Subscribe to our Newsletter | To Post On IoT Central, Click here

Apps and Tools (105)


From smart devices and home automation systems to smart cars and smart buildings, the Internet of Things brings important innovations in our life. In the next years, IoT solutions will continue to take the center stage in the tech environment.

With huge investment in this technology, the global IoT spending is expected to reach $1.29 trillion by 2020 and $1.4 trillion by 2021 (IDC report).

For now, manufacturing industry is still the main investor in the Internet of Things. According to recent surveys, 66% of manufacturers say that the use of IoT solutions is essential for staying competitive and resolving various issues.


Smart factories


Capgemini research reported that smart factories are going to add $500 billion to $1.5 trillion in value added to the global economy in 5 years. By now, 56% of manufacturing companies have already invested $100M in smart factory initiatives.

Today the creation of smart factories with the Internet of Things is gaining momentum and so far, only 6% of manufacturers can be designated to “Digital Masters”, an advanced stage in digitizing various production operations with a strong foundation of smart management, process automation, and employee skills.

Analysts expect smart factories to revolutionize the industry by providing a 7X increase in overall productivity by 2022. Among the most interesting findings, Capgemini reports smart factories will be able to speed up on-time delivery of finished products by 13 times, with the enhancement of quality indicators at more than 12 times the rate of improvement since 1990.

Also, Capital Expense & inventory costs will be rationalized 12 times and material, logistics and transportation costs are predicted to be optimized at 11 times the rate of improvement since 1990.

On the graphic below you can see a comparison of manufacturer’s annual gains since 1990 versus expected annual gains referred to smart factory technologies in the next 5 years.


Besides the Internet of Things, contributing technologies to smart factories also involve Big Data Analytics, machine learning, advanced robotics, and 3D printing, while cloud computing platforms unify all of these technologies together, leading to more rapid smart factory adaptation and bringing revolution in the industry.


IoT use cases in manufacturing


With smart connections of multiple devices, equipment, and production processes, manufacturers get such benefits as minimized human intervention, remote machinery maintenance, employee safety, production automation, and reduced operational costs.


The main IoT applications include:


  • Production flow monitoring - leads to flow optimization, minimize waste, and reduced labor and operational costs.
  • Remote equipment monitoring & management - Results in saved energy and reduced costs. Predictive analytics allows repairs and replacements to be automatically ordered even before something breaks.
  • Condition-based maintenance notifications - enables to successfully maintain machinery health and increase throughput.
  • Supply chain management

    with the help of vehicle and asset tracking, you improve the efficiency of manufacturing and supply chain operations.




There is a plenty of other successful IoT use cases in manufacturing: equipment predictive maintenance, vehicle and asset tracking, temperature/energy conservation/air quality control, facility management, smart ventilation, production flow monitoring, and smart radiation monitoring and measurement.

By integrating a smart factory initiative, you can connect all production stages, accelerate production, enhance various management processes, ensure working safety, reduce operational costs, and improve the entire company performance.

Read more…

Cloud computing allows companies to store and manage data over cloud platforms, providing scalability in the delivery of applications and software as a service. Cloud computing also allows data transfer and storage through the internet or with a direct link that enables uninterrupted data transfer between devices, applications, and cloud.

Role of Cloud Computing in IoT:

We know that the Internet of Things (sensors, machines, and devices) generate a huge amount of data per second. Cloud computing helps in the storage and analysis of this data so that enterprise can get the maximum benefit of an IoT infrastructure. IoT solution should connect and allow communication between things, people, and process, and cloud computing plays a very important role in this collaboration to create a high visibility. 

IoT is just not restricted to functions of systems connectivity, data gathering, storage, and analytics alone. It helps in modernizing the operations by connecting the legacy and smart devices, machines to the internet, and reducing the barriers between IT and OT teams with a unified view of the systems and data. With cloud computing, organizations do not have to deploy extensive hardware, configure and manage networks & infrastructure in IoT deployments. Cloud computing also enables enterprises to scale up the infrastructure, depending on their needs, without setting up an additional hardware and infrastructure. This not only helps speed up the development process, but can also cut down on development costs. Enterprises won’t have to spend money to purchase and provision servers and other infrastructure since they only pay for the consumed resources. 

(Case Study: DevOps for AWS, Continuous Testing and Monitoring for an IoT Smart City Solution)

How Cloud Services Benefit an IoT Ecosystem:

There are several cloud services and platforms that play different roles in the IoT ecosystem. Some of the platforms also come with inbuilt capabilities like machine learning, business intelligence tools, and SQL query engines to perform complex analytics. Let us understand how these cloud services and platforms benefit an IoT ecosystem.

Cloud Platform for Device Lifecycle Management:

Enterprises create applications and software through cloud services (SaaS), which can connect devices and enable device registration, on-boarding, remote device updates, and remote device diagnosis in minimal time with a reduction in the operational and support costs. Cloud introduces DevOps within the IoT ecosystem, which helps organizations automate many processes remotely. As more and more devices get connected, the challenges with data security, control, and management become critical. Cloud services enable IoT remote device lifecycle management that plays a key role in enabling a 360-degree data view of the device infrastructure. Certain cloud providers offer multiple IoT device lifecycle tools that can ease the update and setup of firmware and software over the air (FOTA).

Application Enablement Cloud Platform:

Cloud enables application development with portability and interoperability, across the network of different cloud setups. In other words, these are the intercloud benefits that businesses can take advantage of. Intercloud solutions possess SDKs (Software development Kits) on which enterprises can create their application and software without worrying about the backend processes.

Enterprises can run and update applications remotely, for example, Cisco is providing the application enablement platform for application hosting, update, and deployment through the cloud. Enterprises can move their applications between cloud and fog nodes to host the applications and analyze & monitor the data near the critical systems.

Many cloud service providers are focusing on building the cloud environment on the basis of OCF standards so that it can interoperate smoothly with the majority of applications, appliances, and platforms, that will allow D-to-D (device-to-device) M-to-M (machine-to-machine) communicationOpen Connectivity Foundation (OCF) standardization makes sure that the devices can securely connect and communicate in any cloud environment, which brings in the interoperability to the connected world.

Digital Twins:

Device shadowing or digital twins is another benefit that an enterprise can avail through cloud services. Developers can create a backup of the running applications and devices in the cloud to make the whole IoT system highly available for faults and failure events. Moreover, they can access these applications and device statistics when the system is offline. Organizations can also easily set up the virtual servers, launch a database, and create applications and software to help run their IoT solution.

