Connectivity (6)

A company is a collection roles filled by people who are assisted by machines, networks, and software to accomplish tasks needed to achieve the goals of the organization. Can these roles be represented by #DigitalTwins and can #Bots carry out their activities?
Read more…

Given my Telco background, it was logical that back in 2014, I published some of my first articles in my  IoT Blog about the topic “IoT Connectivity . I described how the optimist predictions of analysts and companies like Cisco or Ericsson, made the Machine to Machine (M2M) an attractive market to invest.

The fact that “Tata Communications have acquired mobility and Internet of Things specialist Teleena is a clear indication of the phenomenal growth rate in the global IoT connectivity market. “By 2021, enterprises’ spending on mobility alone is set to surpass USD 1.7 trillion,” said Anthony Bartolo, Chief Product Officer, Tata Communications.  I hope to see Tata Communications/Teleena in the next Gartner´s Magic Quadrant for M2M Managed Services Worldwide.

There are still people who doubt that connectivity is a key component in the M2M/IoT Value Chain. Please remember without connectivity simply there is not IoT.

Obviously during these years many of my projects have been associated with IoT connectivity. From the analysis of M2M/IoT Service Providers to the conceptual design of end-to-end solutions where connectivity selection was a key component. One of the most interesting projects was the analysis that I made for the Telefonica project "IoT in a box". Without forget projects to compare LPWAN technologies, End to End Security, Identification of Uses cases for 5G. Sometimes also I had to sell IoT connectivity.

In the last years in the IoT connectivity market I have seen:

  • Consolidation of the market like “KORE buys Wyless” or “Sierra Wireless, Inc. Completes Acquisition of Numerex Corp.
  • The appearance of companies like 1NCE, the first dedicated Tier 1, Narrowband IoT MVNO providing fast, secure and reliable network connectivity for low data B2B applications offering a set of optimized product features – such as an IoT flat rate and the first of its kind 'BUY ONCE'​ lifetime fee
  • The still not bloody battle between LPWAN operators (SigFox, LoRA network operators, NB-IOT, LTE-M)
  • Telco Vendors, Operators and Analysts talking about the promise of 5G
  • New Wifi and Lifi IoT use cases
  • IoT Security breaches
  • Operators focus on key industries and use cases
  • The partnership M2M/IOT Service Providers ecosystem evolution
  • Agreements among M2M, MNO and Satellite operators.
  • The lack of standards in the Smart Home connectivity
  • The expectation for solve the real time connectivity challenges in Industry 4.0 and Edge Computing –
  • Time Sensitive Networking Industry 4.0 use cases and test bed by IIC members
  • ….

But in my opinion, enterprises still are confused and delaying their decisions to adopt IoT / IIOT because they need good advice about the right IoT connectivity not just the cheapest prices but easy integration or better customer support.

I want to remember again that I can help you in the selection of the right M2M /IoT Service Provider for your enterprise business requirements as a strategic decision.

IoT Connectivity - the ugly Duckling of IoT Network Operators

Telecoms operators’ more focused approach to bolstering their IoT businesses appears rooted in refining the technology inherent in their connectivity networks. And no wonder, The powerful GSMA has been helping Mobile Operators to define their role in IoT. At first sight, the best way for large telecoms operators generate value from the IoT might appear to be by providing connectivity via their networks. Additionally, they could leverage their vast experience in customer engagement, customer premise equipment (CPE) support and their robust, proven back-office systems by offering their OSS and BSS platforms externally to IoT users, using their OSS to provide users with a turnkey platform to manage their equipment proactively in real time, and their BSS to support the related billing requirements. In fact Global telcos set sights on IoT for growth in 2018.

Nevertheless, Analysys Mason, highlighted “Telcos have been working with the broader ecosystem, including developers, cloud players and hardware vendors this past year – all of which “should set the market up for an active 2018”.

