual outlining.

 

Read more…

Automation has become the buzzword these days, with business enterprises going about adopting newer technologies to be competitive and profitable. The Internet of Things, or IoT, is one such technology that has the potential to transform the way we perceive and act upon things - such as driving a car using smart IoT technology. The technology has been adopted on a large scale, especially in industrial applications, as a means to digitally transform processes and derive a host of benefits. These include reducing effort and cost, achieving speed, accuracy, higher productivity, and efficiency. The growing fascination for such devices is driving the market crazy with a valuation of $520 billion.  Furthermore, IoT technology is expected to receive up to $1 trillion in investments by 2022 (Source: research.aimultiple.com).

All said and done, the downside to the breakneck speed at which IoT is being adopted across the board is the neglect of security considerations. Business enterprises, in their zeal to adopt IoT technology to drive digital transformation, do not always give the security of such devices and the network on which they operate enough attention. This leaves these devices with vulnerabilities, which have the potential to be exploited by cybercriminals to cause data breaches with dire consequences for all stakeholders. Let us understand the IoT and how to strengthen its security.

Understanding IoT 

The Internet of Things comprises everyday devices that are interconnected through the internet or other wireless networks and can be controlled remotely. Everyday devices are fitted with sensors and microchips that can send or receive data over the internet. This creates the possibility of these devices being controlled remotely. The use of IoT in physical areas like homes, cars, offices, and even cities has a transformational effect in terms of turning them smart. For instance, your alarm clock can read the calendar and sets itself up to buzz at the right time.

Why is IoT security important? 

The world is poised to move into a “smart” ecosystem where automation, in all likelihood, is going to change our lives for the better. However, given that the internet or any wireless network is the carrier for IoT “signals”, cybercriminals can hack into the devices or networks and cause havoc. For instance, hackers can penetrate the IoT network of any company to cause system downtime or spy on homeowners to garner crucial information. Since billions of devices are connected to the IoT network, it is important to develop and comply with security standards to prevent tampering or breaches. Let us understand how IoT security testing can help in establishing such a secure ecosystem.

Protecting IoT devices and networks from cyber attacks

As companies develop new products with IoT capabilities, consumers are simply lapping them up. However, this increases the possibility of cyber-attacks on such devices. Let us understand how the Internet of Things QA testing for security can prevent such attacks.

IoT penetration testing: In this type of IoT testing methodology, the QA testers try to penetrate the IoT network and devices by exploiting the inherent vulnerabilities with full knowledge of the management. With IoT penetration testing, QA testers check the security of such devices and find out the vulnerabilities as they continue to operate in the real world. It helps stakeholders understand the types of vulnerabilities or glitches existing in the IoT system and how they can be exploited by real threat actors. After knowing the vulnerabilities through IoT security testing, the loopholes are plugged, thereby strengthening the security of the IoT system and making it virtually impregnable.

Threat modeling: This IoT testing approach helps determine the threat model for the IoT system and how it can be breached. For instance, if an IoT-enabled camera is installed to monitor a house or spy on people within a specific distance, it can be breached by a hacker to gain access to the images captured by the camera. With threat modeling, the vulnerability that allowed the hacker to gain access to the camera is eliminated.

Firmware analysis: Firmware is a type of software that is used in embedded devices like sensors to execute a dedicated function. It can be found on devices such as routers, smart appliances, or medical devices. As with any other software, firmware can contain vulnerabilities or bugs that can be exploited by cybercriminals. Firmware analysis is a type of IoT testing approach that looks for security issues such as buffer overflows, backdoors, and others.

Best practices to secure the IoT devices or systems

No matter how robust the security of IoT systems is, if the people operating the devices are not thorough with the security protocols, hackers can gain entry into the systems. The best practices to be followed to keep the IoT systems secure are listed below:

  • Change default credentials frequently and use strong passwords
  • Implement a VPN with strong encryption to transmit and store data
  • Perform IoT security testing frequently
  • Change default router settings
  • Disconnect devices when not in use
  • Do not use Universal Plug and Play
  • Update firmware regularly

Conclusion  

With the rapid growth of IoT systems, businesses should turn their focus to securing these devices from any unauthorized access. They should be thoroughly assessed to identify and mitigate any security vulnerabilities in the code. Even though IoT technology has the potential to transform our lives for the better, it is critical to understand that it can have security risks as well. It is only by implementing IoT device testing solutions in the value chain that businesses can ensure the protection of data from falling into the wrong hands.  