Types of Cloud Computing Models for IoT Solutions

There are three types of cloud computing models for different types of connected environment that are being commonly offered by cloud service providers. Let’s have a look:

Cloud Computing Models


Infrastructure as a Service
  • It offers virtual servers and storage to the enterprises. Basically, it enables the access to the networking components like computers, data storage, network connections, load balancers, and bandwidth.
  • Increasing critical data within the organization lead to the security vulnerabilities and IaaS can help in distributing the critical data at different locations virtually (or can be physical) for improving the security.
Platform as a Service
  • It allows companies to create software and applications from the tools and libraries provided by the cloud service providers.
  • It removes the basic needs of managing hardware and operating systems and allows enterprises to focus more on the deployment and management of the software or applications.
  • It reduces the worry of maintaining the operating system, capacity planning, and any other heavy loads required for running an application.
Software as a Service
  • It provides a complete software or application that is run and maintained only by the cloud service provider.
  • Users just have to worry about the use of the product, they don’t have to bother about the underlying process of development and maintenance. Best examples of SaaS applications are social media platforms and email services.


Apart from these, cloud service providers are now offering IoT as a Service (IoTaaS) that has been reducing the hardware and software development efforts in IoT deployment.

Example of implementing cloud computing set-up in a connected-factory:

There are different sensors installed at various locations of an industrial plant, which are continuously gathering the data from machines and devices. This data is important to be analyzed in real time with proper analytics tools so that the faults and failures can be resolved in minimal time, which is the core purpose of an industrial IoT ecosystem. Cloud computing helps by storing all the data from thousands of sensors (IoT) and applying the needed rule engines and analytics algorithms to provide the expected outcomes of those data points.

Now, the query is which cloud computing model is good for industrial plants? The answer cannot be specific, as every cloud computing model has its own applications according to the computing requirement.

Leading Cloud Services for IoT Deployments

Many enterprises prefer to have their own cloud platform, within the premises, for security and faster data access, but this might not be a cost-effective way as there are many cloud service providers who are providing the cloud services on demands, and enterprises just have to pay for the services which they use.

At present, Amazon Web Services (AWS) and Microsoft Azure are the leading cloud service providers. Let’s see the type of cloud platforms and services AWS and Microsoft Azure provide for IoT implementations

AWS IoT Services

AWS has come up with specific IoT services such as AWS Greengrass, AWS lambda, AWS Kinesis, AWS IoT Core, and a few other cloud computing services, which can help in IoT developments.

AWS IoT Core is a managed cloud platform that allows devices to connect easily and securely with cloud and other devices. It can connect to billions of devices, store their data, and transmit messages to edge devices, securely.

AWS Greengrass is the best example of an edge analytics setup. It enables local compute, messaging, data caching, sync, and ML inference capabilities for connected devices in a secure way. Greengrass ensures quick response of IoT devices during local events, which reduces the cost of transmitting IoT data to the cloud.

AWS Kinesis enables data streaming that can continuously capture the data in terabytes per hour.

AWS Lambda is a compute service that lets you run code without provisioning or managing servers. It executes code only when required and scales automatically from a few requests per day to thousands per second.

AWS DynamoDB is a fast, reliable, and flexible NoSQL database service that allows enterprises to have millisecond latency in data processing, enabling quick response from applications. It can scale up automatically due to its throughput capacity, which makes it perfect for gaming, mobile, ad tech, IoT, and many other applications.

AWS Shield is a managed Distributed Denial of Service (DDoS) protection service that safeguards applications running on AWS. It provides automatic inline mitigation and always-on detection that minimize the application downtime and latency. This is why there is no need to engage AWS Support to benefit from DDoS protection. There are two tiers of AWS Shield — Standard and Advanced.

Microsoft Azure IoT Services:

Microsoft has come up with many initiatives in the field of IoT, providing industrial automation solutions, predictive maintenance, and remote device monitoring, etc. It is also providing services like Azure service bus, IoT hub, blob storage, stream analytics, and many more.

Azure Stream Analytics provides real-time analytics on the data generated from the IoT devices with the help of the Azure IoT Hub and Azure IoT Suite. Azure stream analytics is a part of the Azure IoT Edge that allows developers to analyze the data in real-time and closer to devices, to unleash the full value of the device generated data.

Azure IoT Hub establishes bidirectional communication between billions of IoT devices and cloud. It analyzes the device-to-cloud data to understand the state of the device and takes actions accordingly. In cloud-to-device messages, it reliably sends commands and notifications to connected devices and tracks message delivery with acknowledgment receipts. It authenticates devices with individual identities and credentials that help in maintaining the integrity of the system.

Azure Service Bus is a great example of cloud messaging as a service (MaaS). It enables on-premises communication between devices and cloud in the offline conditions also. It establishes a reliable and secure connection to the cloud, and ability to see and monitor activities. Apart from this, it protects applications from temporary spikes of traffic and distributes messages to multiple independent back-end-systems.

Azure Security Centre is a unified security management and threat protection service. It monitors security across on-premises and cloud workload, blocks malicious activities, advanced analytics system to detect threats and attacks, and also can fix vulnerabilities before any damages.

AWS and Microsoft Azure are providing a robust IoT solution to enterprises. An IoT Gateway can collaborate with multiple cloud service providers to maximize the advantages of the cloud solutions for IoT systems.

Read more…

New Developments in IoT connectivity

Guest post by Peter A. Liss.

Connectivity is wrongly thought of as a commodity, including in the IoT context. This article will give an overview of current developments in IoT Connectivity, and look at their effect on Network Operators, Platform vendors, IoT Solution Providers, and Enterprise & Consumer customers. 

I also cover the likely impact of 5G, Narrowband IoT and programmable SIM cards, and SDN (Software Defined Networks). These new connectivity technologies will bring differentiation, innovation and new revenue from IoT.


These new IoT developments include:

1.   Newer networks such Sigfox, LoRA, Narrowband IoT, and soon 5G.

2.   IoT platforms that can manage all types of connectivity.

3.   The growth of eUICC (e-SIMs) or programmable SIMs.

4.   IoT connectivity platforms using SDN (Software Defined Networks).

There are two opposing views about connectivity. On the one extreme, some Vendors pitch that “IoT Connectivity is the foundation of differentiation” (recent Ericsson Webinar). At the other extreme, some Enterprise customers buying these services assume “all IoT connectivity is the same”. 

In my view, the truth is in the middle. On the one hand, IoT hardware such as sensors and IoT applications could drive even bigger differentiation and innovation than the type of IoT connectivity. On the other hand, IoT connectivity should never be viewed as just a commodity that is plug and play.


Let’s take a closer look:

1)   There are many different types of Connectivity to choose from (cellular, WiFi, Zigbee, Satellite, and different types of LPWAN (Low Power Wide Area Networks). The criteria for selection include data cost, device cost, data rate/speed, battery life, outdoor and in-building coverage, and latency. Some of the much talked about networks like 5G are not yet available, and Narrowband IoT is in its infancy.

