Subscribe to our Newsletter | Join our LinkedIn Group | Post on IoT Central


Connectivity (47)

What is 5G NR (New Radio)?

by Gus Vos

Unless you have been living under a rock, you have been seeing and hearing a lot about&nbsp5G these days. In addition, if you are at all involved in Internet of Things (IoT) or other initiatives at your organization that use cellular networking technologies, you have also likely heard about 5G New Radio, otherwise known as 5G NR, the new 5G radio access technology specification.

However, all the jargon, hype, and sometimes contradictory statements made by solution providers, the media, and analysts regarding 5G and 5G NR can make it difficult to understand what 5G NR actually is, how it works, what its advantages are, to what extent it is different than other cellular radio access technologies, and perhaps most importantly, how your organization can use this new radio access technology.

In this blog, we will provide you with an overview on 5G NR, offering you answers to these and other basic 5G NR questions – with a particular focus on what these answers mean for those in the IoT industry. 

We can’t promise to make you a 5G NR expert with this blog – but we can say that if you are confused about 5G NR before reading it, you will come away afterward with a better understanding of what 5G NR is, how it works, and how it might transform your industry.

What is the NR in 5G NR?

As its name implies, 5G New Radio or 5G NR is the new radio access technology specification found in the 5G standard. 

Set by the 3rd Generation Partnership Project (3GPP) telecommunications standards group, the 5G NR specification defines how 5G NR edge devices (smart phones, embedded modules, routers, and gateways) and 5G NR network infrastructure (base stations, small cells, and other Radio Access Network equipment) wirelessly transmit data. To put it another way, 5G NR describes how 5G NR edge devices and 5G NR network infrastructure use radio waves to talk to each other. 

5G NR is a very important part of 5G. After all, it describes how 5G solutions will use radio waves to wirelessly transmit data faster and with less latency than previous radio access technology specifications. However, while 5G NR is a very important part of the new 5G standard, it does not encompass everything related to 5G. 

For example, 5G includes a new core network architecture standard (appropriately named 5G Core Network or 5GCN) that specifies the architecture of the network that collects, processes, and routes data from edge devices and then sends this data to the cloud, other edge devices, or elsewhere. The 5GCN will improve 5G networks’ operational capacity, efficiency, and performance.

However, 5GCN is not a radio access technology like 5G NR, but rather a core network technology. In fact, networks using the 5GCN core network will be able to work with previous types of radio access technologies – like LTE. 

Is 5G NR one of 5G’s most important new technological advancements? Yes. But it is not the only technological advancement to be introduced by 5G.  

How does 5G NR work?

Like all radio access communications technology specifications, the 5G NR specification describes how edge devices and network infrastructure transmit data to each other using electromagnetic radio waves. Depending on the frequency of the electromagnetic waves (how long the wave is), it occupies a different part of the wireless spectrum.

Some of the waves that 5G NR uses have frequencies of between 400 MHz and 6 GHz. These waves occupy what is called sub-6 spectrum (since their frequencies are all under 6 GHz).

This sub-6 spectrum is used by other cellular radio access technologies, like LTE, as well. In the past, using different cellular radio access technologies like this over the same spectrum would lead to unmanageable interference problems, with the different technologies radio waves interfering with each other. 

One of 5G NR’s many advantages is that it’s solved this problem, using a technology called Dynamic Spectrum Sharing (DSS). This DSS technology allows 5G NR signals to use the same band of spectrum as LTE and other cellular technologies, like LTE-M and NB-IoT. This allows 5G NR networks to be rolled out without shutting down LTE or other networks that support existing LTE smart phones or IoT devices. You can learn more about DSS, and how it speeds the rollout of 5G NR while also extending the life of IoT devices, here.

One of 5G NR’s other major advancements is that it does not just use waves in the sub-6 spectrum to transmit data. The 5G NR specification also specifies how edge devices and network infrastructure can use radio waves in bands between 24 GHz and 52 GHz to transmit data.

These millimeter wave (mmWave) bands greatly expand the amount of spectrum available for wireless data communications. The lack of spectrum capacity has been a problem in the past, as there is a limited number of bands of sub-6 spectrum available for organizations to use for cellular communications, and many of these bands are small. Lack of available capacity and narrow spectrum bands led to network congestion, which limits the amount of data that can be transmitted over networks that use sub-6 spectrum. 

mmWave opens up a massive amount of new wireless spectrum, as well as much broader bands of wireless spectrum for cellular data transmission. This additional spectrum and these broader spectrum bands increase the capacity (amount of data) that can be transmitted over these bands, enabling 5G NR mmWave devices to achieve data speeds that are four or more times faster than devices that use just sub-6 spectrum. 

The additional wireless capacity provided by mmWave also reduces latency (the time between when device sends a signal and when it receives a response). By reducing latency from 10 milliseconds with sub-6 devices to 3-4 milliseconds or lower with 5G NR mmWave devices, 5G enables new industrial automation, autonomous vehicle and immersive gaming use cases, as well as Virtual Reality (VR), Augmented Reality (AR), and similar Extended Reality (XR) use cases, all of which require very low latency. 

On the other hand, these new mmWave devices and network infrastructure come with new technical requirements, as well as drawbacks associated with their use of mmWave spectrum. For example, mmWave devices use more power and generate more heat than sub-6 devices. In addition, mmWave signals have less range and do not penetrate walls and other physical objects as easily as sub-6 waves. 5G NR includes some technologies, such as beamforming and massive Multiple Input Multiple Output (MIMO) that lessen some of these range and obstacle penetration limitations – but they do not eliminate them. 

To learn more about the implications of 5G NR mmWave on the design of IoT and other products, read our blog, Seven Tips For Designing 5G NR mmWave Products.

In addition, there has been a lot written on these two different “flavors” (sub-6 and mmWave) of 5G NR. If you are interested in learning more about the differences between sub-6 5G NR and mmWave 5G NR, and how together they enable both evolutionary and revolutionary changes for Fixed Wireless Access (FWA), mobile broadband, IoT and other wireless applications, read our previous blog A Closer Look at the Five Waves of 5G.

What is the difference between 5G NR and LTE?

Though sub-6 and mmWave are very different, both types of 5G NR provide data transfer speed, latency, and other performance improvements compared to LTE, the previous radio access technology specification used for cellular communications. 

For example, outside of its use of mmWave, 5G NR features other technical advancements designed to improve network performance, including:

• Flexible numerology, which enables 5G NR network infrastructure to set the spacing between subcarriers in a band of wireless spectrum at 15, 30, 60, 120 and 240 kHz, rather than only use 15 kHz spacing, like LTE. This flexible numerology is what allows 5G NR to use mmWave spectrum in the first place. It also improves the performance of 5G NR devices that use higher sub-6 spectrum, such as 3.5 GHz C-Band spectrum, since the network can adjust the subcarrier spacing to meet the particular spectrum and use case requirements of the data it is transmitting. For example, when low latency is required, the network can use wider subcarrier spacing to help improve the latency of the transmission.
• Beamforming, in which massive MIMO (multiple-input and multiple-output) antenna technologies are used to focus wireless signal and then sweep them across areas till they make a strong connection. Beamforming helps extend the range of networks that use mmWave and higher sub-6 spectrum.  
• Selective Hybrid Automatic Repeat Request (HARQ), which allows 5G NR to break large data blocks into smaller blocks, so that when there is an error, the retransmission is smaller and results in higher data transfer speeds than LTE, which transfers data in larger blocks. 
• Faster Time Division Duplexing (TDD), which enables 5G NR networks to switch between uplink and downlink faster, reducing latency. 
• Pre-emptive scheduling, which lowers latency by allowing higher-priority data to overwrite or pre-empt lower-priority data, even if the lower-priority data is already being transmitted. 
• Shorter scheduling units that trim the minimum scheduling unit to just two symbols, improving latency.
• A new inactive state for devices. LTE devices had two states – idle and connected. 5G NR includes a new state – inactive – that reduces the time needed for an edge device to move in and out of its connected state (the state used for transmission), making the device more responsive. 

These and the other technical advancements made to 5G NR are complicated, but the result of these advancements is pretty simple – faster data speeds, lower latency, more spectrum agility, and otherwise better performance than LTE. 

Are LPWA radio access technology specifications, like NB-IoT and LTE-M, supported by 5G?

Though 5G features a new radio access technology, 5G NR, 5G supports other radio access technologies as well. This includes the Low Power Wide Area (LPWA) technologies, Narrowband IoT (NB-IoT), and Long Term Evolution for Machines (LTE-M). In fact, these LPWA standards are the standards that 5G uses to address one of its three main use cases – Massive, Machine-Type Communications (mMTC). 

Improvements have been and continue to be made to these 5G LPWA standards to address these mMTC use cases – improvements that further lower the cost of LPWA devices, reduce these devices’ power usage, and enable an even larger number of LPWA devices to connect to the network in a given area.

What are the use cases for 5G NR and 5G LPWA Radio Access Technologies?

Today, LTE supports three basic use cases:

• Voice: People today can use LTE to talk to each other using mobile devices. 
• Mobile broadband (MBB): People can use smartphones, tablets, mobile and other edge devices to view videos, play games, and use other applications that require broadband data speeds.
• IoT: People can use cellular modules, routers, and other gateways embedded in practically anything – a smart speaker, a dog collar, a commercial washing machine, a safety shoe, an industrial air purifier, a liquid fertilizer storage tank – to transmit data from the thing to the cloud or a private data center and back via the internet.  

5G NR, as well as 5G’s LPWA radio access technologies (NB-IoT and LTE-M) will continue to support these existing IoT and voice use cases. 

However, 5G also expands on the MBB use case with a new Enhanced Mobile Broadband (eMBB) use case. These eMBB use cases leverage 5G NR’s higher peak and average speeds and lower latency to enable smart phones and other devices to support high-definition cloud-based immersive video games, high quality video calls and new VR, AR, and other XR applications.

In addition, 5G NR also supports a new use case, called Ultra-Reliable, Low-Latency Communications (URLLC). 5G NR enables devices to create connections that are ultra-reliable with very low latency. With these new 5G NR capabilities, as well as 5G NR’s support for very fast handoffs and high mobility, organizations can now deploy new factory automation, smart city 2.0 and other next generation Industrial IoT (IIoT) applications, as well as Vehicle-to-everything (V2X) applications, such as autonomous vehicles. 