Image by Gerd Altmann from Pixabay

Read more…

The construction industry is among the many under pressure for optimisation and sustainable growth, driven by the development of smart urban cities. Construction will account for about USD 12.9 trillion global output by 2022 and is predicted to grow globally by 3.1% by 2030. Its demand and spending are growing rapidly in an attempt to answer the need for housing of the fast-growing global population.

 

However, the industry faces unique challenges on a global scale. Despite continual stable growth underperformance, constant project rework, labour shortage and lack of adopted digital solutions cause production delays and a worrying 1% growth in productivity.

The construction industry is one of the slowest growing sectors for IoT adoption and digitalization. To put this in numbers:

  • Only 18% of the construction companies use mobile apps for project data and collaboration.
  • Nearly 50% of the companies in the field spend 1% or less on technology
  • 95% of all data captured in construction goes unused
  • 28% of the UK construction firms point out lack of on-site information as the biggest challenge for productivity

And yet

  • 70% of the contractors trust that the advance of technology and software solutions, in particular, can improve their work.

To sum up the data, the construction industry is open to digitalization and IoT, but the advancement is slow and difficult, due to the specific needs of the field. When we talk about technology implementation on the construction site, IoT can help with project data collection, environment condition monitoring, equipment tracking and remote management, as well as safety monitoring with wearables.

However, the implementation of IoT for construction sites calls for careful planning and calculation of costs, as well as trust in the technology. Here is where private LTE networks can come into play and help construction companies take initial steps into advancing their digitalization.

What is Private LTE?

Long-term Evolution or LTE is a broadband technology that allows companies to vertically scale solutions for easier management, improved latency, range, speed and costs. LTE is a connectivity standard used for cases with multiple devices with multiple bands and for global technologies. For construction sites, this would mean LTE can connect all devices on-site, including heavy machinery, mobile devices, trackers, sensors and anything else that requires a stable uninterrupted connection.

LTE requires companies to connect to an MNO and depend on local infrastructure to run the network, much like Wi-Fi. Private LTE, on the other hand, allows companies to create and operate an independent wireless network that covers all their business facilities. Private LTE is often used to reduce congestion, add a layer of security and reduce cost for locations with no existing infrastructure, where constructions sites fall into.

Why Private LTE for construction?

When it comes to the particular needs of construction companies, private LTE offers the following benefits, over public LTE and Wi-Fi.

  • Network ownership and autonomy

Private LTE can be seen as creating a connectivity island on the construction site, where all company devices and machinery can be monitored and controlled by the company network team. Owning the network increases flexibility because businesses do not need to rely on local providers for making changes, creating additional secure networks or moving devices from one network to another.

Construction sites do not often come with suitable networks in place, so putting your own one up whenever needed is just as important as being able to take it down quickly. With private LTE, construction companies can do it as they see fit.

  • Cost

Private LTE can optimise the cost for running a construction site, not just by providing stable connectivity for IoT implementation, but also from a pure network running point. For example, Wi-Fi is often not sufficient for serving large construction sites and may require a number of repeaters to cover the area, which increases the running cost. Private LTE can run on a single tower and can be combined with CBRS for further cost-reduction. This makes it ideal for locations that would incur high infrastructure installation costs.

  • Control and security

With private LTE, companies can control network access, preventing unwanted users or outside network interference. This is critical for securing the project data and device access. Private LTE allows for setting up specific levels of security access for different on-site members.

Network ownership also allows teams to use real-time data to make timely decisions on consumption, device control and management, as well as react in case of emergency. This can further help increase the on-site safety of the team.

  • Performance

Compared to public LTE or Wi-Fi, private LTE networks are simply better performing when it comes to hundreds of devices. Because the network is private, it allows the usage of connectivity management platforms for control of individual SIM cards (connected devices), traffic optimisation and control. Public LTE and Wi-Fi networks are often not equipped to handle multiple devices on the site, let alone underground projects, where there are barriers to the network. Uninterrupted performance is also key for real-time data and employee safety at high-risk construction sites.

Private LTE is a technology widely applicable for manufacturing, mining, cargo and freight, as well as for utility, hospitals and smart cities in general. It is considered the stepping stone for 5G implementation, because of its capacity and it is agreed to be the gateway for future-proofing network access.