Although many people think that IoT connectivity  is or will become a commodity with little value for customers and along with the hardware will form the ugly ducklings of the value chain, IoT Network Operators should strive to demonstrate that IoT connectivity is vital for the global adoption of the IoT and seek to increase the income derived from its connectivity services with aspect like security and the contextual data value that their networks transport.

IoT Data is the new Oil also for IoT Network Operators

If connectivity seems doomed to play the role of ugly duckling, the data on the other hand see how its value increases and increases with each new technology.

How many times have we seen a presentation with the title "Data is the new Oil”? Even taught by me

Many Telcos are in process of Digital Transformation. The want to compete with the Google, Apple, Facebook, and Amazon (GAFA) and avoid same situation lived with these Over the Top (OTT) vendors.  IoT is giving them an opportunity to monetize the IoT data and convert their networks in pipelines of value.

IoT data is a new source of revenue without forget that will also produce incremental profit through operational productivity and efficiency.

The new stream of data coming from the physical world and the billions connected things are mostly transported by the IoT Network Operator´s networks and once these data is captured, the IoT Network Operators can monitor everything and feed their AI systems. Is then, when finally, IoT Network Operators can make a lot of money of IoT contextual data and aggregated data.

Can you imagine the opportunities leveraged by the connection of millions of devices and intelligent things over your IoT network? A vast amount of useful data generated by smart containers, smart home appliances, smart cities, connected cars, smart healthcare devices, or wearables, which for many businesses is an extremely valuable commercial tool. IoT Network Operators possess the capability of performing real-time data analytics on readily available data to determine product performance, improve customer experience and forecast network capacity, all of all which IoT-ready businesses could benefit from.

Key Takeaway

IoT connectivity is still at the core of all IoT Network Operators / M2M Service Providers. But some of them are implementing different strategies to capture more business of the IoT value chain. The idea of IoT connectivity will become a commodity with not added value is influencing the decision to invest in new IoT enabled networks (5G, LTE-M, NB-IoT).

It’s clear that there are some strong opportunities for IoT Network Operators / M2M Service Providers looking to capture the full potential of IoT, and it’s time that they open up their services to support companies from all sectors who are looking to employ IoT connectivity but also machine data intelligence as part of their business models in this IoT driven digital transformation.

Telcos offering IoT connectivity should look to monetise data and offer businesses unique insights that could potentially open doors to new revenue streams or even improve operational efficiencies. 

If IoT business is about data and assets, Telcos need to shift from technology and connectivity to business value and creation of valued services.

 

Thanks in advance for your Likes and your Shares.

Read more…

 

Guest post by Peter A. Liss.

Connectivity is wrongly thought of as a commodity, including in the IoT context. This article will give an overview of current developments in IoT Connectivity, and look at their effect on Network Operators, Platform vendors, IoT Solution Providers, and Enterprise & Consumer customers. 

I also cover the likely impact of 5G, Narrowband IoT and programmable SIM cards, and SDN (Software Defined Networks). These new connectivity technologies will bring differentiation, innovation and new revenue from IoT.

OVERVIEW – CONNECTIVITY AND DIFFERENTIATION IN IOT

These new IoT developments include:

1.   Newer networks such Sigfox, LoRA, Narrowband IoT, and soon 5G.

2.   IoT platforms that can manage all types of connectivity.

3.   The growth of eUICC (e-SIMs) or programmable SIMs.

4.   IoT connectivity platforms using SDN (Software Defined Networks).

There are two opposing views about connectivity. On the one extreme, some Vendors pitch that “IoT Connectivity is the foundation of differentiation” (recent Ericsson Webinar). At the other extreme, some Enterprise customers buying these services assume “all IoT connectivity is the same”. 

In my view, the truth is in the middle. On the one hand, IoT hardware such as sensors and IoT applications could drive even bigger differentiation and innovation than the type of IoT connectivity. On the other hand, IoT connectivity should never be viewed as just a commodity that is plug and play.

