Subscribe to our Newsletter | To Post On IoT Central, Click here


Cloud Platforms (160)

Today the world is obsessed with the IoT, as if this is a new concept. We've been building the IoT for decades, but it was only recently some marketing "genius" came up with the new buzz-acronym.

Before there was an IoT, before there was an Internet, many of us were busy networking. For the Internet itself was a (brilliant) extension of what was already going on in the industry.

My first experience with networking was in 1971 at the University of Maryland. The school had a new computer, a $10 million Univac 1108 mainframe. This was a massive beast that occupied most of the first floor of a building. A dual-processor machine it was transistorized, though the control console did have some ICs. Rows of big tape drives mirrored the layman's idea of computers in those days. Many dishwasher-sized disk drives were placed around the floor and printers, card readers and other equipment were crammed into every corner. Two Fastrand drum memories, each consisting of a pair of six-foot long counterrotating drums, stored a whopping 90 MB each. Through a window you could watch the heads bounce around.

The machine was networked. It had a 300 baud modem with which it could contact computers at other universities. A primitive email system let users create mail which was queued till nightfall. Then, when demands on the machine were small, it would call the appropriate remote computer and forward mail. The system operated somewhat like today's "hot potato" packets, where the message might get delivered to the easiest machine available, which would then attempt further forwarding. It could take a week to get an email, but at least one saved the $0.08 stamp that the USPS charged.

The system was too slow to be useful. After college I lost my email account but didn't miss it at all.

By the late 70s many of us had our own computers. Mine was a home-made CP/M machine with a Z80 processor and a small TV set as a low-res monitor. Around this time Compuserve came along and I, like so many others, got an account with them. Among other features, users had email addresses. Pretty soon it was common to dial into their machines over a 300 baud modem and exchange email and files. Eventually Compuserve became so ubiquitous that millions were connected, and at my tools business during the 1980s it was common to provide support via this email. The CP/M machine gave way to a succession of PCs, Modems ramped up to 57 K baud.

My tools business expanded rapidly and soon we had a number of employees. Sneakernet was getting less efficient so we installed an Arcnet network using Windows 3.11. That morphed into Ethernet connections, though the cursing from networking problems multiplied about as fast as the data transfers. Windows was just terrible at maintaining reliable connectivity.

In 1992 Mike Lee, a friend from my Boys Night Out beer/politics/sailing/great friends group, which still meets weekly (though lately virtually) came by the office with his laptop. "You have GOT to see this" he intoned, and he showed me the world-wide web. There wasn't much to see as there were few sites. But the promise was shockingly clear. I was stunned.

The tools business had been doing well. Within a month we spent $100k on computers, modems and the like and had a new business: Softaid Internet Services. SIS was one of Maryland's first ISPs and grew quickly to several thousand customers. We had a T1 connection to MAE-EAST in the DC area which gave us a 1.5 Mb/s link… for $5000/month. Though a few customers had ISDN connections to us, most were dialup, and our modem shelf grew to over 100 units with many big fans keeping the things cool.

The computers all ran BSD Unix, which was my first intro to that OS.

I was only a few months back from a failed attempt to singlehand my sailboat across the Atlantic and had written a book-length account of that trip. I hastily created a web page of that book to learn about using the web. It is still online and has been read several million times in the intervening years. We put up a site for the tools business which eventually became our prime marketing arm.

The SIS customers were sometimes, well, "interesting." There was the one who claimed to be a computer expert, but who tried to use the mouse by waving it around over the desk. Many had no idea how to connect a modem. Others complained about our service because it dropped out when mom would pick up the phone to make a call over the modem's beeping. A lot of handholding and training was required.

The logs showed a shocking (to me at the time) amount of porn consumption. Over lunch an industry pundit explained how porn drove all media, from the earliest introduction of printing hundreds of years earlier.

The woman who ran the ISP was from India. She was delightful and had a wonderful marriage. She later told me it had been arranged; they met  their wedding day. She came from a remote and poor village and had had no exposure to computers, or electricity, till emigrating to the USA.

Meanwhile many of our tools customers were building networking equipment. We worked closely with many of them and often had big routers, switches and the like onsite that our engineers were working on. We worked on a lot of what we'd now call IoT gear: sensors et al connected to the net via a profusion of interfaces.

I sold both the tools and Internet businesses in 1997, but by then the web and Internet were old stories.

Today, like so many of us, I have a fast (250 Mb/s) and cheap connection into the house with four wireless links and multiple computers chattering to each other. Where in 1992 the web was incredibly novel and truly lacking in useful functionality, now I can't imagine being deprived of it. Remember travel agents? Ordering things over the phone (a phone that had a physical wire connecting it to Ma Bell)? Using 15 volumes of an encyclopedia? Physically mailing stuff to each other?

As one gets older the years spin by like microseconds, but it is amazing to stop and consider just how much this world has changed. My great grandfather lived on a farm in a world that changed slowly; he finally got electricity in his last year of life. His daughter didn't have access to a telephone till later in life, and my dad designed spacecraft on vellum and starched linen using a slide rule. My son once saw a typewriter and asked me what it was; I mumbled that it was a predecessor of Microsoft Word.

That he understood. I didn't have the heart to try and explain carbon paper.

Originally posted HERE.

Read more…

When I think about the things that held the planet together in 2020, it was digital experiences delivered over wireless connectivity that made remote things local.

While heroes like doctors, nurses, first responders, teachers, and other essential personnel bore the brunt of the COVID-19 response, billions of people around the world found themselves cut off from society. In order to keep people safe, we were physically isolated from each other. Far beyond the six feet of social distancing, most of humanity weathered the storm from their homes.

And then little by little, old things we took for granted, combined with new things many had never heard of, pulled the world together. Let’s take a look at the technologies and trends that made the biggest impact in 2020 and where they’re headed in 2021:

The Internet

The global Internet infrastructure from which everything else is built is an undeniable hero of the pandemic. This highly-distributed network designed to withstand a nuclear attack performed admirably as usage by people, machines, critical infrastructure, hospitals, and businesses skyrocketed. Like the air we breathe, this primary facilitator of connected, digital experiences is indispensable to our modern society. Unfortunately, the Internet is also home to a growing cyberwar and security will be the biggest concern as we move into 2021 and beyond. It goes without saying that the Internet is one of the world’s most critical utilities along with water, electricity, and the farm-to-table supply chain of food.

Wireless Connectivity

People are mobile and they stay connected through their smartphones, tablets, in cars and airplanes, on laptops, and other devices. Just like the Internet, the cellular infrastructure has remained exceptionally resilient to enable communications and digital experiences delivered via native apps and the web. Indoor wireless connectivity continues to be dominated by WiFi at home and all those empty offices. Moving into 2021, the continued rollout of 5G around the world will give cellular endpoints dramatic increases in data capacity and WiFi-like speeds. Additionally, private 5G networks will challenge WiFi as a formidable indoor option, but WiFi 6E with increased capacity and speed won’t give up without a fight. All of these developments are good for consumers who need to stay connected from anywhere like never before.

Web Conferencing

With many people stuck at home in 2020, web conferencing technology took the place of traveling to other locations to meet people or receive education. This technology isn’t new and includes familiar players like GoToMeeting, Skype, WebEx, Google Hangouts/Meet, BlueJeans, FaceTime, and others. Before COVID, these platforms enjoyed success, but most people preferred to fly on airplanes to meet customers and attend conferences while students hopped on the bus to go to school. In 2020, “necessity is the mother of invention” took hold and the use of Zoom and Teams skyrocketed as airplanes sat on the ground while business offices and schools remained empty. These two platforms further increased their stickiness by increasing the number of visible people and adding features like breakout rooms to meet the demands of businesses, virtual conference organizers, and school teachers. Despite the rollout of the vaccine, COVID won’t be extinguished overnight and these platforms will remain strong through the first half of 2021 as organizations rethink where and when people work and learn. There’s way too many players in this space so look for some consolidation.

E-Commerce

“Stay at home” orders and closed businesses gave e-commerce platforms a dramatic boost in 2020 as they took the place of shopping at stores or going to malls. Amazon soared to even higher heights, Walmart upped their game, Etsy brought the artsy, and thousands of Shopify sites delivered the goods. Speaking of delivery, the empty city streets became home to fleets FedEx, Amazon, UPS, and DHL trucks bringing packages to your front doorstep. Many retail employees traded-in working at customer-facing stores for working in a distribution centers as long as they could outperform robots. Even though people are looking forward to hanging out at malls in 2021, the e-commerce, distribution center, delivery truck trinity is here to stay. This ball was already in motion and got a rocket boost from COVID. This market will stay hot in the first half of 2021 and then cool a bit in the second half.