2)   The variety of connectivity offerings are increasing. Even taking a single technology like 4G, the offerings in terms of coverage, cost, roaming, integration effort, and customer service do differ widely.

3)   Costs are declining– the cost per MB has decreased, however, this is not the same as connectivity being a commodity (i.e. indistinct service). On the contrary, with more offerings and price competition, there is a greater need to choose the connectivity provider carefully. Pricing models may differentiate not only on cost per MB, but also with additional charges for VAS, the period charged for (monthly, per annum etc.) or number of connections included, or amount of data included in a packaged price. In the case of LPWA, charging can be per message, and not just per MB.

4)   The IoT Connectivity platform is where some of the disruption is happening. This platform manages the cost of connection, quality of service, SIM and device status. Along with the type of connectivity chosen, hardware (gateways & sensors), and IoT Applications built, the connectivity platform will be a key differentiator to your business case or service launch. 

My scheme below shows the place of the IoT Connectivity Management platform as the foundation of the IoT technology stack. Some differentiation could be achieved at any level in the Stack, but the effort required to offer a total solution will depend greatly on the Connectivity chosen at the bottom of the stack.


Narrowband IoT (NB-IoT) greatly improves network efficiency and spectrum efficiency and can thus support a massive number of new connections. The same is true of the sister technology Cat-M1 in US, which may also play a role in Europe in future. The majority of these new IoT connections will be industrial IoT (IIoT) solutions that require long battery life, and ubiquitous coverage (including remote areas or indoors). These user cases also require competitive pricing models for low bandwidth solutions, since many industrial IoT cases are not data hungry. 

Some examples of Industrial use cases are monitoring of oil and gas pipelines for flow rates and leaks, noting that often there is no external power in inaccessible areas. Warehouses are another industrial user case for tracking goods with pallets equipped with an NB-IoT module. NB-IoT modules have a long service life, require no maintenance and have a link budget gain of 20 decibel compared with a conventional LTE deployment, giving approximately 10x more coverage than a normal base station, thus penetrating deep underground, and into enclosed spaces indoors. 

Consumer examples of NB-IoT are luggage tracking (click for link to Sierra Wireless Case study), air quality monitoring, and children’s communication devices, and parking solutions.

NB-IoT, is a software upgrade to existing cellular Base Stations (or if the Base Station is old, a new circuit board must be inserted). The Core network also needs some upgrading. NB-IoT is reliant on a SIM card in the IoT device/gateway and partly because of the SIM it offers the same security & privacy features expected of cellular networks. LPWA technologies, such as NB-IoT and category M1 (LTE-M), also offer increased network coverage over a wide area, at a low cost, and with very limited energy consumption. In the case of Narrowband IoT, a battery life of over 10 years or more, is promised by Vendors (it remains to be seen - in the field, it might need a larger battery at an extra cost of approximately 20 Euro).

NB-IoT networks are already becoming available, for example, Deutsche Telekom has rolled out its NB-IoT network to approximately 600 towns and cities across Germany since launch in June 2017. According to Telekom, more than 200 companies now trialling the technology already via commercially available test packages. Nationwide rollout in the Netherlands was completed in May 2017 and Deutsche Telekom brought the technology to six further European markets by the end of 2017. Other major operators have similar roll outs for NB-IoT.

As expected, many IoT platforms are now being designed or upgraded to offer Narrowband IoT connectivity management. Cisco already announced in 2018 the availability of NB-IoT on its Jasper Control Center platform.


5G is not yet available commercially, and we can expect the first roll-outs in selected countries in 2019, and even then, just city coverage, or home-based 5G. High speed, high reliability and low latency are the main benefits of 5G.  Whilst NB-IoT is targeted specifically at the IoT Market, 5G is targeted at business & consumer users too. Also, worth noting is that the NB-IoT roll-out is ahead of 5G.

Regarding the high bandwidth of 5G, example uses include security cameras and monitoring, computer vision used in Industrial production, connected car user cases (infotainment, autonomous vehicles, and safety), and traffic control in Smart Cities. The increase in speed between 4G and 5G can be as much as 100 times. This makes a big difference to user cases that require uploading and downloading of video-based content faster and in larger volume.  It remains to be seen whether IoT applications will need to use such high data speeds. Perhaps it will be the Augmented or Virtual Reality cases (AR and VR) that utilise this bandwidth.

With 5G there is very high reliability, which is important to support mission critical services in IoT (e.g. medicine, industry, traffic control). However, the real benefit for IoT is likely to be with the low latency of 5G. Low latency allows more of the computer processing or data analysis required by a device (IoT Gateway or Smartphone) to happen in the cloud. With latency of under a millisecond, there is almost no difference that the data is processed in the cloud rather than the device. This has perhaps more implications for the IOT Solution architect, rather than the user.

Indeed, the user cases that depend on 5G’s low latency are still to be proven in practice. For non-IoT user cases (i.e. human interaction), the latency (such as changing of a pixel on a TV, or response time for instant messaging and online Presence) might not be noticed. However, for an M2M or IoT application in theory there is a great need for low latency and a machine might notice the difference in latency when a human does not. For this reason, the low latency is being pushed by the 5G industry as compelling for IoT (but yet to be proved). IoT user cases that are expected to benefit are remote industrial control, and autonomous vehicles, where milliseconds could be critical.

As explained in the discussion of latency, one change with 5G could be more processing in the Cloud, especially with Edge computing being a focal point in the architecture, and this might help reduce 5G IoT device prices. Other Emerging developments that might affect IOT include virtualised RAN (Radio Access Network) and network slicing. Virtualised RAN is intended to offer bandwidth with lower network costs, since by “slicing” the RAN, it is not necessary to utilise the whole core network, but rather allocate a part of it and the associated costs, thus allowing for profitable use cases with 5G.


Programmable SIM cards (also called eSIMS or eUICC ) are not new. What has changed is the number of service providers that offer them for IoT. Some prominent examples are Stream, EMnify, Cubic Telecom, KORE, Nokia WING and Teleena. Furthermore, the new generation of Smart SIM and associated management platforms are challenging the MNOs in terms of quality of service and signal coverage. They might also challenge MNOs in terms of cost - see the section below on SDN.  

The “e” in eSIM can mean both electronic (it can switch network and be programmed over the air) and embedded (i.e. deep inside machinery, a car or a remote location). In other words, you do not need physical access to the embedded SIM to update it or to change network, service or security settings.

The advantages of an eSIM are that it can be programmed over the air to find the strongest signal, or according to customer network & service preferences. When a data-service failure is detected, the eSIM can switch dynamically to the best network service. Consider a user case such as Smart Metering. The meter is always connected by being programmed not only to select the strongest signal, but also to select the signal that is best for your Meter technology and customer requirements.