As we mentioned above, 5G will also support the new mMTC use case, which represents an enhancement of the existing IoT use case. However, in the case of mMTC, new use cases will be enabled by improvements to LTE-M and NB-IoT radio access technology standards, not 5G NR. Examples of these types of new mMTC use cases include large-scale deployments of small, low cost edge devices (like sensors) for smart city, smart logistics, smart grid, and similar applications.

But this is not all. 3GPP is looking at additional new use cases (and new technologies for these use cases), as discussed in this recent blog on Release 17 of the 5G standard. One of these new technologies is a new Reduced Capability (RedCap) device – sometimes referred to as NR Light – for IoT or MTC use cases that require faster data speeds than LPWA devices can provide, but also need devices that are less expensive than the 5G NR devices being deployed today.

3GPP is also examining standard changes to NR, LTE-M, and NB-IoT in 5G Release 17 that would make it possible for satellites to use these technologies for Non-Terrestrial Network (NTN) communications. This new NTN feature would help enable the deployment of satellites able to provide NR, LTE-M, and NB-IoT coverage in very remote areas, far away from cellular base stations.

What should you look for in a 5G NR module, router or gateway solution?

While all 5G NR edge devices use the 5G NR technology specification, they are not all created equal. In fact, the flexibility, performance, quality, security, and other capabilities of a 5G NR edge device can make the difference between a successful 5G NR application rollout and a failed one. 

As they evaluate 5G NR edge devices for their application, organizations should ask themselves the following questions:

• Is the edge device multi-mode? 
While Mobile Network Operators (MNOs) are rapidly expanding their 5G NR networks, there are still many areas where 5G NR coverage is not available. Multi-mode edge devices that can support LTE, or even 3G, help ensure that wherever the edge device is deployed, it will be able to connect to a MNO’s network – even if this connection does not provide the data speed, latency, or other performance needed to maximize the value of the 5G NR application. 

In addition, many MNOs are rolling out non-standalone (NSA) 5G NR networks at first. These NSA 5G NR networks need a LTE connection in addition to a 5G NR connection to transmit data from and to 5G NR devices. If your edge device does not include support for LTE, it will not be able to use 5G NR on these NSA networks. 

• How secure are the edge devices? 
Data is valuable and sensitive – and the data transmitted by 5G NR devices is no different. To limit the risk that this data is exposed, altered, or destroyed, organizations need to adopt a Defense in Depth approach to 5G NR cybersecurity, with layers of security implemented at the cloud, network, and edge device levels. 

At the edge device level, organizations should ensure their devices have security built-in with features such as HTTPS, secure socket, secure boot, and free unlimited firmware over-the-air (FOTA) updates. 

Organizations will also want to use edge devices from trustworthy companies that are headquartered in countries that have strict laws in place to protect customer data. In doing so you will ensure these companies are committed to working with you to prevent state or other malicious actors from gaining access to your 5G NR data.

• Are the 5G NR devices future-proof? 
Over time, organizations are likely to want to upgrade their applications. In addition, the 5G NR specification is not set in stone, and updates to it are made periodically. Organizations will want to ensure their 5G NR edge devices are futureproof, with capabilities that include the ability to update them with new firmware over the air, so they can upgrade their applications and take advantage of new 5G NR capabilities in the future. 

• Can the 5G NR device do edge processing? 
While 5G NR increases the amount of data that can be transmitted over cellular wireless networks, in many cases organizations will want to filter, prioritize, or otherwise process some of their 5G NR application’s data at the edge. This edge processing can enable these organizations to lower their data transmission costs, improve application performance, and lower their devices energy use. 

5G NR edge devices that offer organizations the ability to easily process data at the edge allow them to lower their data transmission expenses, optimize application performance, and maximize their devices’ battery lives. 

Originally posted here.

Read more…

WEBINAR SERIES:
 
Fast and Fearless - The Future of IoT Software Development
 8995382285?profile=RESIZE_400x

SUMMARY

The IoT is transforming the software landscape. What was a relatively straightforward embedded software stack, has been revolutionized due to the IoT where developers juggle specialized workloads, security, machine learning, real-time connectivity, managing devices in the field - the list goes on.

How can our industry help developers prototype ‘fearlessly’ because the tools and platforms allow them to navigate varying IoT components? How can developers move to production quickly, capitalizing on innovation opportunities in emerging IoT markets? 

This webinar series will take you through the fundamental steps, tools and opportunities for simplifying IoT development. Each webinar will be a panel discussion with industry experts who will share their experience and development tips on the below topics.

 

Part One of Four: The IoT Software Developer Experience

Date: Tuesday, May 11, 2021

Webinar Recording Available Here
 

Part Two of Four: AI and IoT Innovation

Date: Tuesday, June 29, 2021

Time: 8:00 am PDT/ 3:00 pm UTC

Duration: 60 minutes

Click Here to Register for Part Two
 

Part Three of Four: Making the Most of IoT Connectivity

Date: Tuesday, September 28, 2021

Time: 8:00 am PDT/ 3:00 pm UTC

Duration: 60 minutes

Click Here to Register for Part Three
 

Part Four of Four: IoT Security Solidified and Simplified

Date: Tuesday, November 16, 2021

Time: 8:00 am PDT/ 3:00 pm UTC

Duration: 60 minutes

Click Here to Register for Part Four
 
Read more…

It’s no secret that I love just about everything to do with what we now refer to as STEM; that is, science, technology, engineering, and math. When I was a kid, my parents gifted me with what was, at that time, a state-of-the-art educational electronics kit containing a collection of basic components (resistors, capacitors, inductors), a teensy loudspeaker, some small (6-volt) incandescent bulbs… that sort of thing. Everything was connected using a patch-board of springs (a bit like the 130-in-1 Electronic Playground from SparkFun).

The funny thing is, now that I come to look back on it, most electronics systems in the real world at that time weren’t all that much more sophisticated than my kit. In our house, for example, we had one small vacuum tube-based black-and-white television in the family room and one rotary-dial telephone that was hardwired to the wall in the hallway. We never even dreamed of color televisions and I would have laughed my socks off if you’d told me that the day would come when we’d have high-definition color televisions in almost every room in the house, smart phones so small you could carry them your pocket and use them to take photos and videos and make calls around the world, smart devices that you could control with your voice and that would speak back to you… the list goes on.

Now, of course, we have the Internet of Things (IoT), which boasts more “things” than you can throw a stick at (according to Statista, there were ~22 billion IoT devices in 2018, there will be ~38 billion in 2025, and there are expected to be ~50 billion by 2030).

One of the decisions required when embarking on an IoT deployment pertains to connectivity. Some devices are hardwired, many use Bluetooth or Wi-Fi or some form of wireless mesh, and many more employ cellular technology as their connectivity solution of choice.

In order to connect to a cellular network, the IoT device must include some form of subscriber identity module (SIM). Over the years, the original SIMs (which originated circa 1991) evolved in various ways. A few years ago, the industry saw the introduction of embedded SIM (eSIM) technology. Now, the next-generation integrated SIM (iSIM) is poised to shake the IoT world once more.

“But what is iSIM,” I hear you cry. Well, I’m glad you asked because, by some strange quirk of fate, I’ve been invited to host a panel discussion — Accelerating Innovation on the IoT Edge with Integrated SIM (iSIM) — which is being held under the august auspices of IotCentral.io

In this webinar — which will be held on Thursday 20 May 2021 from 10:00 a.m. to 11:00 a.m. CDT — I will be joined by four industry gurus to discuss how cellular IoT is changing and how to navigate through the cornucopia of SIM, eSIM, and iSIM options to decide what’s best for your product. As part of this, we will see quick-start tools and cool demos that can move you from concept to product. Also (and of particular interest to your humble narrator), we will experience the supercharge potential of TinyML and iSIM.

8929356061?profile=RESIZE_584x

Panel members Loic Bonvarlet (upper left), Brian Partridge (upper right),

Dr. Juan Nogueira (lower left), and Jan Jongboom (bottom right)

The gurus in question (and whom I will be questioning) are Loic Bonvarlet, VP Product and Marketing at Kigen; Brian Partridge, Research Director for Infrastructure and Cloud Technologies at 451 Research; Dr. Juan Nogueira, Senior Director, Connectivity, Global Technology Team at FLEX; and Jan Jongboom, CTO and Co-Founder at Edge Impulse.

So, what say you? Dare I hope that we will have the pleasure of your company and that you will be able to join us to (a) tease your auditory input systems with our discussions and (b) join our question-and-answer free-for-all at the end?

 

Video recording available:

Read more…

By Bee Hayes-Thakore

The Android Ready SE Alliance, announced by Google on March 25th, paves the path for tamper resistant hardware backed security services. Kigen is bringing the first secure iSIM OS, along with our GSMA certified eSIM OS and personalization services to support fast adoption of emerging security services across smartphones, tablets, WearOS, Android Auto Embedded and Android TV.

Google has been advancing their investment in how tamper-resistant secure hardware modules can protect not only Android and its functionality, but also protect third-party apps and secure sensitive transactions. The latest android smartphone device features enable tamper-resistant key storage for Android Apps using StrongBox. StrongBox is an implementation of the hardware-backed Keystore that resides in a hardware security module.

To accelerate adoption of new Android use cases with stronger security, Google announced the formation of the Android Ready SE Alliance. Secure Element (SE) vendors are joining hands with Google to create a set of open-source, validated, and ready-to-use SE Applets. On March 25th, Google launched the General Availability (GA) version of StrongBox for SE.

8887974290?profile=RESIZE_710x

Hardware based security modules are becoming a mainstay of the mobile world. Juniper Research’s latest eSIM research, eSIMs: Sector Analysis, Emerging Opportunities & Market Forecasts 2021-2025, independently assessed eSIM adoption and demand in the consumer sector, industrial sector, and public sector, and predicts that the consumer sector will account for 94% of global eSIM installations by 2025. It anticipates that established adoption of eSIM frameworks from consumer device vendors such as Google, will accelerate the growth of eSIMs in consumer devices ahead of the industrial and public sectors.