Ghost Kitchens

The COVID pandemic really took a toll on restaurants in the 2020, with many of them going out of business permanently. Those that survived had to pivot to digital and other ways of doing business. High-end steakhouses started making burgers on grills in the parking lot, while takeout pizzerias discovered they finally had the best business model. Having a drive-thru lane was definitely one of the keys to success in a world without waiters, busboys, and hosts. “Front of house” was shut down, but the “back of house” still had a pulse. Adding mobile web and native apps that allowed customers to easily order from operating “ghost kitchens” and pay with credit cards or Apple/Google/Samsung Pay enabled many restaurants to survive. A combination of curbside pickup and delivery from the likes of DoorDash, Uber Eats, Postmates, Instacart and Grubhub made this business model work. A surge in digital marketing also took place where many restaurants learned the importance of maintaining a relationship with their loyal customers via connected mobile devices. For the most part, 2021 has restauranteurs hoping for 100% in-person dining, but a new business model that looks a lot like catering + digital + physical delivery is something that has legs.

The Internet of Things

At its very essence, IoT is all about remotely knowing the state of a device or environmental system along with being able to remotely control some of those machines. COVID forced people to work, learn, and meet remotely and this same trend applied to the industrial world. The need to remotely operate industrial equipment or an entire “lights out” factory became an urgent imperative in order to keep workers safe. This is yet another case where the pandemic dramatically accelerated digital transformation. Connecting everything via APIs, modeling entities as digital twins, and having software bots bring everything to life with analytics has become an ROI game-changer for companies trying to survive in a free-falling economy. Despite massive employee layoffs and furloughs, jobs and tasks still have to be accomplished, and business leaders will look to IoT-fueled automation to keep their companies running and drive economic gains in 2021.

Streaming Entertainment

Closed movie theaters, football stadiums, bowling alleys, and other sources of entertainment left most people sitting at home watching TV in 2020. This turned into a dream come true for streaming entertainment companies like Netflix, Apple TV+, Disney+, HBO Max, Hulu, Amazon Prime Video, Youtube TV, and others. That said, Quibi and Facebook Watch didn’t make it. The idea of binge-watching shows during the weekend turned into binge-watching every season of every show almost every day. Delivering all these streams over the Internet via apps has made it easy to get hooked. Multiplayer video games fall in this category as well and represent an even larger market than the film industry. Gamers socially distanced as they played each other from their locked-down homes. The rise of cloud gaming combined with the rollout of low-latency 5G and Edge computing will give gamers true mobility in 2021. On the other hand, the video streaming market has too many players and looks ripe for consolidation in 2021 as people escape the living room once the vaccine is broadly deployed.

Healthcare

With doctors and nurses working around the clock as hospitals and clinics were stretched to the limit, it became increasingly difficult for non-COVID patients to receive the healthcare they needed. This unfortunate situation gave tele-medicine the shot in the arm (no pun intended) it needed. The combination of healthcare professionals delivering healthcare digitally over widespread connectivity helped those in need. This was especially important in rural areas that lacked the healthcare capacity of cities. Concurrently, the Internet of Things is making deeper inroads into delivering the health of a person to healthcare professionals via wearable technology. Connected healthcare has a bright future that will accelerate in 2021 as high-bandwidth 5G provides coverage to more of the population to facilitate virtual visits to the doctor from anywhere.

Working and Living

As companies and governments told their employees to work from home, it gave people time to rethink their living and working situation. Lots of people living in previously hip, urban, high-rise buildings found themselves residing in not-so-cool, hollowed-out ghost towns comprised of boarded-up windows and closed bars and cafés. Others began to question why they were living in areas with expensive real estate and high taxes when they not longer had to be close to the office. This led to a 2020 COVID exodus out of pricey apartments/condos downtown to cheaper homes in distant suburbs as well as the move from pricey areas like Silicon Valley to cheaper destinations like Texas. Since you were stuck in your home, having a larger house with a home office, fast broadband, and a back yard became the most important thing. Looking ahead to 2021, a hybrid model of work-from-home plus occasionally going into the office is here to stay as employees will no longer tolerate sitting in traffic two hours a day just to sit in a cubicle in a skyscraper. The digital transformation of how and where we work has truly accelerated.

Data and Advanced Analytics

Data has shown itself to be one of the world’s most important assets during the time of COVID. Petabytes of data has continuously streamed-in from all over the world letting us know the number of cases, the growth or decline of infections, hospitalizations, contact-tracing, free ICU beds, temperature checks, deaths, and hotspots of infection. Some of this data has been reported manually while lots of other sources are fully automated from machines. Capturing, storing, organizing, modeling and analyzing this big data has elevated the importance of cloud and edge computing, global-scale databases, advanced analytics software, and the growing importance of machine learning. This is a trend that was already taking place in business and now has a giant spotlight on it due to its global importance. There’s no stopping the data + advanced analytics juggernaut in 2021 and beyond.

Conclusion

2020 was one of the worst years in human history and the loss of life was just heartbreaking. People, businesses, and our education system had to become resourceful to survive. This resourcefulness amplified the importance of delivering connected, digital experiences to make previously remote things into local ones. Cheers to 2021 and the hope for a brighter day for all of humanity.

Read more…

By Michele Pelino

The COVID-19 pandemic drove businesses and employees to became more reliant on technology for both professional and personal purposes. In 2021, demand for new internet-of-things (IoT) applications, technologies, and solutions will be driven by connected healthcare, smart offices, remote asset monitoring, and location services, all powered by a growing diversity of networking technologies.

In 2021, we predict that:

  • Network connectivity chaos will reign. Technology leaders will be inundated by an array of wireless connectivity options. Forrester expects that implementation of 5G and Wi-Fi technologies will decline from 2020 levels as organizations sort through market chaos. For long-distance connectivity, low-earth-orbit satellites now provide a complementary option, with more than 400 Starlink satellites delivering satellite connectivity today. We expect interest in satellite and other lower-power networking technologies to increase by 20% in the coming year.
  • Connected device makers will double down on healthcare use cases. Many people stayed at home in 2020, leaving chronic conditions unmanaged, cancers undetected, and preventable conditions unnoticed. In 2021, proactive engagement using wearables and sensors to detect patients’ health at home will surge. Consumer interest in digital health devices will accelerate as individuals appreciate the convenience of at-home monitoring, insight into their health, and the reduced cost of connected health devices.
  • Smart office initiatives will drive employee-experience transformation. In 2021, some firms will ditch expensive corporate real estate driven by the COVID-19 crisis. However, we expect at least 80% of firms to develop comprehensive on-premises return-to-work office strategies that include IoT applications to enhance employee safety and improve resource efficiency such as smart lighting, energy and environmental monitoring, or sensor-enabled space utilization and activity monitoring in high traffic areas.*
  • The near ubiquity of connected machines will finally disrupt traditional business. Manufacturers, distributors, utilities, and pharma firms switched to remote operations in 2020 and began connecting previously disconnected assets. This connected-asset approach increased reliance on remote experts to address repairs without protracted downtime and expensive travel. In 2021, field service firms and industrial OEMs will rush to keep up with customer demand for more connected assets and machines.
  • Consumer and employee location data will be core to convenience. The COVID-19 pandemic elevated the importance location plays in delivering convenient customer and employee experiences. In 2021, brands must utilize location to generate convenience for consumers or employees with virtual queues, curbside pickup, and checking in for reservations. They will depend on technology partners to help use location data, as well as a third-party source of location trusted and controlled by consumers.

* Proactive firms, including Atea, have extended IoT investments to enhance employee experience and productivity by enabling employees to access a mobile app that uses data collected from light-fixture sensors to locate open desks and conference rooms. Employees can modify light and temperature settings according to personal preferences, and the system adjusts light color and intensity to better align with employees’ circadian rhythms to aid in concentration and energy levels. See the Forrester report “Rethink Your Smart Office Strategy.”

Originally posted HERE.

Read more…

By Patty Medberry

After 2020’s twists and turns, here’s hoping that 2021 ushers in a restored sense of “normal.” In thinking about what the upcoming year might bring for industrial IoT, three key trends emerge.

Trend #1: Securing operational technology (OT)

 IT will take a bolder posture to secure OT environments.

Cyber risks in industrial environments will continue to grow causing IT to take bolder steps to secure the OT network in 2021. The CISO and IT teams have accountability for cybersecurity across the enterprise. But often they do not have visibility into the OT network. Many OT networks use traditional measures like air gapping or an industrial demilitarized zone to protect against attacks. But these solutions are rife with backdoors. For example, third-party technicians and other vendors often have remote access to update systems, machines and devices. With increasing pressure from board members and government regulators to manage IoT/OT security risks, and to protect the business itself, the CISO and IT will need to do more.