In sum, the IoT Service Provider does not own a network, but can still offer the following to its customers:

•Issue own SIM cards, that can be embedded and switch operator over the air.

•Attach to the best or cheapest radio signal (RAN) – automatically

•Billing capabilities, often in real time, for the pricing of new IoT services.


As explained above, the e-SIM is the first disruptive step to being able to offer an IoT service, without being tied to one specific radio network (RAN). The second step is to bypass the Operator’s core network. This is now possible with some Service Providers using Software Defined Networks (SDN) and NFV (Network Feature Virtualisation). They have built their own virtualised core network that is cloud hosted. EMnify is one example that can offer the following advantages:

•Low cost, because designed for IoT, and using proprietary technology (therefore no licencing costs)

•Auto-configuration and scaling. Because it is Cloud Based the service is truly elastic (i.e. can be quickly and simply expanded to meet customer demand for increased data volume, or larger number of SIM cards)

•Pay-as-you-grow pricing

•Flexible and Real time billing that is accessible online

•Have own numbering resources (IMSI, IPv6, MSISDN)

•Manage your own virtual mobile IoT network including Elastic Packet Core, Subscriber Management, OSS/BSS, Management Portals and open APIs. 

•A private and secure device cloud and implement own security policies (such as own VPN – virtual private network - in the core network in the cloud).

The “Gorilla” MNO (e.g. Telekom, Verizon, Vodafone etc) is reduced to providing only the radio network, and with the eSIM you can actually switch networks. To be clear, you are not reliant on the operator for the core network at all, and you have a choice of radio network. In sum, the advantage is that such a virtual network in the Cloud allows IoT user cases that have lower revenues, because the IoT platform is designed for lower connectivity costs.



I have built the case that “boring” connectivity is going to be disruptive for IoT, and it will generate growth. In sum, this is because many IoT business models require lower costs for the lower “micro” or “mini” ARPU/revenue that they generate. Secondly, these new network technologies bring improved speed, latency, battery life, and coverage. Thirdly, new technologies like eSIM and SDN, give the customer choice and independence from the MNO.

Enterprise customers will need to get more knowledgeable about the types of connectivity on offer, and the pros and cons, and costs of each technology. Disruption in the market is starting, due to many new offerings from MNO, and MVNOs that are IOT focussed. 

Price declines for NB-IoT and 5G enabled devices will also be business drivers. Many connectivity platforms will struggle to distinguish themselves, but can do so, for example by focussing on particular Verticals, or a specific geographical focus, or own Cloud-based packet core. Enterprise customers need to get the balance between a price that enables the business case, but also choosing connectivity that provides the best service level. 

LPWA technologies such as Narrow-Band promise to open-up new business models due to lower device and connectivity costs better coverage and longer battery life. NB-IoT is still in its infancy and these benefits like lower device costs are still to be proven.  Importantly, the connectivity costs of NB-IoT (as well as module/device costs) will need to be low enough to support the proposed new business cases like parking meters, water meters, luggage tracking, pipe monitoring, and tracking goods in warehouses. 

5G for IoT will enable data hungry business models, insure against capacity constraints, and provide wider coverage and almost no latency. Since 5G roll-out is still in the future, it remains to be seen if (or when) the required network density (using such small cells) is enough to provide the wider coverage and higher data rates promised. Almost zero latency is likely to be the most interesting feature of 5G for the IoT World, especially for critical applications like autonomous driving and industrial control.

Big data, Analytics and Application Enablement Platforms/AEP might sound more exciting and promising for innovation and differentiation in IoT. They sound more compelling than a connectivity management platform and new types of connectivity. However, Connectivity is still the foundation of the IoT business case. It is not a commodity. In particular, Narrow-Band IoT, eSIM and SDN will drive new growth in IoT, together with the imminent roll-out of 5G.

Copyright: Peter A. Liss, an independent and commercially focussed IoT expert, based in Germany, who is also available for freelance consulting work.

This post originally appeared here.

Cover photo by Federico Beccari on Unsplash

Read more…

One of my LinkedIn contacts suggested me last year not to write more articles about MWC event. However, a couple of weeks ago talking with another contact that not attend this year told me he was expecting my article. So here it is, my fourth MWC article in a row since 2015. Am I a MWC addictYou can read previous articles here:

Unfortunately, the Powerful GSMA rejected my ticket request as Analyst / Press (LinkedIn please help me next year) and of course I did not pay the prohibitive prices of Silver Pass, Gold Pass and Platinum Pass. At the end, conference sessions content is very generic and I can read free the content. I cannot justify the ROI for pay these tickets. Can you?

Avoiding the politics issues between Catalonia and Spain, it was the first MWC where the snow was probably the biggest surprise of the show. The snow and the rain did not allowed visitors to spend some time outside.

A painI do not know the final numbers, but I notice this year less attendants than 2017. No doubt GSMA will try to find excuses eg, political issues, but the reality is that the cost of the show do not convince to many usual large / medium / small companies. It is a fact that some big companies did not attend or send less delegates and use less square meters

Again, visitors that attend 1 or 2 days do not have had time to move to other parallel events like 4YFN.  Running from meeting to meeting, bad lunch as usual. I'm sure I've lost weight these days

The MWC18 has been an evolution of what we saw last 2 years. Not revolution. We need to wait another 5 years to see some notorious technological advances although GSMA should continue helping to create a better future

Before #MWC18

I was angry with the Search exhibitor page of the web . Please GSMA you have 1 year to improve. None exhibitor has included any product in the category of Blockchain or Internet of Things. Duplicates filters, etc. I read some LinkedIn post and articles and talked with people to plan my visit and capture their feeling this year.

During the #MWC18

The euphoria of 5G has dropped – More info about 5G at MWC18 here “ Intel, Qualcomm Talk About Accelerating 5G Efforts at MWC 2018 

IoT - The word that describes my feeling is disappointment. Although expected, something sad because the word IoT begins to lose brightness and disappear from the stands. The Pavillion 8.0 dedicated to the IoT, was not star this year. Do you really deserve to be exhibitors at the MWC

At least it was good to pulse the evolution and transformation of the IoT / M2M market. A new impulse will be necessary before 2020

Unfortunately, I could not attend any of the Top 7 IoT Activities at Mobile World Congress. Please tell me if any of it was worth it.

It was funny to hear how Operators trying to explain the use cases of Blockchain in Telco sector.

Artificial Intelligence, Connected Vehicles and Robots the starts of MWC18.  It was interesting discuss with some Operators about the practical potential of Machine learning, Artificial Intelligence (AI), Robots in this sector.  The conclusion in this article “ You Can't Teach an AI to Run a Telecom Network—Yet.