HOW TO DIFFERENTIATE WITH IOT CONNECTIVITY:

Let’s take a closer look:

1)   There are many different types of Connectivity to choose from (cellular, WiFi, Zigbee, Satellite, and different types of LPWAN (Low Power Wide Area Networks). The criteria for selection include data cost, device cost, data rate/speed, battery life, outdoor and in-building coverage, and latency. Some of the much talked about networks like 5G are not yet available, and Narrowband IoT is in its infancy.

2)   The variety of connectivity offerings are increasing. Even taking a single technology like 4G, the offerings in terms of coverage, cost, roaming, integration effort, and customer service do differ widely.

3)   Costs are declining– the cost per MB has decreased, however, this is not the same as connectivity being a commodity (i.e. indistinct service). On the contrary, with more offerings and price competition, there is a greater need to choose the connectivity provider carefully. Pricing models may differentiate not only on cost per MB, but also with additional charges for VAS, the period charged for (monthly, per annum etc.) or number of connections included, or amount of data included in a packaged price. In the case of LPWA, charging can be per message, and not just per MB.

4)   The IoT Connectivity platform is where some of the disruption is happening. This platform manages the cost of connection, quality of service, SIM and device status. Along with the type of connectivity chosen, hardware (gateways & sensors), and IoT Applications built, the connectivity platform will be a key differentiator to your business case or service launch. 

My scheme below shows the place of the IoT Connectivity Management platform as the foundation of the IoT technology stack. Some differentiation could be achieved at any level in the Stack, but the effort required to offer a total solution will depend greatly on the Connectivity chosen at the bottom of the stack.

0?e=2119644000&v=alpha&t=zIRICyRP4vgTyqeq_nHh69LnmGHT-ahawOYS3Mp_uDQ

WHAT USER CASES WILL NARROWBAND IOT SUPPORT?

Narrowband IoT (NB-IoT) greatly improves network efficiency and spectrum efficiency and can thus support a massive number of new connections. The same is true of the sister technology Cat-M1 in US, which may also play a role in Europe in future. The majority of these new IoT connections will be industrial IoT (IIoT) solutions that require long battery life, and ubiquitous coverage (including remote areas or indoors). These user cases also require competitive pricing models for low bandwidth solutions, since many industrial IoT cases are not data hungry. 

Some examples of Industrial use cases are monitoring of oil and gas pipelines for flow rates and leaks, noting that often there is no external power in inaccessible areas. Warehouses are another industrial user case for tracking goods with pallets equipped with an NB-IoT module. NB-IoT modules have a long service life, require no maintenance and have a link budget gain of 20 decibel compared with a conventional LTE deployment, giving approximately 10x more coverage than a normal base station, thus penetrating deep underground, and into enclosed spaces indoors. 

Consumer examples of NB-IoT are luggage tracking (click for link to Sierra Wireless Case study), air quality monitoring, and children’s communication devices, and parking solutions.

NB-IoT, is a software upgrade to existing cellular Base Stations (or if the Base Station is old, a new circuit board must be inserted). The Core network also needs some upgrading. NB-IoT is reliant on a SIM card in the IoT device/gateway and partly because of the SIM it offers the same security & privacy features expected of cellular networks. LPWA technologies, such as NB-IoT and category M1 (LTE-M), also offer increased network coverage over a wide area, at a low cost, and with very limited energy consumption. In the case of Narrowband IoT, a battery life of over 10 years or more, is promised by Vendors (it remains to be seen - in the field, it might need a larger battery at an extra cost of approximately 20 Euro).

NB-IoT networks are already becoming available, for example, Deutsche Telekom has rolled out its NB-IoT network to approximately 600 towns and cities across Germany since launch in June 2017. According to Telekom, more than 200 companies now trialling the technology already via commercially available test packages. Nationwide rollout in the Netherlands was completed in May 2017 and Deutsche Telekom brought the technology to six further European markets by the end of 2017. Other major operators have similar roll outs for NB-IoT.

As expected, many IoT platforms are now being designed or upgraded to offer Narrowband IoT connectivity management. Cisco already announced in 2018 the availability of NB-IoT on its Jasper Control Center platform.