Success requires OT’s help. IT cybersecurity practices that work in the enterprise are not always appropriate for industrial environments. What’s more, IT doesn’t have the expertise or insight into operational and process control technology. A simple patch could bring down production (and revenues).

Bottom line? Organizations will need solutions that strengthen cybersecurity while meeting IT and OT needs. For IT, that means visibility and control across their own environment to the OT network. For OT, it means security solutions that allow them respond to anomalies while keeping production humming.

Trend #2: Remote and autonomous operations

The need for operational resiliency will accelerate the deployment of remote and autonomous operations – driving a new class of networking.

The impact of changes brought on in 2020 is driving organizations to increasingly use IoT technologies for operational resiliency. After all, IoT helps keep a business up and running when people cannot be on the ground. It also helps improve safety and efficiencies by preventing unnecessary site visits and reducing employee movement throughout facilities.

In 2021, we will see more deployments aimed at sophisticated remote operations. These will go well beyond remote monitoring. They will include autonomous operational controls for select parts of a process and will be remotely enabled for other parts. Also, deployments will increasingly move toward full autonomy, eliminating the need for humans to be present locally or remotely. And more and more, AI will used for dynamic optimization and self-healing, in use cases such as:

  • autonomous guided vehicles for picking and packing, material handling, and autonomous container applications across manufacturing, warehouses and ports
  • increased automation of the distribution grid
  • autonomous haul trucks for mining applications
  • Computer-based train control for rail and mass transit

All these use cases require data instantly and in mass, demanding a network that can support that data plus deliver the speed required for analysis. This new class of industrial networking must provide the ability to handle more network bandwidth, offer zero latency data and support edge compute. It also needs security and scale to adapt quickly, ensuring the business is up and running – no matter what.

Trend #3: Managing multiple access technologies

Organizations will operate multiple-access technologies to achieve operational agility and flexibility.

While Ethernet has always been the foundation for connectivity in industrial IoT spaces, that connectivity is quickly expanding to wireless. Wireless helps reduce the pain of physical cabling and provides the flexibility and agility to upgrade, deploy and reconfigure the network with less operational downtime. Newer wireless technologies like Wi-Fi 6 and 5G also power use cases not possible in the past (or possible only with wired connectivity).

As organizations expand their IoT deployments, the need to manage multiple access technologies will grow. Successful deployments will require the right connectivity for the use case, otherwise, costs, complexity and security risks increase. With wireless choices including Wi-Fi, LoRaWAN, Wi-SUN, public or private cellular, Bluetooth and more, organizations will need to determine the best technology for each use case.  

Cisco’s recommendation: Build an access strategy to optimize costs and resources while ensuring security. Interactions between access technologies should deliver a secured and automated end-to-end IP infrastructure – and must avoid a “mishmash” leading to complexity and failed objectives.

As the end of 2020 fast approaches, I wish everyone a safe and healthy New Year. As you continue building and refining your plans for 2021, please consider how you can unleash these IoT network trends to reduce your cybersecurity risks and increase your operational resiliency. 

Originally posted HERE.

Read more…

New solar performance monitoring system has potential to become IoT of photovoltaics. Credit: Pexels

A new system for measuring solar performance over the long term in scalable photovoltaic systems, developed by Arizona State University researchers, represents a breakthrough in the cost and longevity of interconnected power delivery.

When solar cells are developed, they are "current-voltage" tested in the lab before they are deployed in panels and systems outdoors. Once installed outdoors, they aren't usually tested again unless the system undergoes major issues. The new test system, Suns-Voc, measures the system's voltage as a function of light intensity in the outdoor setting, enabling real-time measurements of performance and detailed diagnostics.

"Inside the lab, however, everything is controlled," explained Alexander Killam, an ASU electrical engineering doctoral student and graduate research associate. "Our research has developed a way to use Suns-Voc to measure solar panels' degradation once they are outdoors in the real world and affected by weather, temperature and humidity," he said.

Current photovoltaic modules are rated to last 25 years at 80 percent efficiency. The goal is to expand that time frame to 50 years or longer.

"This system of monitoring will give photovoltaic manufacturers and big utility installations the kind of data necessary to adjust designs to increase efficiency and lifespans," said Killam, the lead author of "Monitoring of Photovoltaic System Performance Using Outdoor Suns-Voc," for Joule.

For example, most techniques used to measure outdoor solar efficiency require you to disconnect from the power delivery mechanism. The new approach can automatically measure daily during sunrise and sunset without interfering with power delivery.

"When we were developing photovoltaics 20 years ago, panels were expensive," said Stuart Bowden, an associate research professor who heads the silicon section of ASU's Solar Power Laboratory. "Now they are cheap enough that we don't have to worry about the cost of the panels. We are more interested in how they maintain their performance in different environments.

"A banker in Miami underwriting a photovoltaic system wants to know in dollars and cents how the system will perform in Miami and not in Phoenix, Arizona."

"The weather effects on photovoltaic systems in Arizona will be vastly different than those in Wisconsin or Louisiana," said Joseph Karas, co-author and materials science doctoral graduate now at the National Renewable Energy Lab. "The ability to collect data from a variety of climates and locations will support the development of universally effective solar cells and systems."

The research team was able to test its approach at ASU's Research Park facility, where the Solar Lab is primarily solar powered. For its next step, the lab is negotiating with a power plant in California that is looking to add a megawatt of silicon photovoltaics to its power profile.

The system, which can monitor reliability and lifespan remotely for larger, interconnected systems, will be a major breakthrough for the power industry.

"Most residential solar rooftop systems aren't owned by the homeowner, they are owned by a utility company or broker with a vested interest in monitoring photovoltaic efficiency," said Andre' Augusto, head of Silicon Heterojunction Research at ASU's Solar Power Laboratory and a co-author of the paper.

"Likewise, as developers of malls or even planned residential communities begin to incorporate solar power into their construction projects, the interest in monitoring at scale will increase, " Augusto said.

According to Bowden, it's all about the data, especially when it can be monitored automatically and remotely—data for the bankers, data for developers, and data for the utility providers.

If Bill Gates' smart city, planned about 30 miles from Phoenix in Buckeye, Ariz., uses the team's measurement technology, "It could become the IoT of Photovoltaics," said Bowden.

Originally posted HERE.

Read more…

Written by: Mirko Grabel

Edge computing brings a number of benefits to the Internet of Things. Reduced latency, improved resiliency and availability, lower costs, and local data storage (to assist with regulatory compliance) to name a few. In my last blog post I examined some of these benefits as a means of defining exactly where is the edge. Now let’s take a closer look at how edge computing benefits play out in real-world IoT use cases.

Benefit No. 1: Reduced latency

Many applications have strict latency requirements, but when it comes to safety and security applications, latency can be a matter of life or death. Consider, for example, an autonomous vehicle applying brakes or roadside signs warning drivers of upcoming hazards. By the time data is sent to the cloud and analyzed, and a response is returned to the car or sign, lives can be endangered. But let’s crunch some numbers just for fun.

Say a Department of Transportation in Florida is considering a cloud service to host the apps for its roadside signs. One of the vendors on the DoT’s shortlist is a cloud in California. The DoT’s latency requirement is less than 15ms. The light speed in fiber is about 5 μs/km. The distance from the U.S. east coast to the west coast is about 5,000 km. Do the math and the resulting round-trip latency is 50ms. It’s pure physics. If the DoT requires a real-time response, it must move the compute closer to the devices.

Benefit No. 2: Improved resiliency/availability

Critical infrastructure requires the highest level of availability and resiliency to ensure safety and continuity of services. Consider a refinery gas leakage detection system. It must be able to operate without Internet access. If the system goes offline and there’s a leakage, that’s an issue. Compute must be done at the edge. In this case, the edge may be on the system itself.

While it’s not a life-threatening use case, retail operations can also benefit from the availability provided by edge compute. Retailers want their Point of Sale (PoS) systems to be available 100% of the time to service customers. But some retail stores are in remote locations with unreliable WAN connections. Moving the PoS systems onto their edge compute enables retailers to maintain high availability.

Benefit No. 3: Reduced costs

Bandwidth is almost infinite, but it comes at a cost. Edge computing allows organizations to reduce bandwidth costs by processing data before it crosses the WAN. This benefit applies to any use case, but here are two example use-cases where this is very evident: video surveillance and preventive maintenance. For example, a single city-deployed HD video camera may generate 1,296GB a month. Streaming that data over LTE easily becomes cost prohibitive. Adding edge compute to pre-aggregate the data significantly reduces those costs.