MWC18 was in my opinion the year of the Connected Intelligent Vehicle. Operators, Technology Vendors and Car Manufacturers need to cooperate to avoid a technology nightmare for future drivers/passengers.   

After #MWC18

I cannot resist to compare this congress with the Groundhog Day festivities. I make no secret of my discomfort for the continuous decisions of GSMA to make this show useless for many. My unpleasantness for the prohibitive cost of the tickets, hotels in the town, and the arrogant executives who attend the event as movie stars and finally for the many parallel events that I have missed or meetings of 15 minutes because I had spent hours daily walking by the walk sides of Fira Halls and my frustration for not finding some companies in the labyrinth of  the pavilions

Like Bill Murray in the movie, I discover year after year that MWC's events repeating almost exactly. I feel I am trapped in a time loop that probably most of you are aware of

I am glad if you have spent these days indulging in night parties, looking for new jobs or cheering you for the work you have in your great company.  Luckily for me, I do not return depressed, but my mind do not escape for some days to the MWC loop. Am I a MWC addict?

See you next year at MWC19 Barcelona


Thanks for your Comments and Likes

Read more…

As mobile devices become smaller and smarter, artificial intelligence (AI) is steadily gaining significant popularity among users and developers alike. Every now and then mobile developers around the world are working assiduously to develop and employ the emerging technology in mobile app development which is aimed at improving the way users interact with apps. Already, there are several signs, indications, and signals revealing that the AI will dominate the future of mobile apps.

In the tech world, AI is believed to hold immense potential and Indian app developers are gradually embracing and integrating this relatively new technology into their mobile app development seeing that it presents the best bet for the future. Already, the current mobile app market is consequently being flooded with new mobile applications and models leading to the creation of new and improved mobile app development services.

Even if you don’t notice it, AI is already around you and it has come to stay. In the past, this technology was only regarded as a futuristic concept for movies but today it has become a reality. And there is no better time to get involved with the trend than now. Interestingly, many Indian app developers are beginning to discover that mobile development and AI share common features and can make a perfect match. Obviously, there are lots of possibilities that can be accrued from the advancement of AI.

Combining artificial intelligence (AI) with mobile development will result in the creation of intelligent apps. Basically, this is concerned with the design and development of mobile apps that have the ability to learn, think logically, and solve problems. In a bid to effectively engage users, transform customer experience, and ultimately retain them, many app developers and top app development companies in India alike are already working to integrate the technology into their mobile applications.

The impact of AI on mobile development

Many tech and industry experts are suggesting that AI will be a major trend in various sectors, particularly in the mobile application development. To this end, everyone in the industry including, startups, growing businesses, and top app development companies are investing in artificial intelligence (AI) with the aim of providing efficient customer services and bring about a positive change. While some are incorporating the technology in the form of chatbots, others are looking to embed it into the infrastructure of their mobile app development as assistants to create smart apps.

Already, some tech giants like Uber, Amazon, eBay and the rest are making use of AI and judging from the look of things, it is a meaningful realization. With this new technology, Indian app developers are helping businesses support their customers with relevant, seamless, and personalized services. With time AI in mobile apps will understand customer behavior, thanks to its ability to effectively gather massive amounts of data from previous customer interactions and learn them. Apart from helping to bring customers closer to the business, AI-enabled apps are also helping to enhance customer interaction thereby boosting customer retention rate.

Basically, Indian app developers are finding ways to make use of the data that businesses are getting via mobile devices, online traffic, and point-of-sale machines to impact both business and consumer experience with AI’s influence. As more artificial and machine learning-driven apps make their way into app stores, things will change in the way and manner people communicate and interact. In a bid to create more insightful, context-rich experiences, the algorithms will be able to sift through the obtained data, find correlations and trends and get the apps adjusted to suit the personal needs of the user.

Obviously, there is much to achieve with these artificial intelligence algorithms in mobile app development. There is a wide range of AI-based mobile app development projects undertaken by Indian app developers. With the development of personal assistants, chatbots, and other artificial intelligence features, many big companies are already reinventing their user experience (UX) strategies. And in order to remain ahead of the competition, other businesses are following suit.

The future of AI-driven apps

Now that the entire ecosystem has been enhanced with regular and active access of data management and delivery, many Indian app developers will be employing AI which will become an essential necessity for robust mobile app development in the near future. Basically, there is every need for systems featuring data governance, data security, and metadata management to be fast and robust in indexing and cataloging.

Here are other ways through which AI development will impact the industry

Cloud services

It’s no longer news that businesses are adopting cloud computing technology to improve their services. It may interest you to know that Indian app developers will not only be adopting this technology to enhance development but will also be using it to troubleshoot errors in AI-driven apps.

Business apps

As already mentioned, many businesses are already seeking to enhance customer interaction by investing mobile app development. However, integrating AI will help to boost convenience for customers and also help businesses reach a wider target audience. Businesses will not only be using AI-driven apps to observe internal communications, but these will help to simplify business activities in several ways.

Location-based applications

Today, people are using location-based apps to search and find virtually anything they need in any location. AI-enabled apps will be synchronizing users’ interest, as well as their frequent searches to create results. Basically, these apps will be using obtained data to provide more desirable suggestions. Already, Google users can easily search for promotion offers, nearby restaurants and department stores with their smartphone via Google Assistant or Siri.

Internet of Things (IoT)

In recent times, there has been an increase in a range of new technologies due to the desire to further increase the mobility of users. IoT is one of such recent developments making waves in the industry. No doubt, AI will be enhancing the development of IoT helping smartphone users manage real-life events in the near future.

AR and VR

Together with AI, Augmented Reality (AR) and Virtual Reality (VR) is taking both the gaming and entertainment industry by storm. The release of Oculus Rift, Google Cardboard, Samsung Gear VR and other numerous models of VR devices are already influencing the industry.

Read more…

With so many companies and people on the search for the "IoT killer app” for a decade, and nobody has found it yet ☹. You can be sure that I do not either, otherwise I would not be writing this article and I will be furiously developing it.

Most companies are anxiously looking for the killer IoT app/solution, which their IoT reps could sell in volume to their enterprise customers. The bad news for them: “ there’s no true “killer app” for IoT and that any company can create the right killer app to solves a business need of a customer or a whole industry.

Nevertheles we can not avoid that some people think pet care or fitness could be the "killer app" for IoT, while others instead think that the killer IoT app winners will be in Verticals like predictive maintenance in manufacturing, smart home or smart city solutions and also I had read funny opinions that considers measuring Temperature and Humidity seem the killer application for most of the IoT industry. The comment is comical but at the same time ironic. In the absence of bright or innovative ideas it seems that we would have discovered the fire when we install sensors and we are able to visualize temperature and humidity in real time on the screen of our smartphone.