Consumer sector will account for 94% of global eSIM installations by 2025

Juniper Research, 2021.

Expanding the secure architecture of trust to consumer wearables, smart TV and smart car

What’s more? A major development is that now this is not just for smartphones and tablets, but also applicable to WearOS, Android Auto Embedded and Android TV. These less traditional form factors have huge potential beyond being purely companion devices to smartphones or tablets. With the power, size and performance benefits offered by Kigen’s iSIM OS, OEMs and chipset vendors can consider the full scope of the vast Android ecosystem to deliver new services.

This means new secure services and innovations around:

🔐 Digital keys (car, home, office)

🛂 Mobile Driver’s License (mDL), National ID, ePassports

🏧 eMoney solutions (for example, Wallet)

How is Kigen supporting Google’s Android Ready SE Alliance?

The alliance was created to make discrete tamper resistant hardware backed security the lowest common denominator for the Android ecosystem. A major goal of this alliance is to enable a consistent, interoperable, and demonstrably secure applets across the Android ecosystem.

Kigen believes that enabling the broadest choice and interoperability is fundamental to the architecture of digital trust. Our secure, standards-compliant eSIM and iSIM OS, and secure personalization services are available to all chipset or device partners in the Android Ready SE Alliance to leverage the benefits of iSIM for customer-centric innovations for billions of Android users quickly.

Vincent Korstanje, CEO of Kigen

Kigen’s support for the Android Ready SE Alliance will allow our industry partners to easily leapfrog to the enhanced security and power efficiency benefits of iSIM technology or choose a seamless transition from embedded SIM so they can focus on their innovation.

We are delighted to partner with Kigen to further strengthen the security of Android through StrongBox via Secure Element (SE). We look forward to widespread adoption by our OEM partners and developers and the entire Android ecosystem.

Sudhi Herle, Director of Android Platform Security 

In the near term, the Google team is prioritizing and delivering the following Applets in conjunction with corresponding Android feature releases:

  • Mobile driver’s license and Identity Credentials
  • Digital car keys

Kigen brings the ability to bridge the physical embedded security hardware to a fully integrated form factor. Our Kigen standards-compliant eSIM OS (version 2.2. eUICC OS) is available to support chipsets and device makers now. This announcement is a start to what will bring a whole host of new and exciting trusted services offering better experience for users on Android.

Kigen’s eSIM (eUICC) OS brings

8887975464?profile=RESIZE_710x

The smallest operating system, allowing OEMs to select compact, cost-effective hardware to run it on.

Kigen OS offers the highest level of logical security when employed on any SIM form factor, including a secure enclave.

On top of Kigen OS, we have a broad portfolio of Java Card™ Applets to support your needs for the Android SE Ready Alliance.

Kigen’s Integrated SIM or iSIM (iUICC) OS further this advantage

8887975878?profile=RESIZE_710x

Integrated at the heart of the device and securely personalized, iSIM brings significant size and battery life benefits to cellular Iot devices. iSIM can act as a root of trust for payment, identity, and critical infrastructure applications

Kigen’s iSIM is flexible enough to support dual sim capability through a single profile or remote SIM provisioning mechanisms with the latter enabling out-of-the-box connectivity, secure and remote profile management.

For smartphones, set top boxes, android auto applications, auto car display, Chromecast or Google Assistant enabled devices, iSIM can offer significant benefits to incorporate Artificial intelligence at the edge.

Kigen’s secure personalization services to support fast adoption

SIM vendors have in-house capabilities for data generation but the eSIM and iSIM value chains redistribute many roles and responsibilities among new stakeholders for the personalization of operator credentials along different stages of production or over-the-air when devices are deployed.

Kigen can offer data generation as a service to vendors new to the ecosystem.

Partner with us to provide cellular chipset and module makers with the strongest security, performance for integrated SIM leading to accelerate these new use cases.

Security considerations for eSIM and iSIM enabled secure connected services

Designing a secure connected product requires considerable thought and planning and there really is no ‘one-size-fits-all’ solution. How security should be implemented draws upon a multitude of factors, including:

  • What data is being stored or transmitted between the device and other connected apps?
  • Are there regulatory requirements for the device? (i.e. PCI DSS, HIPAA, FDA, etc.)
  • What are the hardware or design limitations that will affect security implementation?
  • Will the devices be manufactured in a site accredited by all of the necessary industry bodies?
  • What is the expected lifespan of the device?

End-to-end ecosystem and services thinking needs to be a design consideration from the very early stage especially when considering the strain on battery consumption in devices such as wearables, smart watches and fitness devices as well as portable devices that are part of the connected consumer vehicles.

Originally posted here.

Read more…

By Sachin Kotasthane

In his book, 21 Lessons for the 21st Century, the historian Yuval Noah Harari highlights the complex challenges mankind will face on account of technological challenges intertwined with issues such as nationalism, religion, culture, and calamities. In the current industrial world hit by a worldwide pandemic, we see this complexity translate in technology, systems, organizations, and at the workplace.

While in my previous article, Humane IIoT, I discussed the people-centric strategies that enterprises need to adopt while onboarding IoT initiatives of industrial IoT in the workforce, in this article, I will share thoughts on how new-age technologies such as AI, ML, and big data, and of course, industrial IoT, can be used for effective management of complex workforce problems in a factory, thereby changing the way people work and interact, especially in this COVID-stricken world.

Workforce related problems in production can be categorized into:

  1. Time complexity
  2. Effort complexity
  3. Behavioral complexity

Problems categorized in either of the above have a significant impact on the workforce, resulting in a detrimental effect on the outcome—of the product or the organization. The complexity of these problems can be attributed to the fact that the workforce solutions to such issues cannot be found using just engineering or technology fixes as there is no single root-cause, rather, a combination of factors and scenarios. Let us, therefore, explore a few and seek probable workforce solutions.8829066088?profile=RESIZE_584x

Figure 1: Workforce Challenges and Proposed Strategies in Production

  1. Addressing Time Complexity

    Any workforce-related issue that has a detrimental effect on the operational time, due to contributing factors from different factory systems and processes, can be classified as a time complex problem.

    Though classical paper-based schedules, lists, and punch sheets have largely been replaced with IT-systems such as MES, APS, and SRM, the increasing demands for flexibility in manufacturing operations and trends such as batch-size-one, warrant the need for new methodologies to solve these complex problems.

    • Worker attendance

      Anyone who has experienced, at close quarters, a typical day in the life of a factory supervisor, will be conversant with the anxiety that comes just before the start of a production shift. Not knowing who will report absent, until just before the shift starts, is one complex issue every line manager would want to get addressed. While planned absenteeism can be handled to some degree, it is the last-minute sick or emergency-pager text messages, or the transport delays, that make the planning of daily production complex.

      What if there were a solution to get the count that is almost close to the confirmed hands for the shift, an hour or half, at the least, in advance? It turns out that organizations are experimenting with a combination of GPS, RFID, and employee tracking that interacts with resource planning systems, trying to automate the shift planning activity.

      While some legal and privacy issues still need to be addressed, it would not be long before we see people being assigned to workplaces, even before they enter the factory floor.

      During this course of time, while making sure every line manager has accurate information about the confirmed hands for the shift, it is also equally important that health and well-being of employees is monitored during this pandemic time. Use of technologies such as radar, millimeter wave sensors, etc., would ensure the live tracking of workers around the shop-floor and make sure that social distancing norms are well-observed.

    • Resource mapping

      While resource skill-mapping and certification are mostly HR function prerogatives, not having the right resource at the workstation during exigencies such as absenteeism or extra workload is a complex problem. Precious time is lost in locating such resources, or worst still, millions spent in overtime.

      What if there were a tool that analyzed the current workload for a resource with the identified skillset code(s) and gave an accurate estimate of the resource’s availability? This could further be used by shop managers to plan manpower for a shift, keeping them as lean as possible.

      Today, IT teams of OEMs are seen working with software vendors to build such analytical tools that consume data from disparate systems—such as production work orders from MES and swiping details from time systems—to create real-time job profiles. These results are fed to the HR systems to give managers the insights needed to make resource decisions within minutes.

  2. Addressing Effort Complexity

    Just as time complexities result in increased  production time, problems in this category result in an increase in effort by the workforce to complete the same quantity of work. As the effort required is proportionate to the fatigue and long-term well-being of the workforce, seeking workforce solutions to reduce effort would be appreciated. Complexity arises when organizations try to create a method out-of-madness from a variety of factors such as changing workforce profiles, production sequences, logistical and process constraints, and demand fluctuations.

    Thankfully, solutions for this category of problems can be found in new technologies that augment existing systems to get insights and predictions, the results of which can reduce the efforts, thereby channelizing it more productively. Add to this, the demand fluctuations in the current pandemic, having a real-time operational visibility, coupled with advanced analytics, will ensure meeting shift production targets.

    • Intelligent exoskeletons

      Exoskeletons, as we know, are powered bodysuits designed to safeguard and support the user in performing tasks, while increasing overall human efficiency to do the respective tasks. These are deployed in strain-inducing postures or to lift objects that would otherwise be tiring after a few repetitions. Exoskeletons are the new-age answer to reducing user fatigue in areas requiring human skill and dexterity, which otherwise would require a complex robot and cost a bomb.

      However, the complexity that mars exoskeleton users is making the same suit adaptable for a variety of postures, user body types, and jobs at the same workstation. It would help if the exoskeleton could sense the user, set the posture, and adapt itself to the next operation automatically.

      Taking a leaf out of Marvel’s Iron Man, who uses a suit that complements his posture that is controlled by JARVIS, manufacturers can now hope to create intelligent exoskeletons that are always connected to factory systems and user profiles. These suits will adapt and respond to assistive needs, without the need for any intervention, thereby freeing its user to work and focus completely on the main job at hand.

      Given the ongoing COVID situation, it would make the life of workers and the management safe if these suits are equipped with sensors and technologies such as radar/millimeter wave to help observe social distancing, body-temperature measuring, etc.