Manufacturers use edge computing for preventive maintenance of remote machinery. Sensors are used to monitor temperatures and vibrations. The currency of this data is critical, as the slightest variation can indicate a problem. To ensure that issues are caught as early as possible, the application requires high-resolution data (for example, 1000 per second). Rather than sending all of this data over the Internet to be analyzed, edge compute is used to filter the data and only averages, anomalies and threshold violations are sent to the cloud.

Benefit No. 4: Comply with government regulations

Countries are increasingly instituting privacy and data retention laws. The European Union’s General Data Protection Regulation (GDPR) is a prime example. Any organization that has data belonging to an EU citizen is required to meet the GDPR’s requirements, which includes an obligation to report leaks of personal data. Edge computing can help these organizations comply with GDPR. For example, instead of storing and backhauling surveillance video, a smart city can evaluate the footage at the edge and only backhaul the meta data.

Canada’s Water Act: National Hydrometric Program is another edge computing use case that delivers regulatory compliance benefits. As part of the program, about 3,000 measurement stations have been implemented nationwide. Any missing data requires justification. However, storing data at the edge ensures data retention.

Bonus Benefit: “Because I want to…”

Finally, some users simply prefer to have full control. By implementing compute at the edge rather than the cloud, users have greater flexibility. We have seen this in manufacturing. Technicians want to have full control over the machinery. Edge computing gives them this control as well as independence from IT. The technicians know the machinery best and security and availability remain top of mind.

Summary

By reducing latency and costs, improving resiliency and availability, and keeping data local, edge computing opens up a new world of IoT use cases. Those described here are just the beginning. It will be exciting to see where we see edge computing turn up next. 

Originaly posted: here

Read more…

Arm DevSummit 2020 debuted this week (October 6 – 8) as an online virtual conference focused on engineers and providing them with insights into the Arm ecosystem. The summit lasted three days over which Arm painted an interesting technology story about the current and future state of computing and where developers fit within that story. I’ve been attending Arm Techcon for more than half a decade now (which has become Arm DevSummit) and as I perused content, there were several take-a-ways I noticed for developers working on microcontroller based embedded systems. In this post, we will examine these key take-a-ways and I’ll point you to some of the sessions that I also think may pique your interest.

(For those of you that aren’t yet aware, you can register up until October 21st (for free) and still watch the conferences materials up until November 28th . Click here to register)

Take-A-Way #1 – Expect Big Things from NVIDIAs Acquisition of Arm

As many readers probably already know, NVIDIA is in the process of acquiring Arm. This acquisition has the potential to be one of the focal points that I think will lead to a technological revolution in computing technologies, particularly around artificial intelligence but that will also impact nearly every embedded system at the edge and beyond. While many of us have probably wondered what plans NVIDIA CEO Jensen Huang may have for Arm, the Keynotes for October 6th include a fireside chat between Jensen Huang and Arm CEO Simon Segars. Listening to this conversation is well worth the time and will help give developers some insights into the future but also assurances that the Arm business model will not be dramatically upended.

Take-A-Way #2 – Machine Learning for MCU’s is Accelerating

It is sometimes difficult at a conference to get a feel for what is real and what is a little more smoke and mirrors. Sometimes, announcements are real, but they just take several years to filter their way into the market and affect how developers build systems. Machine learning is one of those technologies that I find there is a lot of interest around but that developers also aren’t quite sure what to do with yet, at least in the microcontroller space. When we hear machine learning, we think artificial intelligence, big datasets and more processing power than will fit on an MCU.

There were several interesting talks at DevSummit around machine learning such as:

Some of these were foundational, providing embedded developers with the fundamentals to get started while others provided hands-on explorations of machine learning with development boards. The take-a-way that I gather here is that the effort to bring machine learning capabilities to microcontrollers so that they can be leveraged in industry use cases is accelerating. Lots of effort is being placed in ML algorithms, tools, frameworks and even the hardware. There were several talks that mentioned Arm’s Cortex-M55 architecture that will include Helium technology to help accelerate machine learning and DSP processing capabilities.

Take-A-Way #3 – The Constant Need for Reinvention

In my last take-a-way, I eluded to the fact that things are accelerating. Acceleration is not just happening though in the technologies that we use to build systems. The very application domain that we can apply these technology domains to is dramatically expanding. Not only can we start to deploy security and ML technologies at the edge but in domains such as space and medical systems. There were several interesting talks about how technologies are being used around the world to solve interesting and unique problems such as protecting vulnerable ecosystems, mapping the sea floor, fighting against diseases and so much more.

By carefully watching and listening, you’ll notice that many speakers have been involved in many different types of products over their careers and that they are constantly having to reinvent their skill sets, capabilities and even their interests! This is what makes working in embedded systems so interesting! It is constantly changing and evolving and as engineers we don’t get to sit idly behind a desk. Just as Arm, NVIDIA and many of the other ecosystem partners and speakers show us, technology is rapidly changing but so are the problem domains that we can apply these technologies to.

Take-A-Way #4 – Mbed and Keil are Evolving

There are also interesting changes coming to the Arm toolchains and tools like Mbed and Keil MDK. In Reinhard Keil’s talk, “Introduction to an Open Approach for Low-Power IoT Development“, developers got an insight into the changes that are coming to Mbed and Keil with the core focus being on IoT development. The talk focused on the endpoint and discussed how Mbed and Keil MDK are being moved to an online platform designed to help developers move through the product development faster from prototyping to production. The Keil Studio Online is currently in early access and will be released early next year.

(If you are interested in endpoints and AI, you might also want to check-out this article on “How Do We Accelerate Endpoint AI Innovation? Put Developers First“)

Conclusions

Arm DevSummit had a lot to offer developers this year and without the need to travel to California to participate. (Although I greatly missed catching up with friends and colleagues in person). If you haven’t already, I would recommend checking out the DevSummit and watching a few of the talks I mentioned. There certainly were a lot more talks and I’m still in the process of sifting through everything. Hopefully there will be a few sessions that will inspire you and give you a feel for where the industry is headed and how you will need to pivot your own skills in the coming years.

Originaly posted here

Read more…

SSE Airtricity employees Derek Conty, left, Francie Byrne, middle, and Ryan Doran, right, install solar panels on the roof of Kinsale Community School in Kinsale, Ireland. The installation is part of a project with Microsoft to demonstrate the feasibility of distributed power purchase agreements. Credit: Naoise Culhane

by John Roach

Solar panels being installed on the roofs of dozens of schools throughout Dublin, Ireland, reflect a novel front in the fight against global climate change, according to a senior software engineer and a sustainability lead at Microsoft.

The technology copmpany partnered with SSE Airtricity, Ireland's largest provider of 100% green energy and a part of FTSE listed SSE Group, to install and manage the internet-connected solar panels, which are connected via Azure IoT to Microsoft Azure, a cloud computing platform.

The software tools aggregate and analyze real-time data on energy generated by the solar panels, demonstrating a mechanism for Microsoft and other corporations to achieve sustainability goals and reduce the carbon footprint of the electric power grid.

"We need to decarbonize the global economy to avoid catastrophic climate change," said Conor Kelly, the software engineer who is leading the distributed solar energy project for Microsoft Azure IoT. "The first thing we can do, and the easiest thing we can do, is focus on electricity."

Microsoft's $1.1 million contribution to the project builds on the company's ongoing investment in renewable energy technologies to offset carbon emissions from the operation of its datacenters.

A typical approach to power datacenters with renewable energy is for companies such as Microsoft to sign so-called power purchase agreements with energy companies.The agreements provide financial guarantees needed to build industrial-scale wind and solar farms and connections to the power grid.

The new project demonstrates the feasibility of agreements to install solar panels on rooftops distributed across towns with existing grid connections and use internet of things, or IoT, technologies to aggregate the accumulated energy production for carbon offset accounting.

"It utilizes existing assets that are sitting there unmonetized, which are roofs of buildings that absorb sunlight all day," Kelly said.

New Business Model

The project is also a proof-of-concept, or blueprint, for how energy providers can adapt as the falling price of solar panels enables distributed electric power generation throughout the existing electric power grid.

Traditionally, suppliers purchase power from central power plants and industrial-scale wind and solar farms and sell it to consumers on the distribution grid. Now, energy providers like SSE Airtricity provide renewable energy solutions that allow end consumers to generate power, from sustainable sources, using the existing grid connection on their premises.

"The more forward-thinking energy providers that we are working with, like SSE Airtricity, identify this as an opportunity and industry changing shift in how energy will be generated and consumed," Kelly noted.

The opportunity comes in the ability to finance the installation of solar panels and batteries at homes, schools, businesses and other buildings throughout a community and leverage IoT technology to efficiently perform a range of services from energy trading to carbon offset accounting.