Instead of continuing to dream of finding the Holy Grail of the IoT, I think it will be more productive to analyse by categories what are the possible IoT applications that exist and if I am enlightened try to guess which application would be the milk to launch myself to develop it without fearThese are the 5 categories to search for the IoT horizontal Killer app:

  1. IoT-Search
  2. IoT-Messaging
  3. IoT-Security
  4. IoT-Commerce
  5. IoT-Social


Search for the killer IoT horizontal application is a chimera given the definition of the IoT. However, the challenges that the IoT has to achieve that 50 billion machines can be found, communicate safely through various networks, socialize and favour the monetization of its services, open great opportunities for hardware and software engineers to develop different killer applications. And I'm sure some will find it. I wish I could be part of one of them.

Thanks for your Likes, Comments and Shares

Read more…

Artificial intelligence is one field of science and technology that is wildly becoming popular. Artificial intelligence involves the introduction of human level precision and accuracy to bots. Artificial intelligence has found application by top app development companies in every field of life; from medicine to tourism, from engineering to production. Artificial intelligence has helped to automate our work and has made life easier. Below are 10 most popular artificial intelligence apps for iPhone/iOS;

  1. Google Allo:

Google Allo is one of the best artificial intelligence apps for messaging available for iOS users which can be used in iPhone app development. It allows users to take action on their smartphones using their voice; such as voice to text input. The app comes with emojis and stickers that allows users to easily express their emotions and feelings. It also has a smart reply feature. The app also provides an incognito mode option that allows users to hide their search history from their smartphone.

  1. ESLA Speak:

Perhaps you want to learn how to speak and write English and don't have an English teacher close by. No need to worry, ELSA Speak is one of the best and most popular iOS apps for iPhone app development that helps users to learn English Language in less than 4 weeks. With this app, English speaking users can also improve their pronunciation of English words and phrases. The app comes with English test designed by experts, which allows users to test and estimate their progress. The app also comes with day by day full progress report.

  1. Cortana:

Perhaps what you need is a personal assistant that can help to arrange and keep track of your documents, images and act as reminder for your scheduled event, then Cortana is one of the your best iOS artificial intelligence app that is of importance in iPhone app development that can perform this function. This artificial intelligence app can easily sync between your mobile phone and laptop, so regardless where your files are kept or where your schedule is listed, Cortana can perform its function perfectly well. Cortana can provide its users with their favorite TV shows, series, sports, artists etc.

  1. Robin:

Robin is an iOS artificial intelligence app that combines the function of a personal assistant and a voice-to-text app. Users can use this app to write text without having to touch their mobile phone, only by the use of voice. It allows users to set reminders for important events or work that needs to be done. It also allows users to get GPS navigation, hence locating places more easily.

  1. Socratic:

Math is one of the biggest challenges for students all around the world. Finding a quality math tutor to help out with homework is equally as difficult as the math problems given. But Socratic is here to help. Socratic is one of the most popular and smartest math homework helper available on iOS that is very important in iPhone app development. Socratic will help users with their math homework in good time and with expert technique. It artificial intelligence feature is one of the smartest. All that is needed is for users to take a picture of their homework using the camera app and instantly the AI provides you with concepts that can assist in solving the problem.

  1. Edison Assistant:

Also known as easilyDo Smart assistant app, Edison Assistant is an artificial intelligence app that works as a personal assistant and informs users about traffic conditions between where they are and their destination. It informs on better, shorter routes devoid of traffic that users can take to get their destination or when the best time is to leave their present location to their destination. As a personal assistant, it helps to delete multiple contacts from users smartphone and also help to book ticket to hotels, events, movies, restaurant and so on.

  1. Siftr Magic:

Siftr Magic is a very effective artificial intelligence iOS app that is of importance in iPhone app development, which helps users free up space on their smartphone by helping to clean up junk photos and videos. Photos typically taken by smartphone tend to be large in size and they easily fill up space. Finding the images to delete to free up space may be quite difficult. Siftr Magic uses artificial intelligence to sift through thousands of images in seconds and identify duplicate images or images that are not relevant and needs to be deleted. The app does not delete images on its own, it only makes recommendation based on the content of the images and the number of times it has been viewed.

It also helps to identify and remove battery draining apps or problems, so as to improve battery life.

  1. SwiftKey Keyboard:

This is the most popular artificial intelligence iOS keyboard app that helps to automatically correct wrong words or sentences. Aside from its auto-correct feature, the app comes with the ability to change font style, color, size, theme, and design. It comes with emojis that can help users express feelings.

  1. Replika:

Replika is one of the most advanced iOS artificial intelligence app that is of importance in iPhone app development. It is known as the good friend app as users can have an endless conversation with the app. The app is so advanced that having a conversation with it appears like having a conversation with a real friend. What's more, Replika has the ability to, over time, learn the preferences of the user, therefore its conversation changes from being generic to become more specific and personalized. Replika is your best friend on mobile, and it is available anytime you need it 24/7.

The app also comes with a notepad, allowing users to save notes and memories, which will be easily available at any time.

  1. Seeing AI:

Seeing AI is one of the most effective and advance artificial intelligence iOS app that is built for visually impaired users. This app is giving hope to visually impaired individuals, allowing them to interact better with their surroundings. Using the phone camera, Seeing AI has the ability to read signs, letters, identify people and relay it back to users. Visually impaired people can understand text, recognize setting, and even know what the weather looks like. One of the most impressive features of the app is its ability to recognize people's emotions, therefore users can know how people around him/her feels.

Read more…

Is it Time to Adopt eUICC?


Are we ready for an IoT paradigm shift? Are security needs, flexibility to address regional and regulatory challenges, and international globalization enough to encourage the IoT industry to accept embedded SIMs (eUICC), along with subscription management, to achieve reduced logistical and manufacturing costs with a single stock-keeping unit with a unique identification number (SKU)?

Shifting to a new technology always is a slow process if for no other reason but caution. The technology standardization and go-to-market approaches are yet evolving in parallel for interoperability. This requires preparing for the bigger picture by taking small steps with calculated risks, sincere effort, and commitment from multiple players.

Moving forward with subscription management

We now are in the third version of GSMA Removable SIMs standards. In the consumer market of smartphones/tablets, it even can be said that the industry now is moving toward the early adopter phase of the product life cycle. The IoT market still is in the innovator phase and needs more commitment from different actors across the industry. GSMA specifications clearly have defined the processes, systems, and interfaces for remotely managing eUICCs in a secure and standardized way — for downloading, enabling, disabling, and deleting subscriptions using Subscription Management–Secure Routing (SM-SR).