    • Highlighting likely deviations

      The world over, quality teams on factory floors work with checklists that the quality inspector verifies for every product that comes at the inspection station. While this repetitive task is best suited for robots, when humans execute such repetitive tasks, especially those that involve using visual, audio, touch, and olfactory senses, mistakes and misses are bound to occur. This results in costly reworks and recalls.

      Manufacturers have tried to address this complexity by carrying out rotation of manpower. But this, too, has met with limited success, given the available manpower and ever-increasing workloads.

      Fortunately, predictive quality integrated with feed-forwards techniques and some smart tracking with visuals can be used to highlight the area or zone on the product that is prone to quality slips based on data captured from previous operations. The inspector can then be guided to pay more attention to these areas in the checklist.

  3. Addressing Behavioral Complexity

    Problems of this category usually manifest as a quality issue, but the root cause can often be traced to the workforce behavior or profile. Traditionally, organizations have addressed such problems through experienced supervisors, who as people managers were expected to read these signs, anticipate and align the manpower.

    However, with constantly changing manpower and product variants, these are now complex new-age problems requiring new-age solutions.

    • Heat-mapping workload

      Time and motion studies at the workplace map the user movements around the machine with the time each activity takes for completion, matching the available cycle-time, either by work distribution or by increasing the manpower at that station. Time-consuming and cumbersome as it is, the complexity increases when workload balancing is to be done for teams working on a single product at the workstation. Movements of multiple resources during different sequences are difficult to track, and the different users cannot be expected to follow the same footsteps every time.

      Solving this issue needs a solution that will monitor human motion unobtrusively, link those to the product work content at the workstation, generate recommendations to balance the workload and even out the ‘congestion.’ New industrial applications such as short-range radar and visual feeds can be used to create heat maps of the workforce as they work on the product. This can be superimposed on the digital twin of the process to identify the zone where there is ‘congestion.’ This can be fed to the line-planning function to implement corrective measures such as work distribution or partial outsourcing of the operation.

    • Aging workforce (loss of tribal knowledge)

      With new technology coming to the shop-floor, skills of the current workforce get outdated quickly. Also, with any new hire comes the critical task of training and knowledge sharing from experienced hands. As organizations already face a shortage of manpower, releasing more hands to impart training to a larger workforce audience, possibly at different locations, becomes an even more daunting task.

      Fully realizing the difficulties and reluctance to document, organizations are increasingly adopting AR-based workforce trainings that map to relevant learning and memory needs. These AR solutions capture the minutest of the actions executed by the expert on the shop-floor and can be played back by the novice in-situ as a step-by-step guide. Such tools simplify the knowledge transfer process and also increase worker productivity while reducing costs.

      Further, in extraordinary situations such  as the one we face at present, technologies such as AR offer solutions for effective and personalized support to field personnel, without the need to fly in specialists at multiple sites. This helps keep them safe, and accessible, still.

Key takeaways and Actionable Insights

The shape of the future workforce will be the result of complex, changing, and competing forces. Technology, globalization, demographics, social values, and the changing personal expectations of the workforce will continue to transform and disrupt the way businesses operate, increasing the complexity and radically changing where, and when of future workforce, and how work is done. While the need to constantly reskill and upskill the workforce will be humongous, using new-age techniques and technologies to enhance the effectiveness and efficiency of the existing workforce will come to the spotlight.

8829067296?profile=RESIZE_710x

Figure 2: The Future IIoT Workforce

Organizations will increasingly be required to:

  1. Deploy data farming to dive deep and extract vast amounts of information and process insights embedded in production systems. Tapping into large reservoirs of ‘tribal knowledge’ and digitizing it for ingestion to data lakes is another task that organizations will have to consider.
  2. Augment existing operations systems such as SCADA, DCS, MES, CMMS with new technology digital platforms, AI, AR/VR, big data, and machine learning to underpin and grow the world of work. While there will be no dearth of resources in one or more of the new technologies, organizations will need to ‘acqui-hire’ talent and intellectual property using a specialist, to integrate with existing systems and gain meaningful actionable insights.
  3. Address privacy and data security concerns of the workforce, through the smart use of technologies such as radar and video feeds.

Nonetheless, digital enablement will need to be optimally used to tackle the new normal that the COVID pandemic has set forth in manufacturing—fluctuating demands, modular and flexible assembly lines, reduced workforce, etc.

Originally posted here.

Read more…

In my last post, I explored how OTA updates are typically performed using Amazon Web Services and FreeRTOS. OTA updates are critically important to developers with connected devices. In today’s post, we are going to explore several best practices developers should keep in mind with implementing their OTA solution. Most of these will be generic although I will point out a few AWS specific best practices.

Best Practice #1 – Name your S3 bucket with afr-ota

There is a little trick with creating S3 buckets that I was completely oblivious to for a long time. Thankfully when I checked in with some colleagues about it, they also had not been aware of it so I’m not sure how long this has been supported but it can help an embedded developer from having to wade through too many AWS policies and simplify the process a little bit.

Anyone who has attempted to create an OTA Update with AWS and FreeRTOS knows that you have to setup several permissions to allow an OTA Update Job to access the S3 bucket. Well if you name your S3 bucket so that it begins with “afr-ota”, then the S3 bucket will automatically have the AWS managed policy AmazonFreeRTOSOTAUpdate attached to it. (See Create an OTA Update service role for more details). It’s a small help, but a good best practice worth knowing.

Best Practice #2 – Encrypt your firmware updates

Embedded software must be one of the most expensive things to develop that mankind has ever invented! It’s time consuming to create and test and can consume a large percentage of the development budget. Software though also drives most features in a product and can dramatically different a product. That software is intellectual property that is worth protecting through encryption.

Encrypting a firmware image provides several benefits. First, it can convert your firmware binary into a form that seems random or meaningless. This is desired because a developer shouldn’t want their binary image to be easily studied, investigated or reverse engineered. This makes it harder for someone to steal intellectual property and more difficult to understand for someone who may be interested in attacking the system. Second, encrypting the image means that the sender must have a key or credential of some sort that matches the device that will decrypt the image. This can be looked at a simple source for helping to authenticate the source, although more should be done than just encryption to fully authenticate and verify integrity such as signing the image.

Best Practice #3 – Do not support firmware rollbacks

There is often a debate as to whether firmware rollbacks should be supported in a system or not. My recommendation for a best practice is that firmware rollbacks be disabled. The argument for rollbacks is often that if something goes wrong with a firmware update then the user can rollback to an older version that was working. This seems like a good idea at first, but it can be a vulnerability source in a system. For example, let’s say that version 1.7 had a bug in the system that allowed remote attackers to access the system. A new firmware version, 1.8, fixes this flaw. A customer updates their firmware to version 1.8, but an attacker knows that if they can force the system back to 1.7, they can own the system. Firmware rollbacks seem like a convenient and good idea, in fact I’m sure in the past I used to recommend them as a best practice. However, in today’s connected world where we perform OTA updates, firmware rollbacks are a vulnerability so disable them to protect your users.

Best Practice #4 – Secure your bootloader

Updating firmware Over-the-Air requires several components to ensure that it is done securely and successfully. Often the focus is on getting the new image to the device and getting it decrypted. However, just like in traditional firmware updates, the bootloader is still a critical piece to the update process and in OTA updates, the bootloader can’t just be your traditional flavor but must be secure.

There are quite a few methods that can be used with the onboard bootloader, but no matter the method used, the bootloader must be secure. Secure bootloaders need to be capable of verifying the authenticity and integrity of the firmware before it is ever loaded. Some systems will use the application code to verify and install the firmware into a new application slot while others fully rely on the bootloader. In either case, the secure bootloader needs to be able to verify the authenticity and integrity of the firmware prior to accepting the new firmware image.

It’s also a good idea to ensure that the bootloader is built into a chain of trust and cannot be easily modified or updated. The secure bootloader is a critical component in a chain-of-trust that is necessary to keep a system secure.

Best Practice #5 – Build a Chain-of-Trust

A chain-of-trust is a sequence of events that occur while booting the device that ensures each link in the chain is trusted software. For example, I’ve been working with the Cypress PSoC 64 secure MCU’s recently and these parts come shipped from the factory with a hardware-based root-of-trust to authenticate that the MCU came from a secure source. That Root-of-Trust (RoT) is then transferred to a developer, who programs a secure bootloader and security policies onto the device. During the boot sequence, the RoT verifying the integrity and authenticity of the bootloader, which then verifies the integrity and authenticity of any second stage bootloader or software which then verifies the authenticity and integrity of the application. The application then verifies the authenticity and integrity of its data, keys, operational parameters and so on.

This sequence creates a Chain-Of-Trust which is needed and used by firmware OTA updates. When the new firmware request is made, the application must decrypt the image and verify that authenticity and integrity of the new firmware is intact. That new firmware can then only be used if the Chain-Of-Trust can successfully make its way through each link in the chain. The bottom line, a developer and the end user know that when the system boots successfully that the new firmware is legitimate. 

Conclusions

OTA updates are a critical infrastructure component to nearly every embedded IoT device. Sure, there are systems out there that once deployed will never update, however, those are probably a small percentage of systems. OTA updates are the go-to mechanism to update firmware in the field. We’ve examined several best practices that developers and companies should consider when they start to design their connected systems. In fact, the bonus best practice for today is that if you are building a connected device, make sure you explore your OTA update solution sooner rather than later. Otherwise, you may find that building that Chain-Of-Trust necessary in today’s deployments will be far more expensive and time consuming to implement.

Originally posted here.

Read more…

IoT in Mining

Flowchart of IoT in Mining

by Vaishali Ramesh

Introduction – Internet of Things in Mining

The Internet of things (IoT) is the extension of Internet connectivity into physical devices and everyday objects. Embedded with electronics, Internet connectivity, and other forms of hardware; these devices can communicate and interact with others over the Internet, and they can be remotely monitored and controlled. In the mining industry, IoT is used as a means of achieving cost and productivity optimization, improving safety measures and developing their artificial intelligence needs.