Kelly and his team with Azure IoT are working with SSE Airtricity to develop the tools and machine learning models necessary to unlock this opportunity.

"Instead of having utility scale solar farms located outside of cities, you could have a solar farm at the distribution level, spread across a number of locations," said Fergal Ahern, a business energy solutions manager and renewable energy expert with SSE Airtricity.

For the distributed power purchase agreement, SSE Airtricity uses Azure IoT to aggregate the generation of all the solar panels installed across 27 schools around the provinces of Leinster, Munster and Connacht and run it through a machine learning model to determine the carbon emissions that the solar panels avoid.

The schools use the electricity generated by the solar panels, which reduces their utility bills; Microsoft receives the renewable energy credits for the generated electricity, which the company applies to its carbon neutrality commitments.

The panels are expected to produce enough energy annually to power the equivalent of 68 Irish homes for a year and abate more than 2.1 million kilograms, which is equivalent to 4.6 million pounds, of carbon dioxide emissions over the 15 years of the agreement, according to Kelly.

"This is additional renewable energy that wouldn't have otherwise happened," he said. "Every little bit counts when it comes to meeting our sustainability targets and combatting climate change."

Every little bit counts

Victory Luke, a 16 year old student at Collinstown Park Community College in Dublin, has lived by the "every little bit counts" mantra since she participated in a "Generation Green" sustainability workshop in 2019 organized by the Sustainable Energy Authority of Ireland, SSE Airtricity and Microsoft.

The workshop was part of an education program surrounding the installation of solar panels and batteries at her school along with a retrofit of the lighting system with LEDs. Digital screens show the school's energy use in real time, allowing students to see the impact of the energy efficiency upgrades.

Luke said the workshop captured her interest on climate change issues. She started reading more about sustainability and environmental conservation and agreed to share her newfound knowledge with the younger students at her school.

"I was going around and talking to them about energy efficiency, sharing tips and tricks like if you are going to boil a kettle, only boil as much water as you need, not too much," she explained.

That June, the Sustainable Energy Authority of Ireland invited her to give a speech at the Global Conference on Energy Efficiency in Dublin, which was organized by the International Energy Agency, an organization that works with governments and industry to shape sustainable energy policy.

"It kind of felt surreal because I honestly felt like I wasn't adequate enough to be speaking about these things," she said, noting that the conference attendees included government ministers, CEOs and energy experts from around the world.

At the time, she added, the global climate strike movement and its youth leaders were making international headlines, which made her advocacy at school feel even smaller. "Then I kind of realized that it is those smaller things that make the big difference," she said.

SSE Airtricity and Microsoft plan to replicate the educational program that inspired Luke and her classmates at dozens of the schools around Ireland that are participating in the project.

"When you've got solar at a school and you can physically point at the installation and a screen that monitors the power being generated, it brings sustainability into daily school life," Ahern said.

Proof of concept for policymakers

The project's education campaign extends to renewable energy policymakers, Kelly noted. He explained that renewable energy credits—a market incentive for corporations to support renewable energy projects—are currently unavailable for distributed power purchase agreements.

For this project, Microsoft will receive genuine renewable energy credits from a wind farm that SSE Airtricity also operates, he added.

"And," he said, "we are hoping to use this project as an example of what regulation should look like, to say, 'You need to award renewable energy credits to distributed generation because they would allow corporates to scale-up this type of project.'"

For her part, Luke supports steps by multinational corporations such as Microsoft to invest in renewable energy projects that address global climate change.

"It is a good thing to see," she said. "Once one person does something, other people are going to follow.

Originaly posted HERE

Read more…

An edge device is the network component that is responsible for connecting a local area network to an external or wide area network, which can be accessed from anywhere. Edge devices offer several new services and improved outcomes for IoT deployments across all markets. Smart services that rely on high volumes of data and local analysis can be deployed in a wide range of environments.

Edge device provides the local data to an external network. If protocols are different in local and external networks, it also translates this information, and make the connection between both network boundaries. Edge devices analyze diagnostics and automatic data populating; however, it is necessary to make a secure connection between the field network and cloud computing. In the event of loss of internet connection or cloud crash edge device will store data until the connection is established, so it won’t lose any process information. The local data storage is optional and not all edge devices offer local storage, it depends on the application and service required to implement on the plant.

How does an edge device work?

An edge device has a very straightforward working principle, it communicates between two different networks and translates one protocol into another. Furthermore, it creates a secure connection with the cloud.

An edge device can be configured via local access and internet or cloud. In general, we can say an edge device is a plug-and-play, its setup is simple and does not require much time to configure.

Why should I use an edge device?

Depending on the service required in the plant, the edge devices will be a crucial point to collect the information and create an automatic digital twin of your device in the cloud. 

Edge devices are an essential part of IoT solutions since they connect the information from a network to a cloud solution. They do not affect the network but only collect the data from it, and never cause a problem with the communication between the control system and the field devices. by using an edge device to collect information, the user won’t need to touch the control system. Edge is one-way communication, nothing is written into the network, and data are acquired with the highest possible security.

Edge device requirements

Edge devices are required to meet certain requirements that are to meet at all conditions to perform in different secretions. This may include storage, network, and latency, etc.

Low latency

Sensor data is collected in near real-time by an edge server. For services like image recognition and visual monitoring, edge servers are located in very close proximity to the device, meeting low latency requirements. Edge deployment needs to ensure that these services are not lost through poor development practice or inadequate processing resources at the edge. Maintaining data quality and security at the edge whilst enabling low latency is a challenge that need to address.

Network independence

IoT services do not care for data communication topology.  The user requires the data through the most effective means possible which in many cases will be mobile networks, but in some scenarios, Wi-Fi or local mesh networking may be the most effective mechanism of collecting data to ensure latency requirements can be met.

Good-Edge-IOT-Device-1024x576.jpg

Data security

Users require data at the edge to be kept secure as when it is stored and used elsewhere. These challenges need to meet due to the larger vector and scope for attacks at the edge. Data authentication and user access are as important at the edge as it is on the device or at the core.  Additionally, the physical security of edge infrastructure needs to be considered, as it is likely to hold in less secure environments than dedicated data centers.

Data Quality

Data quality at the edge is a key requirement to guarantee to operate in demanding environments. To maintain data quality at the edge, applications must ensure that data is authenticated, replicated as and assigned into the correct classes and types of data category.

Flexibility in future enhancements

Additional sensors can be added and managed at the edge as requirements change. Sensors such as accelerometers, cameras, and GPS, can be added to equipment, with seamless integration and control at the edge.

Local storage

Local storage is essential in the event of loss of internet connection or cloud crash edge device will store data until the connection is established, so it won’t lose any process information. The local data storage is optional and not all edge devices offer local storage, it depends on the application and service required to implement on the plant

Originaly Posted here

Read more…

Impact of IoT in Inventory

Internet of Things (IoT) has revolutionized many industries including inventory management. IoT is a concept where devices are interconnected via the internet. It is expected that by 2020, there will be 26 billion devices connected worldwide. These connections are important because it allows data sharing which then can perform actions to make life and business more efficient. Since inventory is a significant portion of a company’s assets, inventory data is vital for an accounting department for the company’s asset management and annual report.

Inventory solutions based on IoT and RFID, individual inventory item receives an RFID tag. Each tag has a unique identification number (ID) that contains information about an inventory item, e.g. a model, a batch number, etc. these tags are scanned by RF reader. Upon scanning, a reader extracts its IDs and transmits them to the cloud for processing. Along with the tag’s ID, the cloud receives location and the time of reading. This data is used for updates about inventory items’, allowing users to monitor the inventory from anywhere, in real-time.

Industrial IoT

The role of IoT in inventory management is to receive data and turn it into meaningful insights about inventory items’ location, status, and giving users a corresponding output. For example, based on the data, and inventory management solution architecture, we can forecast the number of raw materials needed for the upcoming production cycle. The output of the system can also send an alert if any individual inventory item is lost.

Moreover, IoT based inventory management solutions can be integrated with other systems, i.e. ERP and share data with other departments.

RFID in Industrial IoT

RFID consist of three main components tag, antenna, and a reader

Tags: An RFID tag carries information about a specific object. It can be attached to any surface, including raw materials, finished goods, packages, etc.

RFID antennas: An RFID antenna receives signals to supply power and data for tags’ operation

RFID readers: An RFID reader, uses radio signals to read and write to the tags. The reader receives data stored in the tag and transmits it to the cloud.

Benefits of IoT in inventory management

The benefits of IoT on the supply chain are the most exciting physical manifestations we can observe. IoT in the supply chain creates unparalleled transparency that increases efficiencies.