WHAT WILL 5G BRING TO IOT?

5G is not yet available commercially, and we can expect the first roll-outs in selected countries in 2019, and even then, just city coverage, or home-based 5G. High speed, high reliability and low latency are the main benefits of 5G.  Whilst NB-IoT is targeted specifically at the IoT Market, 5G is targeted at business & consumer users too. Also, worth noting is that the NB-IoT roll-out is ahead of 5G.

Regarding the high bandwidth of 5G, example uses include security cameras and monitoring, computer vision used in Industrial production, connected car user cases (infotainment, autonomous vehicles, and safety), and traffic control in Smart Cities. The increase in speed between 4G and 5G can be as much as 100 times. This makes a big difference to user cases that require uploading and downloading of video-based content faster and in larger volume.  It remains to be seen whether IoT applications will need to use such high data speeds. Perhaps it will be the Augmented or Virtual Reality cases (AR and VR) that utilise this bandwidth.

With 5G there is very high reliability, which is important to support mission critical services in IoT (e.g. medicine, industry, traffic control). However, the real benefit for IoT is likely to be with the low latency of 5G. Low latency allows more of the computer processing or data analysis required by a device (IoT Gateway or Smartphone) to happen in the cloud. With latency of under a millisecond, there is almost no difference that the data is processed in the cloud rather than the device. This has perhaps more implications for the IOT Solution architect, rather than the user.

Indeed, the user cases that depend on 5G’s low latency are still to be proven in practice. For non-IoT user cases (i.e. human interaction), the latency (such as changing of a pixel on a TV, or response time for instant messaging and online Presence) might not be noticed. However, for an M2M or IoT application in theory there is a great need for low latency and a machine might notice the difference in latency when a human does not. For this reason, the low latency is being pushed by the 5G industry as compelling for IoT (but yet to be proved). IoT user cases that are expected to benefit are remote industrial control, and autonomous vehicles, where milliseconds could be critical.

As explained in the discussion of latency, one change with 5G could be more processing in the Cloud, especially with Edge computing being a focal point in the architecture, and this might help reduce 5G IoT device prices. Other Emerging developments that might affect IOT include virtualised RAN (Radio Access Network) and network slicing. Virtualised RAN is intended to offer bandwidth with lower network costs, since by “slicing” the RAN, it is not necessary to utilise the whole core network, but rather allocate a part of it and the associated costs, thus allowing for profitable use cases with 5G.

WHAT ADVANTAGES DOES A PROGRAMMABLE SIM OFFER IN IOT?

Programmable SIM cards (also called eSIMS or eUICC ) are not new. What has changed is the number of service providers that offer them for IoT. Some prominent examples are Stream, EMnify, Cubic Telecom, KORE, Nokia WING and Teleena. Furthermore, the new generation of Smart SIM and associated management platforms are challenging the MNOs in terms of quality of service and signal coverage. They might also challenge MNOs in terms of cost - see the section below on SDN.  

The “e” in eSIM can mean both electronic (it can switch network and be programmed over the air) and embedded (i.e. deep inside machinery, a car or a remote location). In other words, you do not need physical access to the embedded SIM to update it or to change network, service or security settings.

The advantages of an eSIM are that it can be programmed over the air to find the strongest signal, or according to customer network & service preferences. When a data-service failure is detected, the eSIM can switch dynamically to the best network service. Consider a user case such as Smart Metering. The meter is always connected by being programmed not only to select the strongest signal, but also to select the signal that is best for your Meter technology and customer requirements.

In sum, the IoT Service Provider does not own a network, but can still offer the following to its customers:

•Issue own SIM cards, that can be embedded and switch operator over the air.

•Attach to the best or cheapest radio signal (RAN) – automatically

•Billing capabilities, often in real time, for the pricing of new IoT services.

WHAT IS THE IMPACT OF SDN ON IOT?