IoT in the Mining Industry

Considering the numerous incentives it brings, many large mining companies are planning and evaluating ways to start their digital journey and digitalization in mining industry to manage day-to-day mining operations. For instance:

  • Cost optimization & improved productivity through the implementation of sensors on mining equipment and systems that monitor the equipment and its performance. Mining companies are using these large chunks of data – 'big data' to discover more cost-efficient ways of running operations and also reduce overall operational downtime.
  • Ensure the safety of people and equipment by monitoring ventilation and toxicity levels inside underground mines with the help of IoT on a real-time basis. It enables faster and more efficient evacuations or safety drills.
  • Moving from preventive to predictive maintenance
  • Improved and fast-decision making The mining industry faces emergencies almost every hour with a high degree of unpredictability. IoT helps in balancing situations and in making the right decisions in situations where several aspects will be active at the same time to shift everyday operations to algorithms.

IoT & Artificial Intelligence (AI) application in Mining industry

Another benefit of IoT in the mining industry is its role as the underlying system facilitating the use of Artificial Intelligence (AI). From exploration to processing and transportation, AI enhances the power of IoT solutions as a means of streamlining operations, reducing costs, and improving safety within the mining industry.

Using vast amounts of data inputs, such as drilling reports and geological surveys, AI and machine learning can make predictions and provide recommendations on exploration, resulting in a more efficient process with higher-yield results.

AI-powered predictive models also enable mining companies to improve their metals processing methods through more accurate and less environmentally damaging techniques. AI can be used for the automation of trucks and drills, which offers significant cost and safety benefits.

Challenges for IoT in Mining 

Although there are benefits of IoT in the mining industry, implementation of IoT in mining operations has faced many challenges in the past.

  • Limited or unreliable connectivity especially in underground mine sites
  • Remote locations may struggle to pick up 3G/4G signals
  • Declining ore grade has increased the requirements to dig deeper in many mines, which may increase hindrances in the rollout of IoT systems

Mining companies have overcome the challenge of connectivity by implementing more reliable connectivity methods and data-processing strategies to collect, transfer and present mission critical data for analysis. Satellite communications can play a critical role in transferring data back to control centers to provide a complete picture of mission critical metrics. Mining companies worked with trusted IoT satellite connectivity specialists such as ‘Inmarsat’ and their partner eco-systems to ensure they extracted and analyzed their data effectively.

 

Cybersecurity will be another major challenge for IoT-powered mines over the coming years

 As mining operations become more connected, they will also become more vulnerable to hacking, which will require additional investment into security systems.

 

Following a data breach at Goldcorp in 2016, that disproved the previous industry mentality that miners are not typically targets, 10 mining companies established the Mining and Metals Information Sharing and Analysis Centre (MM-ISAC) to share cyber threats among peers in April 2017.

In March 2019, one of the largest aluminum producers in the world, Norsk Hydro, suffered an extensive cyber-attack, which led to the company isolating all plants and operations as well as switching to manual operations and procedures. Several of its plants suffered temporary production stoppages as a result. Mining companies have realized the importance of digital security and are investing in new security technologies.

Digitalization of Mining Industry - Road Ahead

Many mining companies have realized the benefits of digitalization in their mines and have taken steps to implement them. There are four themes that are expected to be central to the digitalization of the mining industry over the next decade are listed below:

8782971674?profile=RESIZE_710x

8782971687?profile=RESIZE_710x

The above graph demonstrates the complexity of each digital technology and its implementation period for the widespread adoption of that technology. There are various factors, such as the complexity and scalability of the technologies involved in the adoption rate for specific technologies and for the overall digital transformation of the mining industry.

The world can expect to witness prominent developments from the mining industry to make it more sustainable. There are some unfavorable impacts of mining on communities, ecosystems, and other surroundings as well. With the intention to minimize them, the power of data is being harnessed through different IoT statements. Overall, IoT helps the mining industry shift towards resource extraction, keeping in mind a particular time frame and footprint that is essential.

Originally posted here.

Read more…

by Stephanie Overby

What's next for edge computing, and how should it shape your strategy? Experts weigh in on edge trends and talk workloads, cloud partnerships, security, and related issues


All year, industry analysts have been predicting that that edge computing – and complimentary 5G network offerings ­­– will see significant growth, as major cloud vendors are deploying more edge servers in local markets and telecom providers pushing ahead with 5G deployments.

The global pandemic has not significantly altered these predictions. In fact, according to IDC’s worldwide IT predictions for 2021, COVID-19’s impact on workforce and operational practices will be the dominant accelerator for 80 percent of edge-driven investments and business model change across most industries over the next few years.

First, what exactly do we mean by edge? Here’s how Rosa Guntrip, senior principal marketing manager, cloud platforms at Red Hat, defines it: “Edge computing refers to the concept of bringing computing services closer to service consumers or data sources. Fueled by emerging use cases like IoT, AR/VR, robotics, machine learning, and telco network functions that require service provisioning closer to users, edge computing helps solve the key challenges of bandwidth, latency, resiliency, and data sovereignty. It complements the hybrid computing model where centralized computing can be used for compute-intensive workloads while edge computing helps address the requirements of workloads that require processing in near real time.”

Moving data infrastructure, applications, and data resources to the edge can enable faster response to business needs, increased flexibility, greater business scaling, and more effective long-term resilience.

“Edge computing is more important than ever and is becoming a primary consideration for organizations defining new cloud-based products or services that exploit local processing, storage, and security capabilities at the edge of the network through the billions of smart objects known as edge devices,” says Craig Wright, managing director with business transformation and outsourcing advisory firm Pace Harmon.

“In 2021 this will be an increasing consideration as autonomous vehicles become more common, as new post-COVID-19 ways of working require more distributed compute and data processing power without incurring debilitating latency, and as 5G adoption stimulates a whole new generation of augmented reality, real-time application solutions, and gaming experiences on mobile devices,” Wright adds.

8 key edge computing trends in 2021


Noting the steady maturation of edge computing capabilities, Forrester analysts said, “It’s time to step up investment in edge computing,” in their recent Predictions 2020: Edge Computing report. As edge computing emerges as ever more important to business strategy and operations, here are eight trends IT leaders will want to keep an eye on in the year ahead.

1. Edge meets more AI/ML


Until recently, pre-processing of data via near-edge technologies or gateways had its share of challenges due to the increased complexity of data solutions, especially in use cases with a high volume of events or limited connectivity, explains David Williams, managing principal of advisory at digital business consultancy AHEAD. “Now, AI/ML-optimized hardware, container-packaged analytics applications, frameworks such as TensorFlow Lite and tinyML, and open standards such as the Open Neural Network Exchange (ONNX) are encouraging machine learning interoperability and making on-device machine learning and data analytics at the edge a reality.” 

Machine learning at the edge will enable faster decision-making. “Moreover, the amalgamation of edge and AI will further drive real-time personalization,” predicts Mukesh Ranjan, practice director with management consultancy and research firm Everest Group.

“But without proper thresholds in place, anomalies can slowly become standards,” notes Greg Jones, CTO of IoT solutions provider Kajeet. “Advanced policy controls will enable greater confidence in the actions made as a result of the data collected and interpreted from the edge.” 

 

2. Cloud and edge providers explore partnerships


IDC predicts a quarter of organizations will improve business agility by integrating edge data with applications built on cloud platforms by 2024. That will require partnerships across cloud and communications service providers, with some pairing up already beginning between wireless carriers and the major public cloud providers.

According to IDC research, the systems that organizations can leverage to enable real-time analytics are already starting to expand beyond traditional data centers and deployment locations. Devices and computing platforms closer to end customers and/or co-located with real-world assets will become an increasingly critical component of this IT portfolio. This edge computing strategy will be part of a larger computing fabric that also includes public cloud services and on-premises locations.

In this scenario, edge provides immediacy and cloud supports big data computing.

 

3. Edge management takes center stage


“As edge computing becomes as ubiquitous as cloud computing, there will be increased demand for scalability and centralized management,” says Wright of Pace Harmon. IT leaders deploying applications at scale will need to invest in tools to “harness step change in their capabilities so that edge computing solutions and data can be custom-developed right from the processor level and deployed consistently and easily just like any other mainstream compute or storage platform,” Wright says.

The traditional approach to data center or cloud monitoring won’t work at the edge, notes Williams of AHEAD. “Because of the rather volatile nature of edge technologies, organizations should shift from monitoring the health of devices or the applications they run to instead monitor the digital experience of their users,” Williams says. “This user-centric approach to monitoring takes into consideration all of the components that can impact user or customer experience while avoiding the blind spots that often lie between infrastructure and the user.”

As Stu Miniman, director of market insights on the Red Hat cloud platforms team, recently noted, “If there is any remaining argument that hybrid or multi-cloud is a reality, the growth of edge solidifies this truth: When we think about where data and applications live, they will be in many places.”

“The discussion of edge is very different if you are talking to a telco company, one of the public cloud providers, or a typical enterprise,” Miniman adds. “When it comes to Kubernetes and the cloud-native ecosystem, there are many technology-driven solutions competing for mindshare and customer interest. While telecom giants are already extending their NFV solutions into the edge discussion, there are many options for enterprises. Edge becomes part of the overall distributed nature of hybrid environments, so users should work closely with their vendors to make sure the edge does not become an island of technology with a specialized skill set.“

 

4. IT and operational technology begin to converge


Resiliency is perhaps the business term of the year, thanks to a pandemic that revealed most organizations’ weaknesses in this area. IoT-enabled devices (and other connected equipment) drive the adoption of edge solutions where infrastructure and applications are being placed within operations facilities. This approach will be “critical for real-time inference using AI models and digital twins, which can detect changes in operating conditions and automate remediation,” IDC’s research says.

IDC predicts that the number of new operational processes deployed on edge infrastructure will grow from less than 20 percent today to more than 90 percent in 2024 as IT and operational technology converge. Organizations will begin to prioritize not just extracting insight from their new sources of data, but integrating that intelligence into processes and workflows using edge capabilities.

Mobile edge computing (MEC) will be a key enabler of supply chain resilience in 2021, according to Pace Harmon’s Wright. “Through MEC, the ecosystem of supply chain enablers has the ability to deploy artificial intelligence and machine learning to access near real-time insights into consumption data and predictive analytics as well as visibility into the most granular elements of highly complex demand and supply chains,” Wright says. “For organizations to compete and prosper, IT leaders will need to deliver MEC-based solutions that enable an end-to-end view across the supply chain available 24/7 – from the point of manufacture or service  throughout its distribution.”