Inventory tracking

The major benefit of inventory management is asset tracking, instead of using barcodes to scan and record data, items have RFID tags which can be registered wirelessly. It is possible to accurately obtain data and track items from any point in the supply chain.

With RFID and IoT, managers don’t have to spend time on manual tracking and reporting on spreadsheets. Each item is tracked and the data about it is recorded automatically. Automated asset tracking and reporting save time and reduce the probability of human error.

Inventory optimization

Real-time data about the quantity and the location of the inventory, manufacturers can reduce the amount of inventory on hand while meeting the needs of the customers at the end of the supply chain.

The data about the amount of available inventory and machine learning can forecast the required inventory which allows manufacturers to reduce the lead time.

Remote tracking

Remote product tracking makes it easy to have an eye on production and business. Knowing production and transit times, allows you to better tweak orders to suit lead times and in response to fluctuating demand. It shows which suppliers are meeting production and shipping criteria and which needs monitoring for the required outcome.

It gives visibility into the flow of raw materials, work-in-progress and finished goods by providing updates about the status and location of the items so that inventory managers see when an individual item enters or leaves a specific location.

Bottlenecks in the operations

With the real-time data about the location and the quantity, manufacturers can reveal bottlenecks in the process and pinpoint the machine with lower utilization rates. For instance, if part of the inventory tends to pile up in front of a machine, a manufacturer assumes that the machine is underutilized and needs to be seen to.

The Outcomes

The data collected by inventory management is more accurate and up-to-date. By reducing these time delays, the manufacturing process can enhance accuracy and reduce wastage. An IoT-based inventory management solution offers complete visibility on inventory by providing real-time information fetched by RFID tags. It helps to track the exact location of raw materials, work-in-progress and finished goods. As a result, manufacturers can balance the amount of on-hand inventory, increase the utilization of machines, reduce lead time, and thus, avoid costs bound to the less effective methods. This is all about optimizing inventory and ensuring anything ordered can be sold through whatever channel necessary.

Originally posted here

Read more…

Can AI Replace Firmware?

Scott Rosenthal and I go back about a thousand years; we've worked together, helped midwife the embedded field into being, had some amazing sailing adventures, and recently took a jaunt to the Azores just for the heck of it. Our sons are both big data people; their physics PhDs were perfect entrees into that field, and both now work in the field of artificial intelligence.

At lunch recently we were talking about embedded systems and AI, and Scott posed a thought that has been rattling around in my head since. Could AI replace firmware?

Firmware is a huge problem for our industry. It's hideously expensive. Only highly-skilled people can create it, and there are too few of us.

What if an AI engine of some sort could be dumped into a microcontroller and the "software" then created by training that AI? If that were possible - and that's a big "if" - then it might be possible to achieve what was hoped for when COBOL was invented: programmers would no longer be needed as domain experts could do the work. That didn't pan out for COBOL; the industry learned that accountants couldn't code. Though the language was much more friendly than the assembly it replaced, it still required serious development skills.

But with AI, could a domain expert train an inference engine?

Consider a robot: a "home economics" major could create scenarios of stacking dishes from a dishwasher. Maybe these would be in the form of videos, which were then fed to the AI engine as it tuned the weighting coefficients to achieve what the home ec expert deems worthy goals.

My first objection to this idea was that these sorts of systems have physical constraints. With firmware I'd write code to sample limit switches so the motors would turn off if at an end-of-motion extreme. During training an AI-based system would try and drive the motors into all kinds of crazy positions, banging destructively into stops. But think how a child learns: a parent encourages experimentation but prevents the youngster from self-harm. Maybe that's the role of the future developer training an AI. Or perhaps the training will be done on a simulator of some sort where nothing can go horribly wrong.

Taking this further, a domain expert could define the desired inputs and outputs, and then a poorly-paid person do the actual training. CEOs will love that. With that model a strange parallel emerges to computation a century ago: before the computer age "computers" were people doing simple math to create tables of logs, trig, ballistics, etc. A room full all labored at a problem. They weren't particularly skilled, didn't make much, but did the rote work under the direction of one master. Maybe AI trainers will be somewhat like that.

Like we outsource clothing manufacturing to Bangladesh, I could see training, basically grunt work, being sent overseas as well.

I'm not wild about this idea as it means we'd have an IoT of idiots: billions of AI-powered machines where no one really knows how they work. They've been well-trained but what happens when there's a corner case?

And most of the AI literature I read suggests that inference successes of 97% or so are the norm. That might be fine for classifying faces, but a 3% failure rate of a safety-critical system is a disaster. And the same rate for less-critical systems like factory controllers would also be completely unacceptable.

But the idea is intriguing.

Original post can be viewed here

Feel free to email me with comments.

Back to Jack's blog index page.

Read more…

7811924256?profile=RESIZE_400x

 

CLICK HERE TO DOWNLOAD

This complete guide is a 212-page eBook and is a must read for business leaders, product managers and engineers who want to implement, scale and optimize their business with IoT communications.

Whether you want to attempt initial entry into the IoT-sphere, or expand existing deployments, this book can help with your goals, providing deep understanding into all aspects of IoT.

CLICK HERE TO DOWNLOAD

Read more…

Edge Products Are Now Managed At The Cloud

Now more than ever, there are billions of edge products in the world. But without proper cloud computing, making the most of electronic devices that run on Linux or any other OS would not be possible.

And so, a question most people keep asking is which is the best Software-as-a-service platform that can effectively manage edge devices through cloud computing. Well, while edge device management may not be something, the fact that cloud computing space is not fully exploited means there is a lot to do in the cloud space.

Product remote management is especially necessary for the 21st century and beyond. Because of the increasing number of devices connected to the internet of things (IoT), a reliable SaaS platform should, therefore, help with maintaining software glitches from anywhere in the world. From smart homes, stereo speakers, cars, to personal computers, any product that is connected to the internet needs real-time protection from hacking threats such as unlawful access to business or personal data.

Data being the most vital asset is constantly at risk, especially if individuals using edge products do not connect to trusted, reliable, and secure edge device management platforms.

Bridges the Gap Between Complicated Software And End Users

Cloud computing is the new frontier through which SaaS platforms help manage edge devices in real-time. But something even more noteworthy is the increasing number of complicated software that now run edge devices at homes and in workplaces.

Edge device management, therefore, ensures everything runs smoothly. From fixing bugs, running debugging commands to real-time software patch deployment, cloud management of edge products bridges a gap between end-users and complicated software that is becoming the norm these days.

Even more importantly, going beyond physical firewall barriers is a major necessity in remote management of edge devices. A reliable Software-as-a-Service, therefore, ensures data encryption for edge devices is not only hackproof by also accessed by the right people. Moreover, deployment of secure routers and access tools are especially critical in cloud computing when managing edge devices. And so, developers behind successful SaaS platforms do conduct regular security checks over the cloud, design and implement solutions for edge products.

Reliable IT Infrastructure Is Necessary

Software-as-a-service platforms that manage edge devices focus on having a reliable IT infrastructure and centralized systems through which they can conduct cloud computing. It is all about remotely managing edge devices with the help of an IT infrastructure that eliminates challenges such as connectivity latency.

Originally posted here

Read more…

In the era of digitalization, IoT is fostering the upcoming revolution in mobile apps. The ways companies used to provide mobile app development are changing because of IoT. After helping thousands of corporates to deliver extraordinary user experiences, IoT is all set with some new and advanced mobile app development trends. 

The tech world is the one that is continuously evolving. Every year and each day, innovations come to light. Each of them is revolutionizing our lives in one or the other ways. From the first wheel to smart cities, humans have come a long way.

The evolution and foundation of smart cities is the result of IoT or the Internet of Things. IoT has definitely stirred quite an uproar in the digital world with the mass potential it has. It can bring everything and everyone online. 

As per the latest mobile app stats, IoT will become a more significant player in the mobile app development industry. The market share of IoT is going to increase more than double in 2021 with a staggering amount of 520 billion USD. While four years back in 2017, this number was 235 billion USD. 

Soon the IoT mobile app development will face new trends in the coming year and beyond.

Let us take a look at the top IoT mobile app development trends.

IoT App Trend #1: Cybersecurity for IoT

With an increase in the number of devices online, cybersecurity is the top priority for all businesses as IoT gains popularity. The network is expected to expand in the coming years, and so the data volume will also increase. All this draws attention to more information to protect.

IoT security will see an exponential rise as more users will store their data over the cloud. From banking details to home security, everything is easily breached if the security firewall is weak in IoT applications. 

Therefore mobile app development companies need to work upon the up-gradation of their IoT enabled mobile apps. 