As explained above, the e-SIM is the first disruptive step to being able to offer an IoT service, without being tied to one specific radio network (RAN). The second step is to bypass the Operator’s core network. This is now possible with some Service Providers using Software Defined Networks (SDN) and NFV (Network Feature Virtualisation). They have built their own virtualised core network that is cloud hosted. EMnify is one example that can offer the following advantages:

•Low cost, because designed for IoT, and using proprietary technology (therefore no licencing costs)

•Auto-configuration and scaling. Because it is Cloud Based the service is truly elastic (i.e. can be quickly and simply expanded to meet customer demand for increased data volume, or larger number of SIM cards)

•Pay-as-you-grow pricing

•Flexible and Real time billing that is accessible online

•Have own numbering resources (IMSI, IPv6, MSISDN)

•Manage your own virtual mobile IoT network including Elastic Packet Core, Subscriber Management, OSS/BSS, Management Portals and open APIs. 

•A private and secure device cloud and implement own security policies (such as own VPN – virtual private network - in the core network in the cloud).

The “Gorilla” MNO (e.g. Telekom, Verizon, Vodafone etc) is reduced to providing only the radio network, and with the eSIM you can actually switch networks. To be clear, you are not reliant on the operator for the core network at all, and you have a choice of radio network. In sum, the advantage is that such a virtual network in the Cloud allows IoT user cases that have lower revenues, because the IoT platform is designed for lower connectivity costs.

 

CONCLUSION – DISRUPTION IN THE IOT CONNECTIVITY MARKET

I have built the case that “boring” connectivity is going to be disruptive for IoT, and it will generate growth. In sum, this is because many IoT business models require lower costs for the lower “micro” or “mini” ARPU/revenue that they generate. Secondly, these new network technologies bring improved speed, latency, battery life, and coverage. Thirdly, new technologies like eSIM and SDN, give the customer choice and independence from the MNO.

Enterprise customers will need to get more knowledgeable about the types of connectivity on offer, and the pros and cons, and costs of each technology. Disruption in the market is starting, due to many new offerings from MNO, and MVNOs that are IOT focussed. 

Price declines for NB-IoT and 5G enabled devices will also be business drivers. Many connectivity platforms will struggle to distinguish themselves, but can do so, for example by focussing on particular Verticals, or a specific geographical focus, or own Cloud-based packet core. Enterprise customers need to get the balance between a price that enables the business case, but also choosing connectivity that provides the best service level. 

LPWA technologies such as Narrow-Band promise to open-up new business models due to lower device and connectivity costs better coverage and longer battery life. NB-IoT is still in its infancy and these benefits like lower device costs are still to be proven.  Importantly, the connectivity costs of NB-IoT (as well as module/device costs) will need to be low enough to support the proposed new business cases like parking meters, water meters, luggage tracking, pipe monitoring, and tracking goods in warehouses. 

5G for IoT will enable data hungry business models, insure against capacity constraints, and provide wider coverage and almost no latency. Since 5G roll-out is still in the future, it remains to be seen if (or when) the required network density (using such small cells) is enough to provide the wider coverage and higher data rates promised. Almost zero latency is likely to be the most interesting feature of 5G for the IoT World, especially for critical applications like autonomous driving and industrial control.

Big data, Analytics and Application Enablement Platforms/AEP might sound more exciting and promising for innovation and differentiation in IoT. They sound more compelling than a connectivity management platform and new types of connectivity. However, Connectivity is still the foundation of the IoT business case. It is not a commodity. In particular, Narrow-Band IoT, eSIM and SDN will drive new growth in IoT, together with the imminent roll-out of 5G.

Copyright: Peter A. Liss, an independent and commercially focussed IoT expert, based in Germany, who is also available for freelance consulting work.

This post originally appeared here.

Cover photo by Federico Beccari on Unsplash

Read more…

Guest post by Daniel Alsén, Mark Patel, and Jason Shangkuan

With new connectivity technologies unlocking opportunities along the IoT value chain, companies must create detailed plans to harness their potential.