 

5. Edge eases connected ecosystem adoption


Edge not only enables and enhances the use of IoT, but it also makes it easier for organizations to participate in the connected ecosystem with minimized network latency and bandwidth issues, says Manali Bhaumik, lead analyst at technology research and advisory firm ISG. “Enterprises can leverage edge computing’s scalability to quickly expand to other profitable businesses without incurring huge infrastructure costs,” Bhaumik says. “Enterprises can now move into profitable and fast-streaming markets with the power of edge and easy data processing.”

 

6. COVID-19 drives innovation at the edge


“There’s nothing like a pandemic to take the hype out of technology effectiveness,” says Jason Mann, vice president of IoT at SAS. Take IoT technologies such as computer vision enabled by edge computing: “From social distancing to thermal imaging, safety device assurance and operational changes such as daily cleaning and sanitation activities, computer vision is an essential technology to accelerate solutions that turn raw IoT data (from video/cameras) into actionable insights,” Mann says. Retailers, for example, can use computer vision solutions to identify when people are violating the store’s social distance policy.

 

7. Private 5G adoption increases


“Use cases such as factory floor automation, augmented and virtual reality within field service management, and autonomous vehicles will drive the adoption of private 5G networks,” says Ranjan of Everest Group. Expect more maturity in this area in the year ahead, Ranjan says.

 

8. Edge improves data security


“Data efficiency is improved at the edge compared with the cloud, reducing internet and data costs,” says ISG’s Bhaumik. “The additional layer of security at the edge enhances the user experience.” Edge computing is also not dependent on a single point of application or storage, Bhaumik says. “Rather, it distributes processes across a vast range of devices.”

As organizations adopt DevSecOps and take a “design for security” approach, edge is becoming a major consideration for the CSO to enable secure cloud-based solutions, says Pace Harmon’s Wright. “This is particularly important where cloud architectures alone may not deliver enough resiliency or inherent security to assure the continuity of services required by autonomous solutions, by virtual or augmented reality experiences, or big data transaction processing,” Wright says. “However, IT leaders should be aware of the rate of change and relative lack of maturity of edge management and monitoring systems; consequently, an edge-based security component or solution for today will likely need to be revisited in 18 to 24 months’ time.”

Originally posted here.

Read more…

By Natallia Babrovich

My experience shows that most of the visits to doctors are likely to become virtual in the future. Let’s see how IoT solutions make the healthcare environment more convenient for patients and medical staff.

What are IoT and IoMT?

My colleague Alex Grizhnevich, IoT consultant at ScienceSoft, defines Internet of Things as a network of physical devices with sensors and actuators, software, and network connectivity that enable devices to gather and transmit data and fulfill users' tasks. Today, IoT becomes a key component of the digital transformation of healthcare, so we can distinguish a separate group of initiatives, the so-called IoHT (Internet of Health Things) or IoMT (Internet of Medical Things).

Popular IoMT Use Cases

IoT-based patient care

Medication intake tracking

IoT-based medication tracking allows doctors to monitor the impact of a prescribed medication’s dosage on a patient’s condition. In their turn, patients can control medication intake, e.g., by using in-app reminders and note in the app how their symptoms change for their doctor’s further analysis. The patient app can be connected to smart devices, (e.g., a smart pill bottle) for easier management of multiple medications.

Remote health monitoring

Among examples of employing IoT in healthcare, this use case is especially viable for chronic disease management. Patients can use connected medical devices or body-worn biosensors to allow doctors or nurses to check their vitals (blood pressure, glucose level, heart rate, etc.) via doctor/nurse-facing apps. Health professionals can monitor this data 24/7 and study app-generated reports to get insights into health trends. Patients who show signs of deteriorating health are scheduled for in-person visits.

IoT- and RFID-based medical asset monitoring

Medical inventory and equipment tracking

All medical tools and durable assets (beds, medical equipment) are equipped with RFID (radio frequency identification) tags. Fixed RFID readers (e.g., on the walls) collect the info about the location of assets. Medical staff can view it using a mobile or web application with a map.

Drug tracking

RFID-enabled drug tracking helps pharmacies and hospitals verify the authenticity of medication packages and timely spot medication shortages.

Smart hospital space

Cloud-connected ward sensors (e.g., a light switch, door and window contacts) and ambient sensors (e.g., hydrometers, noise detectors) allow patients to control their environment for a comfortable hospital stay.

Advantages of using IoT technology in healthcare

Patient-centric care

Medical IoT helps turn patients into active participants of the treatment process, thus improving care outcomes. Besides, IoMT helps increase patient satisfaction with care delivery, from communication with medical staff to physical comfort (smart lighting, climate control, etc.).

Reduced care-related costs

Non-critical patients can stay at home and use cloud-connected medical IoT devices, which gather, track and send health data to the medical facility. And with the help of telehealth technology, patients can schedule e-visits with nurses and doctors without traveling to the hospital.

Reduced readmissions

Patient apps connected to biosensors help ensure compliance with a discharge plan, enable prompt detection of health state deviations, and provide an opportunity to timely contact a health professional remotely.

Challenges of IoMT and how to address them

Potential health data security breaches

The connected nature of IoT brings about information security challenges for healthcare providers and patients.

Tip from ScienceSoft

We recommend implementing HIPAA-compliant IoMT solutions and conduct vulnerability assessment and penetration testing regularly to ensure the highest level of protection.

Integration difficulties

Every medical facility has its unique set of applications to be integrated with an IoMT solution (e.g., EHR, EMR). Some of these applications may be heavily customized or outdated.

Tip from ScienceSoft

Develop the integrations strategy from the start of your IoMT project, including the scope and the nature of custom integrations.

Enhance care delivery with IoMT

According to my estimates, the use of IoT technology in healthcare will continue to rise during the next decade, driven by the impact of the COVID situation and the growing demand for remote care. If you need help with creating and implementing a fitting IoMT solution, you’re welcome to turn to ScienceSoft’s healthcare IT team.

Originally posted here.

Read more…

IoT Sustainability, Data At The Edge.

Recently I've written quite a bit about IOT, and one thing you may have picked up on is that the Internet of Things is made up of a lot of very large numbers.

For starters, the number of connected things is measured in the tens of billions, nearly 100's of billions. Then, behind that very large number is an even bigger number, the amount of data these billions of devices is predicted to generate.

As FutureIoT pointed out, IDC forecasted that the amount of data generated by IoT devices by 2025 is expected to be in excess of 79.4 zettabytes (ZB).

How much is Zettabyte!?

A zettabyte is a very large number indeed, but how big? How can you get your head around it? Does this help...?

A zettabyte is 1,000,000,000,000,000,000,000 bytes. Hmm, that's still not very easy to visualise.

So let's think of it in terms of London busses. Let's image a byte is represented as a human on a bus, a London bus can take 80 people, so you'd need 993 quintillion busses to accommodate 79.4 zettahumans.

I tried to calculate how long 993 quintillion busses would be. Relating it to the distance to the moon, Mars or the Sun wasn't doing it justice, the only comparable scale is the size of the Milky Way. Even with that, our 79.4 zettahumans lined up in London busses, would stretch across the entire Milky Way ... and a fair bit further!

Sustainability Of Cloud Storage For 993 Quintillion Busses Of Data

Everything we do has an impact on the planet. Just by reading this article, you're generating 0.2 grams of Carbon Dioxide (CO2) emissions per second ... so I'll try to keep this short.

Using data from the Stanford Magazine that suggests every 100 gigabytes of data stored in the Cloud could generate 0.2 tons of CO2 per year. Storing 79.4 zettabytes of data in the Cloud could be responsible for the production of 158.8 billion tons of greenhouse gases.

8598308493?profile=RESIZE_710x

 

Putting that number into context, using USA Today numbers, the total emissions for China, USA, India, Russia, Japan and Germany accounted for a little over 21 billion tons in 2019.

So if we just go ahead and let all the IoT devices stream data to the Cloud, those billions of little gadgets would indirectly generate more than seven times the air pollution than the six most industrial countries, combined.

Save The Planet, Store Data At The Edge

As mentioned in a previous article, not all data generated by IoT devices needs to be stored in the Cloud.

Speaking with an expert in data storage, ObjectBox, they say their users on average cut their Cloud data storage by 60%. So how does that work, then? 

First, what does The Edge mean?

The term "Edge" refers to the edge of the network, in other words the last piece of equipment or thing connected to the network closest to the point of usage.

Let me illustrate in rather over-simplified diagram.

8598328665?profile=RESIZE_710x

 

How Can Edge Data Storage Improve Sustainability?

In an article about computer vision and AI on the edge, I talked about how vast amounts of network data could be saved if the cameras themselves could detect what an important event was, and to just send that event over the network, not the entire video stream.

In that example, only the key events and meta data, like the identification marks of a vehicle crossing a stop light, needed to be transmitted across the network. However, it is important to keep the raw content at the edge, so it can be used for post processing, for further learning of the AI or even to be retrieved at a later date, e.g. by law-enforcement.

Another example could be sensors used to detect gas leaks, seismic activity, fires or broken glass. These sensors are capturing volumes of data each second, but they only want to alert someone when something happens - detection of abnormal gas levels, a tremor, fire or smashed window.

Those alerts are the primary purpose of those devices, but the data in between those events can also hold significant value. In this instance, keeping it locally at the edge, but having it as and when needed is an ideal way to reduce network traffic, reduce Cloud storage and save the planet (well, at least a little bit).

Accessible Data At The Edge

Keeping your data at the edge is a great way to save costs and increase performance, but you still want to be able to get access to it, when you need it.

ObjectBox have created not just one of the most efficient ways to store data at the edge, but they've also built a sophisticated and powerful method to synchronise data between edge devices, the Cloud and other edge devices.

Synchronise Data At The Edge - Fog Computing.

Fog Computing (which is computing that happens between the Cloud and the Edge) requires data to be exchanged with devices connected to the edge, but without going all the way to/from the servers in the Cloud. 