IoT App Trend #2: Roaring Popularity of Smart Home Devices

When smart home devices were launched, many mocked them by calling them unrealistic toys for lazy youngsters. Now, the same people are finding it increasingly difficult to resist the charm of IoT devices. 

IoT devices are expected to be very popular in 2021 and the years to come. The reason behind their growing popularity is that the IoT devices are becoming highly intuitive and innovative. They are extended not only to the comfort of home automation but also to home security and the safety of your family.

Another great advantage of implementing smart IoT development adoption is the need to save energy. The intelligent lights or intelligent thermostats help in conserving energy, reducing bills. These reasons will lead to more and more people to adopt smart home devices.

IoT App Trend #3: Backed by AI and ML

Artificial Intelligence and Machine Learning both are thriving technologies. Both of these are the facilitators of automation. We all know how Artificial Intelligence has touched millions of lives around the globe. 

Together with IoT, AI and ML are unique data-driven technologies shaping the future of human-machine interactions. The developers set up a combination of IoT and Artificial Intelligence that helps automate the routine tasks, simplifies work, and gets the most accurate information.

IoT App Trend #4: IoT and Healthcare

With the revolution in the health-tech industry, healthcare companies are turning towards mobile platforms. IoT enabled apps to open up new opportunities to improve the medical sector.

IoT has immense applications that are already running in the healthcare field and is expected to increase by 26.2% 

Healthcare apps featuring IoT technology are expected to reform the world of medical sciences. These IoT mobile apps can even help doctors and medical professionals treat their patients even from a distance.

Smart wearables and implants will be able to record diverse parameters to keep the patient’s health in check. By integrating sensors, portable devices, and all kinds of medical equipment, real-time updates of a patient’s health can be recorded and sent to the concerned person. 

IoT App Trend #5: Edge Computing to Overtake Cloud Computing

This is a change where we have to be careful. For the past many years, IoT devices have been storing their data on cloud storage. However, the IoT developers, development services, and manufacturers have started thinking about the utility of storing, calculating, and analyzing data to the limit.

So basically this means, in place of sending the entire data from IoT devices to the cloud, the data is first transmitted to a local or nearer storage device located close to the IoT device or on the edge of the network. 

This local storage device then analyzes, sorts, filters and calculates the data and then sends all or only a part of the data to the cloud, reducing the traffic on the network avoiding any bottleneck situation.

Known as “edge computing”, this approach has several advantages if used correctly. Firstly, it helps in the better management of the large amount of data that each device sends. Second, the reduced dependency on cloud storage allows devices and applications to perform faster and also reduce latency.

Being able to collect and process data locally, the IoT application is expected to consume lesser bandwidth and work even when connectivity to the cloud is affected. After seeing these positive aspects, state-of-the-art computing is looking forward to better innovation and broad adoption in IoT, both consumer and industrial.

Reduced connectivity to the cloud will also result in fewer security costs and facilitate better security practices. 2021 will see better state-of-the-art IT in IoT.

IoT App Trend #6: Are You Excited About Smart Cities?

Well, all of us are super excited to witness smart cities. Smart cities are one of the significant accomplishments of IoT and modernization. Integrated with IoT-powered devices, smart cities promise improved efficiency and security for the common folk on the streets and inside their homes.

With superfast data transfer supported by 5G, public transportation will also see a massive change in the way they work. 

By now, we know that IoT will focus on developing smart parking lots, street lights, and traffic controls. To add up to this, with IoT and fast internet, we will live inside a world where our refrigerators will be aware of what food we have inside.

IoT will impact traffic congestion and security. It will also help in the development of sustainable cities leading us to a green future.

IoT App Trend #7: Blockchain for IoT Security

Many financial and governmental institutions, entrepreneurs, consumers as well as industrialists will be decentralized, self-governing, and be quite smart. Most of the new companies are seen building their territory on the entanglement of IOTA to develop modules and other components for firms without the cost of SaaS and Cloud.

IOTA is a distributed ledger especially designed to record and execute transactions between devices in the IoT ecosystem.

If you are in this industry, then you should prepare to see the centralized and monolithic computer models that are separated in the jobs and microservices. All this will be distributed to decentralized machines and devices. 

In the coming future, IoT will penetrate the disciplines of health, government, transactions, and others that we cannot think of right now. Such types of IoT technology trends will create significant effective differences.

IoT App Trend #8: IoT for Retail Apps

The eCommerce industry will also get benefited from IoT integration. Retail supply change will be more efficient after the incorporation of IoT mobile apps. It is expected to improve the online shopping experience for individuals across the globe.

Also, IoT will make the retail experience more personalized for each customer with in-app advertisements based on the user’s shopping history. We already get notifications once we purchase a product from a particular eStore. With IoT enabled mobile apps, the app will guide us to our favorite store using in-site maps.

IoT App Trend #9- Will IoT Boost Predictive Maintenance?

Yes, it will. In 2021 and beyond, the smart home system will notify the owner about plumbing leaks, appliance failures, or any other problem so that the house owner can avoid any disaster. Soon these intelligent sensors will enter our houses.

In response to these predictive skills of IoT, we can expect to see home care offers as a contractor service. If there will be a need for any emergency action, your presence in the house will not be necessary. 

IoT App Trend #10: Easy and Better Commuting

IoT mobile applications are expected to make commuting easier for students, the elderly, the business person, and many more. Today, due to heavy traffic, commuting is a significant issue for most of us. With major innovations in technology and integration of IoT, mobile applications will make traveling a breeze for everyone.

Here are some of the conventional ways that commuting will change:

  • Smart street lights will make walking on the road safe for pedestrians
  • Finding parking spaces will be a lot easier and seamless with data-driven parking apps. 
  • In-app navigation and public transportation will definitely make public transit more reliable 
  • IoT powered mobile apps will also improve routing between different modes of transfer.

With so many innovative ideas and benefits for iOS and android based IoT mobile apps, the mobile app development market will see an influx of transportation apps in the years to come.

IoT App Trend #11: Sustainable-as-a-Service Becomes the Norm.

While talking about the IoT trends, SaaS or Sustainable-as-a-Service is considered as one of the hot topics for the estimated market. Because of the low cost of entry, SaaS is quickly getting to the top list for being the favorite firm in the IT gaming sector. 

Out of these emerging technological IoT trends, Software-as-a-service will make the lives of people better than ever.

IoT App Trend #12- Energy and Resource Management 

Do you know what affects energy management the most? Well, energy management majorly depends on the acquisition of a better understanding of how to consume resources. IoT mobile app-based electronics are expected to play a significant role in the conservation of energy. 

All of these IoT trends can be integrated into resource management, making lives more accessible, more comfortable, and responsible.

Automatic notifications can also be added to the mobile app in order to send information to the owner in case the power threshold exceeds. Various other fancy features can also be added to these IoT mobile apps such as sprinkler control, in-house temperature management, etc.

Conclusion

We all know that IoT has great potential to bring revolutionary changes in the present mobile app development industry trends. It is expected to open up immense possibilities for every business or individual related to this field. Directly or indirectly, IoT will drive the future of almost every industry.

The above mentioned are some of the trends that will dominate the IoT app development ecosystem in the years to come. Amid all these predictions and trends, the future is promising and worth the wait. 

 

 

 

 

Read more…

Industrial Prototyping for IoT

I-Pi SMARC.jpg

ADLINK is a global leader in edge computing driving data-to-decision applications across industries. The company recently introduced I-Pi SMARC for Industrial IoT prototyping.

-       AdLInk I-Pi SMARC consists of a simple carrier paired with a SMARC Computer on Module

-       SMARC Modules are available from entry level PX30 Rockchip to top of the line Intel Apollo Lake.

-       SMARC modules are specifically designed for typical industrial embedded applications that require long life, high MTBF and strict revision control.

-       Use popular off the shelve sensors and create prototypes or proof of concepts on short notice.

Additional information can be found here

 

Read more…

By: Kelly McNelis

We have faced unprecedented disruption from the many challenges of COVID-19, and PTC’s LiveWorx was no exception. The definitive digital transformation event went virtual this year, and despite the transition from physical to digital, LiveWorx delivered.

Of the many insightful virtual keynotes, one that caught everyone’s attention was ‘Digital Transformation: The Technology & Support You Need to Succeed,’ presented by PTC’s Executive Vice President (EVP) of Products, Kevin Wrenn, and PTC’s EVP and Chief Customer Officer, Eduarda Camacho.

Their keynote focused on how companies should be prioritizing the use of best-in-class technology that will meet their changing needs during times of disruption and accelerated digital transformation. Wrenn and Camacho highlighted five of our customers through interactive case studies on how they are using PTC technology to capitalize on digital transformation to thrive in an era of disruption.