The Internet of Things (IoT)—the network of connected “smart” devices that communicate seamlessly over the Internet—is transforming how we live and work. At farms, wireless IoT sensors can transmit information about soil moisture and nutrients to agricultural experts across the country. IoT alarm systems, equipped with batteries that last for years, provide homeowners with long-term protection. Wearable fitness devices—for both people and pets—can monitor activity levels and provide feedback on heart rate and respiration. Although these applications serve different purposes, they all share one characteristic: dependence on strong connectivity.

IoT stakeholders seeking connectivity solutions include radio and chipset makers, platform vendors, device manufacturers, and companies in various industries that purchase IoT-enabled products, either for their own use or for sale to the public. These companies can now choose from more than 30 different connectivity options with different bandwidth, range, cost, reliability, and network-management features. This wide variety, combined with constantly evolving technology requirements, creates a quandary. If stakeholders bet on one connectivity option and another becomes dominant, their IoT devices, applications, and solutions could quickly become obsolete. If they hesitate to see how the connectivity landscape evolves, they could fall behind more aggressive competitors.

Cellular 5G networks—now being refined—might eventually become a universal solution for IoT connectivity. Although some global telecommunications networks and industrial applications now use 5G, this technology will not be widely available for at least five years, because of high development and deployment costs. With annual economic benefits related to the Internet of Things expected to reach $3.9 trillion to $11.1 trillion by 2025, companies cannot afford to defer their IoT investment until 5G arrives.

To help business leaders identify the connectivity solutions that best meet their current needs, we analyzed 13 sectors, including automotive, manufacturing, construction, and consumer, where IoT applications are common.1In each sector, we focused on connectivity requirements for likely use cases—in other words, the tasks or activities that may be most amenable to IoT solutions. We then identified the most relevant connectivity solutions for each one. In addition, we examined business factors that may influence how the connectivity landscape evolves, as well as the elements of a strong connectivity strategy.

Continue reading the full story here. Photo credit Khara Woods.

Read more…

A Fresh Approach to Remote IoT Connectivity

The IoT market has changed in many ways throughout the years, and since it’s a growing industry, there’s an estimated 32.6% CAGR increase in the next five years.

 

As an industry predicted to spend trillions in solutions, IoT’s trends need to be carefully observed and examined in order for implications and applications to be future-proofed.

 

How do you go about doing this? By simply analyzing how IoT is being used, as well as identifying which sectors are showing potential growth. Right now, a lot of focus is given to consumer applications such as Amazon’s dash buttons and smart home appliances. However, there are many opportunities in remote IoT. This covers industries like industrial, transportation, healthcare, etc.

 

One challenge that needs to be dealt with is how connectivity is approached right now. As more IoT and M2M devices would be deployed in rural areas and places with limited connectivity, applications and machines would need an improved infrastructure in order to carry out their purpose in areas with little connectivity.

 

Additionally, the increase of transportation and emergency-related applications would require not only ways to deals with low connectivity but also call for a system that can access multiple networks depending on availability and location.

 

Another challenge is how current devices will handle the developments in IoT and M2M technologies in the next five years. The 2G sunset is just one-way communication companies are affecting the industry.

 

Don’t fret, though, as there are several ways to resolve this and many opportunities left to explore to get ready for IoT’s evolution in the coming years.

 

Want to learn more about the possibilities remote IoT connectivity presents and how you can prepare for them? Check out the following infographic from Communications Solutions Company, Podsystem, and start future-proofing your IoT and M2M applications.

vDJvxA5.jpg

 

 

Read more…
RSS
Email me when there are new items in this category –

Upcoming IoT Events

More IoT News

Arcadia makes supporting clean energy easier

Nowadays, it’s easier than ever to power your home with clean energy, and yet, many Americans don’t know how to make the switch. Luckily, you don’t have to install expensive solar panels or switch utility companies…

Continue

Answering your Huawei ban questions

A lot has happened since we uploaded our most recent video about the Huawei ban last month. Another reprieve has been issued, licenses have been granted and the FCC has officially barred Huawei equipment from U.S. networks. Our viewers had some… Continue

IoT Career Opportunities