In the article on making smarter, safer cities, I talked about how by having AI-equipped cameras share data between themselves they could become smarter, more efficient. 

A solution like that could be using ObjectBox's synchronisation capabilities to efficiently discover and collect relevant video footage from various cameras to help either identify objects or even train the artificial intelligence algorithms running on the AI-equipped cameras at the edge.

Storing Data At The Edge Can Save A Bus Load CO2

Edge computing has a lot of benefits to offer, in this article I've just looked at what could often be overlooked - the cost of transferring data. I've also not really delved into the broader benefits of ObjectBox's technology, for example, from their open source benchmarks, ObjectBox seems to offer a ten times performance benefit compared to other solutions out there, and is being used by more than 300,000 developers.  

The team behind ObjectBox also built technologies currently used by internet heavy-weights like Twitter, Viber and Snapchat, so they seem to be doing something right, and if they can really cut down network traffic by 60%, they could be one of sustainable technology companies to watch.  

Originally posted here.

Read more…

The possibilities of what you can do with digital twin technology are only as limited as your imagination

Today, forward-thinking companies across industries are implementing digital twin technology in increasingly fascinating and ground-breaking ways. With Internet of Things (IoT) technology improving every day and more and more compute power readily available to organizations of all sizes, the possibilities of what you can do with digital twin technology are only as limited as your imagination.

What Is a Digital Twin?

A digital twin is a virtual representation of a physical asset that is practically indistinguishable from its physical counterpart. It is made possible thanks to IoT sensors that gather data from the physical world and send it to be virtually reconstructed. This data includes design and engineering details that describe the asset’s geometry, materials, components, and behavior or performance.

When combined with analytics, digital twin data can unlock hidden value for an organization and provide insights about how to improve operations, increase efficiency or discover and resolve problems before the real-world asset is affected.

These 4 Steps Are Critical for Digital Twin Success:

Involve the Entire Product Value Chain

It’s critical to involve stakeholders across the product value chain in your design and implementation. Each department faces diverse business challenges in their day-to-day operations, and a digital twin provides ready solutions to problems such as the inability to coordinate across end-to-end supply chain processes, minimal or no cross-functional collaboration, the inability to make data-driven decisions, or clouded visibility across the supply chain. Decision-makers at each level of the value chain have extensive knowledge on critical and practical challenges. Including their inputs will ensure a better and more efficient design of the digital twin and ensure more valuable and relevant insights.

Establish Well-Documented Practices

Standardized and well-documented design practices help organizations communicate ideas across departments, or across the globe, and make it easier for multiple users of the digital twin to build or alter the model without destroying existing components or repeating work. Best-in-class modelling practices increase transparency while simplifying and streamlining collaborative work.

Include Data From Multiple Sources

Data from multiple sources—both internal and external—is an essential part of creating realistic and helpful simulations. 3D modeling and geometry is sufficient to show how parts fit together and how a product works, but more input is required to model how various faults or errors might occur somewhere in the product’s lifecycle. Because many errors and problems can be nearly impossible to accurately predict by humans alone, a digital twin needs a vast amount of data and a robust analytics program to be able to run algorithms to make accurate forecasts and prevent downtime.

Ensure Long Access Lifecycles 

Digital twins implemented using proprietary design software have a risk of locking owners into a single vendor, which ties the long-term viability of the digital twin to the longevity of the supplier’s product. This risk is especially significant for assets with long lifecycles such as buildings, industrial machinery, airplanes, etc., since the lifecycles of these assets are usually much longer than software lifecycles. This proprietary dependency only becomes riskier and less sustainable over time. To overcome these risks, IT architects and digital twin owners need to carefully set terms with software vendors to ensure data compatibility is maintained and vendor lock-in can be avoided.

Common Pitfalls to Digital Twin Implementation

Digital twin implementation requires an extraordinary investment of time, capital, and engineering might, and as with any project of this scale, there are several common pitfalls to implementation success.

Pitfall 1: Using the Same Platform for Different Applications

Although it’s tempting to try and repurpose a digital twin platform, doing so can lead to incorrect data at best and catastrophic mistakes at worst. Each digital twin is completely unique to a part or machine, therefore assets with unique operating conditions and configurations cannot share digital twin platforms.

Pitfall 2: Going Too Big, Too Fast

In the long run, a digital twin replica of your entire production line or building is possible and could provide incredible insights, but it is a mistake to try and deploy digital twins for all of your pieces of equipment or programs all at once. Not only is doing too much, too fast costly, but it might cause you to rush and miss critical data and configurations along the way. Rather than rushing to do it all at once, perfect a few critical pieces of machinery first and work your way up from there.

Pitfall 3: Inability to Source Quality Data

Data collected in the field is subject to quality errors due to human mistakes or duplicate entries. The insights your digital twin provides you are only as valuable as the data it runs off of. Therefore, it is imperative to standardize data collection practices across your organization and to regularly cleanse your data to remove duplicate and erroneous entries.

Pitfall 4: Lack of Device Communication Standards

If your IoT devices do not speak a common language, miscommunications can muddy your processes and compromise your digital twin initiative. Build an IT framework that allows your IoT devices to communicate with one another seamlessly to ensure success.

Pitfall 5: Failing to Get User Buy-In

As mentioned earlier in this eBook, a successful digital twin strategy includes users from across your product value chain. It is critical that your users understand and appreciate the value your digital twin brings to them individually and to your organization as a whole. Lack of buy-in due to skepticism, lack of confidence, or resistance can lead to a lack of user participation, which can undermine all of your efforts.

The Challenge of Measuring Digital Twin Success

Each digital twin is unique and completely separate in its function and end-goal from others on the market, which can make measuring success challenging. Depending on the level of the twin implemented, businesses need to create KPIs for each individual digital twin as it relates to larger organizational goals.

The configuration of digital twins is determined by the type of input data, number of data sources and the defined metrics. The configuration determines the value an organization can extract from the digital twin. Therefore, a twin with a higher configuration can yield better predictions than can a twin with a lower configuration. The reality is that success can be relative, and it is impossible to compare the effectiveness of two different digital twins side by side.

Conclusion

It’s possible — probable even — that in the future all people, enterprises, and even cities will have a digital twin. With the enormous growth predicted in the digital twin market in the coming years, it’s evident that the technology is here to stay. The possible applications of digital twins are truly limitless, and as IoT technology becomes more advanced and widely accessible, we’re likely to see many more innovative and disruptive use cases.

However, a technology with this much potential must be carefully and thoughtfully implemented in order to ensure its business value and long-term viability. Before embracing a digital twin, an organization must first audit its maturity, standardize processes, and prepare its culture and staff for this radical change in operations. Is your organization ready?

Originally posted here.

Read more…

Five IoT retail trends for 2021

In 2020 we saw retailers hard hit by the economic effects of the COVID-19 pandemic with dozens of retailers—Neiman Marcus, J.C. Penney, and Brooks Brothers to name a few— declaring bankruptcy. During the unprecedented chaos of lockdowns and social distancing, consumers accelerated their shift to online shopping. Retailers like Target and Best Buy saw online sales double while Amazon’s e–commerce sales grew 39 percent.1 Retailers navigated supply chain disruptions due to COVID-19, climate change events, trade tensions, and cybersecurity events.  

After the last twelve tumultuous months, what will 2021 bring for the retail industry? I spoke with Microsoft Azure IoT partners to understand how they are planning for 2021 and compiled insights about five retail trends. One theme we’re seeing is a focus on efficiency. Retailers will look to pre-configured digital platforms that leverage cloud-based technologies including the Internet of Things (IoT), artificial intelligence (AI), and edge computing to meet their business goals. 

a group of people standing in front of a mirror posing for the camera

Empowering frontline workers with real-time data

In 2021, retailers will increase efficiency by empowering frontline workers with real-time data. Retail employees will be able to respond more quickly to customers and expand their roles to manage curbside pickups, returns, and frictionless kiosks.  

In H&M Mitte Garten in Berlin, H&M empowered employee ambassadors with fashionable bracelets connected to the Azure cloud. Ambassadors were able to receive real-time requests via their bracelets when customers needed help in fitting rooms or at a cash desk. The ambassadors also received visual merchandising instructions and promotional updates. 

Through the app built on Microsoft partner Turnpike’s wearable SaaS platform leveraging Azure IoT Hub, these frontline workers could also communicate with their peers or their management team during or after store hours. With the real-time data from the connected bracelets, H&M ambassadors were empowered to delivered best-in-class service.   

Carl Norberg, Founder, Turnpike explained, “We realized that by connecting store IoT sensors, POS systems, and AI cameras, store staff can be empowered to interact at the right place at the right time.” 

Leveraging live stream video to innovate omnichannel

Livestreaming has been exploding in China as influencers sell through their social media channels. Forbes recently projected that nearly 40 percent of China’s population will have viewed livestreams during 2020.2 Retailers in the West are starting to leverage live stream technology to create innovative omnichannel solutions.  

For example, Kjell & Company, one of Scandinavia’s leading consumer electronics retailers, is using a solution from Bambuser and Ombori called Omni-queue built on top of the Ombori Grid. Omni-queue enables store employees to handle a seamless combination of physical and online visitors within the same queue using one-to-one live stream video for online visitors.  

Kjell & Company ensures e-commerce customers receive the same level of technical expertise and personalized service they would receive in one of their physical locations. Omni-queue also enables its store employees to be utilized highly efficiently with advanced routing and knowledge matching. 

Maryam Ghahremani, CEO of Bambuser explains, “Live video shopping is the future, and we are so excited to see how Kjell & Company has found a use for our one-to-one solution.” Martin Knutson, CTO of Kjell & Company added “With physical store locations heavily affected due to the pandemic, offering a new and innovative way for customers to ask questions—especially about electronics—will be key to Kjell’s continued success in moving customers online.” 

20191026_JagerandKokemor_Attabotics_RobotOnWhite_15519.FIN (1)

Augmenting omnichannel with dark stores and micro-fulfillment centers  

In 2021, retailers will continue experimenting with dark stores—traditional retail stores that have been converted to local fulfillment centers—and micro-fulfillment centers. These supply chain innovations will increase efficiency by bringing products closer to customers. 