6907721673?profile=RESIZE_400x

Below is a summary of the five customers and their stories that were highlighted during the keynote.

1. Royal Enfield (Mass Customization)

Royal Enfield is an Indian motorcycle company that has been manufacturing motor bikes since 1901. They have British roots, and their main customer base is located in India and Europe. Riders of Royal Enfield wants their bikes to be particular to their brand, so they worked to better manage the complexities of mass customization and respond to market demands.

Royal Enfield is a long time PTC customer, but they were on old versions of PTC technology. They first upgraded Creo and Windchill to the latest releases so they could leverage the new capabilities. They then moved on to transform their processes for platform and variant designs, introduced simulation much earlier by using Creo Simulation Live, and leveraged generative design by bringing AI into engineering and applying it to engine and chassis complex custom forged components. Finally, they retrained and retooled their engineering staff to fully leverage the power of new processes and technologies.

The entire Royal Enfield team now has digital capabilities that accelerate new product designs, variants, and accessories for personalization; as a result, they are able to deliver a much-shortened design cycle. Royal Enfield is continuing their digital transformation trend, and will invest in new ways to create value while leveraging augmented reality with PTC's Vuforia suite.

2. VCST (Manufacturing Efficiency, Quality, and Innovation)

VCST is part of the BMT Group and are a world-class automotive supplier of precision-machined power train and brake components. Their problem was that they had high costs for their production facility in Belgium. They either needed to improve their cost efficiency in their plant or face the potential of needing to shut down the facility and relocate it to another region. VCST decided to implement ThingWorx so that anyone can have instant visibility to asset status and performance. VCST is also creating the ability to digitize maintenance requests and the ability to acquire about spare parts to improve the overall efficiency in support of their costs reduction goals.

Additionally, VCST has a goal to reach zero complaints for their customers and, if any quality problems appear to their customers, they can be required to do a 100% inspection until the problem is solved. Moreover, as cars have gotten quieter with electrification, the noise from the gears has become an issue, and puts pressure on VCST to innovate and reduce gear noise.

VCST has again relied on ThingWorx and Windchill to collect and share data for joint collaborative analysis to innovate and reduce gear noise. VCST also plans to use Vuforia Expert Capture and Vuforia Chalk to train maintenance workers to further improve their efficiency and cost effectiveness. The company is not done with their digital transformation, and they have plans to implement Creo and Windchill to enable end-to-end digital thread connectivity to the factory.

3. BID Group Holdings (Connected Product)

BID Group Holdings operates in the wood processing industry. It is one of the largest integrated suppliers and North American leader in the field. The purpose of BID Group is to deliver a complete range of innovative equipment, digital technologies, turnkey installations, and aftermarket services to their customers. BID Group decided to focus on their areas of expertise, an rely on PTC, Microsoft, and Rockwell Automation’s combined capabilities and scale to deliver SaaS type solutions to their own industry.

Leveraging this combined power, the BID Group developed a digital strategy for service to improve mill efficiency and profitability. The solution is named OPER8 and was built on the ThingWorx platform. This allowed BID Group to provide their customers an out of the box solution with efficient time-to-value and low costs of ownership. BID Group is continuing to work with PTC and Rockwell Automation, to develop additional solutions that will reduce downtime of OPER8 with a predictive analytics module by using ThingWorx Analytics and LogixAI.

4. Hitachi (Service Optimization)

Hitachi operates an extensive service decision that ensures its customers’ data systems remain up and running. Their challenge was not to only meet their customers uptime Service Level Agreements, but to do it without killing their cost structure. Hitachi decided to implement PTC’s Servigistics Service Parts Management software to ensure the right parts are available when and where they are needed for service. With Servigistics, Hitachi was able to accomplish their needs while staying cost effective and delighting their customers.

Hitachi runs on the cloud, which allows them to upgrade to current releases more often, take advantage of new functionality, and avoid unexpected costs.

PTC has driven engagement and support for Hitachi through the PTC Community, and encourages all customers to utilize this platform. The network of collaborative spaces in a gathering place for PTC customers and partners to showcase their work, inspire each other, and share ideas or best practices in order to expand the value of their PTC solutions and services.

5. COVID-19 Response 

COVID-19 has put significant strain on the world’s hospitals and healthcare infrastructure, and hospitalization rates for COVID brought into question the capacity of being able to handle cases. Many countries began thinking of the value field hospitals could bring to safely care for patients and ease the admissions numbers of ‘regular’ hospitals. However, the complication is that field hospitals have essentially no isolation or air filtration capability that is required for treating COVID patients or healthcare workers.

As a result, the US Army Corp of Engineers has put out specifications to create self-contained isolation units, which are fully functioning hospital rooms that can be transported or built onsite. But, the assembly needed to happen fast, and a group of companies (including PTC) led by The Innovation Machine rallied to help design and define the SCIU’s.

With buy-in from numerous companies, a common platform was needed for companies to collaborate. PTC felt compelled to react, and many PTC customers and partners joined in to help create a collaboration platform, with cloud-based Windchill as the foundation. But, PTC didn’t just provide software to this collaboration; PTC also contributed with digital thread and design advice to help the group solve some of the major challenges. This design is a result of the many companies coming together to create deployments across various US state governments, agencies, and FEMA.

Final Thoughts

All of the above customers approached digital transformation as a business imperative. They all had sizeable challenges that needed to be solved and took leadership positions to implement plans that leveraged digital transformation technologies combined with new processes.

PTC will continue to innovate across the digital transformation portfolio and is committed to ensuring that customer success offerings capture value faster and provide the best outcomes.

Original Post Link: https://www.ptc.com/en/product-lifecycle-report/liveworx-digital-transformation–technology-and-support-you-need-to-succeed

Author Bio: Kelly is a corporate communications specialist at PTC. Her responsibilities include drafting and approving content for PTC’s external and social media presence and supporting communications for the Chief Strategy Officer. Kelly has previous experience as a communications specialist working to create and implement materials for the Executive Vice President of the Products Organization and senior management team members.

 

Read more…

Helium Expands to Europe

Helium, the company behind one of the world’s first peer-to-peer wireless networks, is announcing the introduction of Helium Tabs, its first branded IoT tracking device that runs on The People’s Network. In addition, after launching its network in 1,000 cities in North America within one year, the company is expanding to Europe to address growing market demand with Helium Hotspots shipping to the region starting July 2020. 

Since its launch in June 2019, Helium quickly grew its footprint with Hotspots covering more than 700,000 square miles across North America. Helium is now expanding to Europe to allow for seamless use of connected devices across borders. Powered by entrepreneurs looking to own a piece of the people-powered network, Helium’s open-source blockchain technology incentivizes individuals to deploy Hotspots and earn Helium (HNT), a new cryptocurrency, for simultaneously building the network and enabling IoT devices to send data to the Internet. When connected with other nearby Hotspots, this acts as the backbone of the network. 

“We’re excited to launch Helium Tabs at a time where we’ve seen incredible growth of The People’s Network across North America,” said Amir Haleem, Helium’s CEO and co-founder. “We could not have accomplished what we have done, in such a short amount of time, without the support of our partners and our incredible community. We look forward to launching The People’s Network in Europe and eventually bringing Helium Tabs and other third-party IoT devices to consumers there.”  

Introducing Helium Tabs that Run on The People’s Network
Unlike other tracking devices,Tabs uses LongFi technology, which combines the LoRaWAN wireless protocol with the Helium blockchain, and provides network coverage up to 10 miles away from a single Hotspot. This is a game-changer compared to WiFi and Bluetooth enabled tracking devices which only work up to 100 feet from a network source. What’s more, due to Helium’s unique blockchain-based rewards system, Hotspot owners will be rewarded with Helium (HNT) each time a Tab connects to its network. 

In addition to its increased growth with partners and customers, Helium has also seen accelerated expansion of its Helium Patrons program, which was introduced in late 2019. All three combined have helped to strengthen its network. 

Patrons are entrepreneurial customers who purchase 15 or more Hotspots to help blanket their cities with coverage and enable customers, who use the network. In return, they receive discounts, priority shipping, network tools, and Helium support. Currently, the program has more than 70 Patrons throughout North America and is expanding to Europe. 

Key brands that use the Helium Network include: 

  • Nestle, ReadyRefresh, a beverage delivery service company
  • Agulus, an agricultural tech company
  • Conserv, a collections-focused environmental monitoring platform

Helium Tabs will initially be available to existing Hotspot owners for $49. The Helium Hotspot is now available for purchase online in Europe for €450.

Read more…
RSS
Email me when there are new items in this category –

Charter Sponsors

Upcoming IoT Events

More IoT News

IoT Career Opportunities