Subscription management has evolved significantly across different arenas, such as standard organizations, SIM suppliers, module vendors, operators, and connectivity platform providers. Now that the vision is understood, and the usefulness of the new platform is clear, it becomes easier for any one player to come out of their comfort zone and succeed in implementing the vision against any challenges that exist. The telematics industry seems to be taking a lead, with other verticals following up close behind.  

With this ongoing adaptation and interoperability, mature applications can be designed to provide flexibility in operator selection on the basis of defined criteria and to hand control of the connectivity to users. The manufacturers can take advantage of new programmable SIMs and build generic devices, while providing the flexibility of MNO selection to customers.

Examples of IoT eUICC use cases:

  • Insurance for Life: IoT devices for regulatory monitoring and the security vertical usually have long lifespans, so making use of an eUICC is perfect for these use cases. The use of an embedded SIM gives freedom to OEMs in relation to their mobile network operators (MNO) contracts, in addition to regional regulation or connectivity spectrum changes such as 2G/3G. OEMs who use an eUICC have independence from long-term ties to MNO contracts and changing market conditions. They can opt for new MNO/MVNOs with better coverage simply by replacing the subscription on the SIM remotely, without touching the device. This saves assembly time, field validation, and addresses challenges of reaching remote places, as well as eliminating the related costs of field visits. Thus, the devices that operate in remote and harsh environments have insurance if they adopt eUICC. This provides the device operator flexibility, with increased life expectancy and security, and enables the OEM to remove and update aging standards and technology.
  • Global Product Launch: Using an eUICC provides an option to an OEM to enter global markets with a phased launch of a device. OEMs initially can use any bootstrap MNO profile, with a minimally viable product, to evaluate market interest. Later, on the basis of market validation and product demand, the OEM can switch the profile remotely to a local MNO and then scale up for ROI post-market validation. This approach allows individuals to secure the best service by area, while using local MNO/rates, meeting local regulatory requirements, and avoiding roaming costs as volume increases. This model fits particularly well with expensive heavy machinery, which moves from place to place, such as military equipment, construction vehicles, leased farming machinery, etc. The key advantage of an eUICC is giving the dealer/terminal provider the capability to switch from one MNO to another, without any constraints.
  • Frequent Subscription Changes: In this approach, the user holds greater control and can actively switch from provider to provider and take advantage of region-specific pricing. Applications with high data usage, such as hotspots on a moving vehicle, can take advantage of eUICC flexibility to avoid roaming charges while increasing the availability of cellular networks. By managing subscriptions in near real time, OEMs will be able to lower connectivity costs while maximizing connectivity reliability for users. This use case may take a bit longer to commercialize in comparison to the first two.

Is it that simple?

The key to success in any of these above-mentioned use cases is understanding all the relevant parameters and dependencies, including MNO certification related to device modules, the technical know-how of the subscription management platform, and policy control for security via secure routing. My recommendation for successful migration to the eUICC platform is to assemble technical teams that understand MNO network coverage, the design of an eUICC deployment, and device module capabilities. There is a risk in adopting eUICC, which can be mitigated by overlapping deployment and effective application management with proper monitoring by technical experts, especially in the initial phase. This flexibility comes with increased complexity and, in order to address this, connectivity management providers need to lock arms with application providers, as well as with experts in the device capability field.

Guest post by Pratibha Sharma. This post originally appeared here

Photo credit: Igor Ovsyannykov



Read more…

Botty Media

The revolution of digital technology has disrupted and transformed the entire Media Industry. The evolution of print to online media has significantly impacted the individual, business, society, and nation overall. The digitization has changed the judicious "decision-making" capability of an individual which can make or break something powerful in this world. 

The advent of the Internet and transformational technologies have redefined the way we gather, receive and consume the news today. During the Pre-Internet era, it was challenging to get international or even national information without the Newspaper which slowly evolved to Radio, Television, and Social-Media. 

With time, 'Time' became the most significant challenge which a man is always battling especially in the fast-paced mechanical world. This challenge paved the way for one of the biggest business opportunity for Media Industry in the world. Mobility became the future, and with this development, the media rapidly advanced itself in the era of social-media by providing online-news via apps which led to the decline of the print-media businesses. 

However, the ever-growing influence of online social media gave birth to the 'Fake News or Yellow Journalism which refers to journalism that provides little or no legitimate or well-researched news. Instead, they present headlines story that is eye-catching and sell more newspapers. The media and all other superpowers in the Industry who wanted to manipulate adopted methods such as exaggerations of news-events, sensationalism, scandal-mongering, deliberate hoaxes or misinformation via print and broadcast news media or online social media. 

The fake news is published or written with the explicit intention of misleading to damage the reputation of an entity, agency or a person, and or to gain politically or financially, often using outright fabricated headlines to increase readership, coverage, online sharing, internet click revenues or any hidden business motivations. 

To top it all the technology has proven advantageous to players in the 'Fake News.' The 'Bots' are designed with the intelligence and robotic power to perform any automated task without human intervention. In the case of online media, they are programmed to gather and collate 'Fake News' that could make or break any business, people, society or a nation. 

Let us take the recent case of 2016 US presidential election, according to the CBS News the stories which consistently featured in Google's top news search results were widely shared on the Facebook and they were taken seriously by the readers. Mark Zuckerberg, CEO of Facebook, made a statement, "I think the idea that fake news on Facebook influenced the election in any way, I think is a pretty crazy idea." A few days later, he blogged that Facebook was looking for ways to flag the fake news stories. Angela Merkel expressed her concern by discussing the topic on Fake News and Bots which can manipulate public opinion is committed not to use social bots for her campaign strategy.

However, demonizing bots might cause society from overlooking the possibility of using the same bots for the good of mankind. Be it a Bot or Chatbot it can be the optimal tools for eliminating the fake news from the system. Using Artificial Intelligence (AI), the bots can be programmed only to collate legitimate news whose data source has been validated. Apart from eliminating the rudimentary system of reporting, the 'AI Bot or Chatbot' will automate the entire online news reporting system and slowly eradicate the yellow journalism from its roots. 

To summarize, the 'Media Industry' should collaborate with Technologists and Subject Matter Expertise for designing and developing AI Bots that can bring in the Next-Gen online news reporting system which will be instrumental in eliminating the 'Fake News' from the system and help establish people's trust back in the power of the Social Media. More importantly, reinstating the judicious decision-making capability of an individual. 

Read more…

Evolution of Drones

It is the 'Era' of Unmanned Aerial Vehicles (UAV), or Unmanned Aerial System (UAS), an all-encompassing term which includes the aircraft or the UAV, and the ground-based controller (the person operating the machine), and the system of communications connecting the two, commonly known as 'Drones.' 