While the implementation of NB-IoT is progressing, we at JT IoT have already developed solutions suitable for future IoT connectivity. To learn more about private LTE, watch our deep dive into the topic with Pod Group. 

Originally posted here.

Read more…

In the age of hyper-connectivity, the Internet of Things (IoT) technology has provided countless innovators the opportunity to build software and hardware for different purposes — from medical smart devices and manufacturing to smart cities and homes. 

According to Statista, 15.9 billion connected devices will be connected worldwide by 2030. The global IoT spending will reach $1.1 trillion the same year. However, the growing number of IoT apps has also increased the amount spent by businesses to recall defective IoT devices.

You see, developing an IoT device is the only step towards ensuring its longevity. It is also essential to conduct proper QA testing to ensure the IoT software is strong enough to withstand security threats, performance malfunction, and connectivity issues. 

Your IoT device should work collaboratively and deliver value to the business as intended at the end of the day. In this article, we will discuss the definition, benefits, process, and types of IoT testing. But first, let us start with the basics: 

What is IoT testing? 

The general IoT network connectivity comprises four core layers, including the physical layer (sensors and controllers), network layer (gateways and communication units), data management layer (local or cloud services at the backend), and the application layer (software for user interaction). 

Since data is heavily transmitted from one object to another over the Internet in the ecosystem, it is vital to verify that your electronic devices can exchange sensitive information easily before the market launch and throughout their lifecycle. 

That is why all successful IoT businesses rely on automation, penetration, and performance testing tools to spot any defect in the IoT device before it reaches the hands of end customers.  

IoT testing is the practice of conducting QA tests to validate the performance, minimize security issues, and boost the functionality of an IoT device. It broadly revolves around device networks, operating systems, security, analytics, platforms, and standards. 

QA testers trace and associate software releases and cycles, test cases and scripts, look for defects, test executions, and gather other requirements. The complexity and variability of IoT testing make planning a crucial aspect of the process. 

The significant benefits of IoT testing 

QA engineers and developers can provide better  service offerings by employing IoT automation testing in their general practices with the right plan and purpose in place. These are the benefits that they can plan to see with IoT testing: 

10145777083?profile=RESIZE_710x

1. Faster time-to-market 

IoT testing ensures that businesses can launch their safe and approved IoT products in the market by leveraging automation. 

2. Business future-proofing 

IoT testing offers an integrated approach for validating IoT platforms' practical and non-functional testing requirements. The practice future-proofs the business by enabling higher interoperability and security with performance testing tools. In the end, you can deliver safer solutions and, therefore, be a better prospect for consumers. 

3. New business opportunities 

Testing the IoT solutions speeds up innovation with less risk and without delaying the response time or using too many resources. With set testing processes, businesses can experiment much more freely with IoT products in the market with minimal human intervention. 

IoT testing framework 

Given the complexity of IoT solutions, check all layers separately, verify the entire system's operation, and determine the interoperability level of several layers. Please refer to a robust testing framework to ensure the testing is done properly across all software versions. Some fundamental features that should be a part of the framework are listed below: 

10145776884?profile=RESIZE_710x

1. Performance testing 

It is essential to strategically approach the development and implementation of an IoT testing plan. That is why measure the IoT app's performance metrics such as throughput, CPU utilization, latency, and so on. Validate the stability of the entire app's functioning under changing operational and network conditions such as intermittent failures. 

2. Security testing 

Testing how safe and secure an IoT app functions is paramount. After all, many users access a massive amount of data all the time. You must, therefore, have data privacy controls and validate users via authentication as a part of your security testing processes. 

3. Compatibility testing 

Multiple devices are connected in a typical IoT ecosystem with different software and hardware configurations. Please ensure your IoT product is highly compatible with different tools and platforms for its smooth functioning. 

Use data recorders, for instance, to check out how the recorded data plays across different device end-points automatically and freely. 

4. Device interoperability 

IoT testing ensures that the end customers have a state-of-the-art user experience across multiple channels such as web apps and mobile devices. 

Visualize the required use cases and arrange the testing process. For instance, all layers should be checked for security and functioning separately. Then deploy APIs to review the application and data management layers. Test the physical and network layers for compatibility. 