Today, the drones are revolutionizing the world and businesses which hardly anyone could have ever imagined. UAVs or drones was an aircraft without a human pilot aboard. UAVs include both autonomous drones and Remotely Piloted Vehicles (RPVs). 

According to the brief history "The U.S. military experimented with pilotless aeroplanes as “aerial torpedoes” or flying bombs far back during the first world war, but with no significant success—until the Vietnam war, when jet-propelled, camera-equipped drones built by Teledyne-Ryan were launched and controlled from U.S. Air Force C-130s. 

"Abraham Karem born in 1937, is regarded as the founding father of UAV (drone) technology. "Karem built his first drone during the Yom Kippur war for the Israeli Air Force. In the 1970s, he moved to the USA and founded his company Leading Systems Inc. He started the manufacturing of his first drone 'Albatross' in his home garage. Later on, the sophisticated 'Amber' which eventually evolved into the famous 'Predator' drone that brought him the title of "drone father". Karem has been described by The Economist magazine as the man who "created the robotic plane that transformed the way modern warfare is waged, and at the age of 80 he continues to pioneer other airborne innovations." 

The UAVs or drones were associated with the military and those used by the US Air Force for surveillance, small intelligence, and reconnaissance craft of which some of them were light enough to be launched by hand, medium-sized armed drones to large spy planes. However, with the technology that is in use is incredibly advanced. It uses Artificial Intelligence (AI), GPS, 3D scan, Biometrics, to Robotics and remote control to pilot essentially unmanned aeroplanes of different sizes, weights, reaching new heights figuratively and literally. 

Let me discuss some of the significant use-cases of the Military or Law enforcement Drones:

1. Air Strikes: The UAVs or drones are used for air strikes. According to President Obama, the US Military used drones to attack militants in the tribal areas of Pakistan. The drones hover over the suspected areas to fulfil the military operation.

2. Bomb Detection: The increasing frequency of terrorist attacks which the world has witnessed in the recent past can be mitigated with the help of drones. Small size drones can easily penetrate into the restricted areas. The inbuilt cameras make the drone highly suitable for bomb investigations. Thus the UAVs are apt for detecting the unexploded bombs and securely dealing with a potential bomb threat. 

3. Surveillance: Any country's Defence tends to conduct periodic surveys to ensure the protection of the place and its people usually. The drones are also used for criminal surveillance which could help trace missing persons, a search of criminal gangs or mafia groups. In 2009, the drone from Dayton carried out surveillance for 200 hours across cities. This helped in capturing the images of thirty-four murders as they happened in real-time. These attacks were carried out by a cartel, and the footages helped the Police to get to the perpetrator's getaway, vehicles and their various accomplices. 

4. Hostage Negotiation: The future of the drone could be an application of tiny drones, the size of an insect which will be capable of revealing the happenings in a hostile location. It is believed that the manufacturers will be able to provide 'Biomimetic' designs which will be suited to mimic nature along with the 3D depiction scan for appropriate handling of a hostage situation. The drone will help show precise details of exact happenings in the given locations without risking the lives of the security personnel. The drones will be of good use in conducting negotiations without the need for sending a negotiator to the hostage site. Instead, it can be achieved by sending a drone with a facility for a facetime chat with the hostage-taker. 

5. Crime Scene Analysis: Drones play a significant role in the future crime scene investigations due to the drone's ability to take photos and inspect the scene without any contamination of the pieces of evidence. Hence, the investigation team will not risk mistakes like footprints and fingerprints which were not supposed to be there. The police also could use drones to trackback discarded weapons from the crime scene location. Drones to help create maps for prosecuting or solving various crimes and documenting the evidence to convict the criminals who have walked-out scot-free due to lack of sufficient documented proof against them. 

6. Drone in Drug Interdictions or Tracing Missing Persons: Today, drones that are equipped with spectroscopic sensors help in detection of the meth labs, and similar use case can be applied for the storage of drug at sites to help in dealing with the menace of the illegal drug trade. It is most common for some close person to have gone missing. There have been several cases when a child has gone missing in a large crowd, or a person with Alzheimer disease has wandered from home. The drones equipped with cameras, facial recognition or license plate readers software will be able to swiftly and efficiently search and track the missing people. These drones will transform the way the future search operations of the missing people are conducted.

Military usage of UAVs or drones has become the primary use in today's world. According to Goldman Sachs, military spending will remain the primary driver of drone spending with an estimate of $70 billion drones by 2020. According to the latest news, "The US Military's latest autonomous aircraft is radically changing how they resupply units in the combat zone. It is all about keeping the troops safe and saving lives. The UAV helicopter is meant to resupply forces in combat zones quickly delivering ammunition, water, batteries, and even blood before returning to base. With no need for pilot or crew, it could eliminate the need for troops to fly or drive supplies to hostile, fire or dangerous roadways. The project is a partnership between the office of Naval research and tech company Aurora Flight Systems."

These are some of the use-cases of the Military or Law-Enforcement UAVs or Drones which I have discussed here. However, in my next couple of articles, I will be addressing the Non-military or Commercial, Personal and Future use-cases of the UAVs or Drones that has disrupted and transforming the world. 

To conclude, the drones will play a vital role in the resolution of future conflicts and the replacement of the human pilot. Drones are also cost-effective, time-saving and life-changing. Although, the application of drones in the Law-Enforcement domain is niche but will need the Federal Aviation Authority (FAA) to have the relevant regulations which would govern the right use of 'UAVs or Drones' in a lawful manner that will bring protection to the people and its nation.

Read more…

Over the last couple of years, the Internet of Things grew into a huge gate between the reality and the digital world, and CES 2018 was the event that nailed it. IoT dominated the event with a vengeance, and it could be roughly divided into two major areas: smart home (with a nod to smart city) and industrial Internet of Things (with a nod to the much-hyped Industry 4.0).

The event showed the inevitable changes in the industrial sector that are likely to reward early adopters with shares on the market. Meanwhile those who avoid innovation get left behind in the long run. Such companies as Bosch reinvent the way manufacturers run their facilities, with a focus on increased performance and care for safety of human workers.

Smart home was represented not only by a huge variety of standalone products, but also by closed ecosystems created by such consumer tech giants as LG.

Automotive industry always has been leading in innovation with self-driving and connected cars being part of the IoT market. This year all major car manufacturers hosted a kind of car show inside CES, introducing new automotive IoT products.

Besides these spheres, there were two more major followers of IoT trends: healthcare and retail. Both aim for automation of operations, provision of personalized experience to customers, and overall transformation of the ways they operate.

Read more…
Email me when there are new items in this category –