Seven types of testing tools 

To execute a wide range of IoT tests at the staging phase, use the right automation, visualization, simulation, and measurement tools. Here are the different IoT testing tools that can make a ton of difference to how you approach the process: 

1. Device or protocol simulators 

As the name suggests, these IoT testing tools are often simulated in large numbers and configured to map the required real-time scenarios. The simulators are standards-compliant and support numerous IoT protocols in format testing processes. 

2. Record and playback test automation tools 

These tools are multi-purpose as QA testing teams find them useful in many test scenarios. The assessment involves recording a user's actions and matching objects behind the scenes to identify which units of code are routinely used and how. In this type of testing, a coded test script file is generated, which the QA engineers replay as is. 

10145775900?profile=RESIZE_710x

3. Mobile testing tools 

These IoT testing tools offer automated functional mobile testing, replicating customer experience and ensuring the IoT app works as expected. 

4. API testing tools 

Integrate an automated API testing tool with your continuous integration pipeline for improving your IoT app's codebase quality. Detect bugs early on in the IoT app development lifecycle with end-user application testing. 

5. Visualization tools 

The real-time validation of the IoT application is difficult and time-consuming. Introducing IoT data visualization tools can help finish the development process faster with minimal dependence in the real-time environment. 

That is because they initiate the cost-friendly and timely execution of compatibility tests without making any hefty investments in the hardware, browsers, platform services, operating systems, and so on. 

6. Automated deployment tools 

Automation testing tools help create virtual machines on the cloud or on-premise for rapidly commissioning managed services and configuring and deploying customized applications and services. Improve speed, productivity, and effectiveness of quality over execution. 

7. Security testing tools 

These can be categorized as static code analysis, threat modeling, and run-time threat-inducing. Unearth vulnerabilities, prioritize them, and offer recommendations on how to fix them with the help of security testing tools. 

The ultimate IoT testing process 

An IoT setup deploys various software testing approaches that are slightly different from the regular QA practices for validating IoT apps. Here is what a typical IoT testing process looks like: 

1. Lay the groundwork with the help of QA engineers 

Assign a QA testing team while the specifications for the IoT application are being decided. Having them on board at the beginning will help them choose how often the IoT development team will need to collaborate with the QA engineers to prioritize relevant test cases, enable regressing testing, and efficiently manage defects. 

They will also confirm the IoT testing risks and design an overall risk mitigation plan for your IoT app development project. Taking the QA team's help ensures proper test automation frameworks and configuration to address quality issues and whatnot. 

2. Prepare for IoT app testing 

Even when the QA team has designed a comprehensive testing strategy, they are still required to regularly revise and update the test artifacts. It would help if you also had a balanced combination of manual and automated testing to make sure the IoT app is error-free and to avoid data- and time-intensive repetitive test cases execution. 

Prepare for conducting different types of testing, including conducting usability testing, simulating sensors, verifying data integrity, determining the end-to-end workflows of the entire IoT application, and flawless communication between various IoT app components with their tech stack compatibility. 

10145775859?profile=RESIZE_710x

3. Select a vendor for outsourced IoT testing 

If you do not wish to carry out the function in-house, consider outsourcing as it proves to be more cost-effective than hiring a full-time staff. Plus, you have access to a greater talent pool and technological expertise. IoT testing becomes hassle-free. To select a fitting vendor of automation testing tools, please do the following: 

  • Shortlist vendors with successful IoT testing projects in your sector. 
  • Create a comprehensive request for proposal which includes your IoT solution's specific requirements. 
  • Consider their existing tech stack and human resources, so you do not get stuck in the middle of running tests. 
  • Understand their approach to an IoT testing strategy, testing toolkit, the planned test automation, and so on. 

4. Launch your IoT tests 

Once you have figured out your resources, it is time to design test cases and build test scripts. Check the end-to-end functioning of the IoT product by creating an IoT test lab with the help of service visualization tools. These labs serve as the digital portfolio for experimenting and simulating real-time experiences that fuel more innovative automation testing tools. 

Over to you 

IoT solutions can be challenging to develop, manage and test given the multiple components and interactions between them. It is, therefore, necessary to monitor the performance of the app more closely with automation testing tools. A thorough testing process ensures a quality IoT product and high customer satisfaction. So, how do you plan to get started with IoT testing?

Read more…

Premier Sponsors