Microsoft partner Attabotics, a 3D robotics supply chain company, works with an American luxury department store retailer to reduce costs and delivery time using a micro-fulfillment center. Attabotics’ unique use of both horizontal and vertical space reduces warehouse needs by 85 percent. Attabotics’ structure and robotic shuttles leveraged Microsoft Azure Edge Zones, Azure IoT Central, and Azure Sphere.

The luxury retailer leverages the micro-fulfillment center to package and ship multiple beauty products together. As a result, customers experience faster delivery times. The retailer also reduces costs related to packaging, delivery, and warehouse space.  

Scott Gravelle, Founder, CEO, and CTO of Attabotics explained, “Commerce is at a crossroads, and for retailers and brands to thrive, they need to adapt and take advantage of new technologies to effectively meet consumers’ growing demands. Supply chains have not traditionally been set up for e-commerce. We will see supply chain innovations in automation and modulation take off in 2021 as they bring a wider variety of products closer to the consumer and streamline the picking and shipping to support e-commerce.” 

a group of people wearing costumes

Helping keep warehouse workers safe

What will this look like? Cognizant’s recent work with an athletic apparel retailer offers a blueprint. During the peak holiday season, the retailer needed to protect its expanding warehouse workforce while minimizing absenteeism. To implement physical distancing and other safety measures, the retailer  leveraged Cognizant’s Safe Buildings solution built with Azure IoT Edge and IoT Hub services.   

With this solution, employees maintain physical distancing using smart wristbands. When two smart wristbands were within a pre-defined distance of each other for more than a pre-defined time, the worker’s bands buzzed to reinforce safe behaviors. The results drove nearly 98 percent distancing compliance in the initial pilot. As the retailer plans to scale-up its workforce at other locations, implementing additional safety modules are being considered:   

  • Touchless temperature checks.  
  • Occupancy sensors communicate capacity information to the management team for compliance records.  
  • Air quality sensors provide environmental data so the facility team could help ensure optimal conditions for workers’ health.  

“For organizations to thrive during and post-pandemic, enterprise-grade workplace safety cannot be compromised. Real-time visibility of threats is providing essential businesses an edge in minimizing risks proactively while building employee trust and empowering productivity in a safer workplace,” Rajiv Mukherjee, Cognizant’s IoT Practice Director for Retail and Consumer Goods.  

Optimizing inventory management with real-time edge data

In 2021, retailers will ramp up the adoption of intelligent edge solutions to optimize inventory management with real-time data. Most retailers have complex inventory management systems. However, no matter how good the systems are, there can still be data gaps due to grocery pick-up services, theft, and sweethearting. The key to addressing these gaps is to combine real-time data from applications running on edge cameras and other edge devices in the physical store with backend enterprise resource planning (ERP) data.  

Seattle Goodwill worked with Avanade to implement a new Microsoft-based Dynamics platform across its 24 stores. The new system provided almost real-time visibility into the movement of goods from the warehouses to the stores. 

Rasmus Hyltegård, Director of Advanced Analytics at Avanade explained, “To ensure inventory moves quickly off the shelves, retailers can combine real-time inventory insights from Avanade’s smart inventory accelerator with other solutions across the customer journey to meet customer expectations.” Hyltegård continued, “Customers can check online to find the products they want, find the stores with product in stock, and gain insight into which stores have the shortest queues, which is important during the pandemic and beyond. Once a customer is in the store, digital signage allows for endless aisle support.” 

a person standing in front of a building

Summary

The new year 2021 holds a wealth of opportunities for retailers. We foresee retail leaders reimagining their businesses by investing in platforms that integrate IoT, AI, and edge computing technologies. Retailers will focus on increasing efficiencies to reduce costs. Modular platforms supported by an ecosystem of strong partner solutions will empower frontline workers with data, augment omnichannel fulfillment with dark stores and micro-fulfillment, leverage livestream video to enhance omnichannel, prioritize warehouse worker safety, and optimize inventory management with real-time data. 

Originally posted here.

Read more…

Skoltech researchers and their colleagues from Russia and Germany have designed an on-chip printed "electronic nose" that serves as a proof of concept for this kind of low-cost and sensitive devices to be used in portable electronics and healthcare. The paper was published in the journal ACS Applied Materials Interfaces.

The rapidly growing fields of Internet of Things (IoT) and advanced medical diagnostics require small, cost-effective, low-powered yet reasonably sensitive and selective gas-analytical systems like so-called "electronic noses." These systems can be used for noninvasive diagnostics of human breath, such as diagnosing chronic obstructive pulmonary disease (COPD) with a compact sensor system also designed at Skoltech. Some of these sensors work a lot like actual noses—say, yours—by using an array of sensors to better detect the complex signal of a gaseous compound.

One approach to creating these sensors is by additive manufacturing technologies, which have achieved enough power and precision to be able to produce the most intricate devices. Skoltech senior research scientist Fedor Fedorov, Professor Albert Nasibulin, research scientist Dmitry Rupasov and their collaborators created a multisensor "electronic nose" by printing nanocrystalline films of eight different metal oxides onto a multielectrode chip (they were manganese, cerium, zirconium, zinc, chromium, cobalt, tin, and titanium). The Skoltech team came up with the idea for this project.

"For this work, we used microplotter printing and true solution inks. There are a few things that make it valuable. First, the resolution of the printing is close to the distance between electrodes on the chip which is optimized for more convenient measurements. We show these technologies are compatible. Second, we managed to use several different oxides which enables more orthogonal signal from the chip resulting in improved selectivity. We can also speculate that this technology is reproducible and easy to be implemented in industry to obtain chips with similar characteristics, and that is really important for the 'e-nose' industry," Fedorov explained.

In subsequent experiments, the device was able to sniff out the difference between different alcohol vapors (methanol, ethanol, isopropanol, and n-butanol), which are chemically very similar and hard to tell apart, at low concentrations in the air. Since methanol is extremely toxic, detecting it in beverages and differentiating between methanol and ethanol can even save lives. To process the data, the team used linear discriminant analysis (LDA), a pattern recognition algorithm, but other machine learning algorithms could also be used for this task.

So far the device operates at rather high temperatures of 200-400 degrees Celsius, but the researchers believe that new quasi-2-D materials such as MXenes, graphene and so on could be used to increase the sensitivity of the array and ultimately allow it to operate at room temperature. The team will continue working in this direction, optimizing the materials used to lower power consumption.

Originally posted here.

Read more…

The benefits of IoT data are widely touted. Enhanced operational visibility, reduced costs, improved efficiencies and increased productivity have driven organizations to take major strides towards digital transformation. With countless promising business opportunities, it’s no surprise that IoT is expanding rapidly and relentlessly. It is estimated that there will be 75.4 billion IoT devices by 2025. As IoT grows, so do the volumes of IoT data that need to be collected, analyzed and stored. Unfortunately, significant barriers exist that can limit or block access to this data altogether.

Successful IoT data acquisition starts and ends with reliable and scalable IoT connectivity. Selecting the right communications technology is paramount to the long-term success of your IoT project and various factors must be considered from the beginning to build a functional wireless infrastructure that can support and manage the influx of IoT data today and in the future.

Here are five IoT architecture must-haves for unlocking IoT data at scale.

1. Network Ownership

For many businesses, IoT data is one of their greatest assets, if not the most valuable. This intensifies the demand to protect the flow of data at all costs. With maximum data authority and architecture control, the adoption of privately managed networks is becoming prevalent across industrial verticals.

Beyond the undeniable benefits of data security and privacy, private networks give users more control over their deployment with the flexibility to tailor their coverage to the specific needs of their campus style network. On a public network, users risk not having the reliable connectivity needed for indoor, underground and remote critical IoT applications. And since this network is privately owned and operated, users also avoid the costly monthly access, data plans and subscription costs imposed by public operators, lowering the overall total-cost-of-ownership. Private networks also provide full control over network availability and uptime to ensure users have reliable access to their data at all times.

2. Minimal Infrastructure Requirements

Since the number of end devices is often fixed to your IoT use cases, choosing a wireless technology that requires minimal supporting infrastructure like base stations and repeaters, as well as configuration and optimization is crucial to cost-effectively scale your IoT network.

Wireless solutions with long range and excellent penetration capability, such as next-gen low-power wide area networks, require fewer base stations to cover a vast, structurally dense industrial or commercial campuses. Likewise, a robust radio link and large network capacity allow an individual base station to effectively support massive amounts of sensors without comprising performance to ensure a continuous flow of IoT data today and in the future.

3. Network and Device Management

As IoT initiatives move beyond proofs-of-concept, businesses need an effective and secure approach to operate, control and expand their IoT network with minimal costs and complexity.

As IoT deployments scale to hundreds or even thousands of geographically dispersed nodes, a manual approach to connecting, configuring and troubleshooting devices is inefficient and expensive. Likewise, by leaving devices completely unattended, users risk losing business-critical IoT data when it’s needed the most. A network and device management platform provides a single-pane, top-down view of all network traffic, registered nodes and their status for streamlined network monitoring and troubleshooting. Likewise, it acts as the bridge between the edge network and users’ downstream data servers and enterprise applications so users can streamline management of their entire IoT project from device to dashboard.

4. Legacy System Integration

Most traditional assets, machines, and facilities were not designed for IoT connectivity, creating huge data silos. This leaves companies with two choices: building entirely new, greenfield plants with native IoT technologies or updating brownfield facilities for IoT connectivity. Highly integrable, plug-and-play IoT connectivity is key to streamlining the costs and complexity of an IoT deployment. Businesses need a solution that can bridge the gap between legacy OT and IT systems to unlock new layers of data that were previously inaccessible. Wireless IoT connectivity must be able to easily retrofit existing assets and equipment without complex hardware modifications and production downtime. Likewise, it must enable straightforward data transfer to the existing IT infrastructure and business applications for data management, visualization and machine learning.

5. Interoperability

Each IoT system is a mashup of diverse components and technologies. This makes interoperability a prerequisite for IoT scalability, to avoid being saddled with an obsolete system that fails to keep pace with new innovation later on. By designing an interoperable architecture from the beginning, you can avoid fragmentation and reduce the integration costs of your IoT project in the long run. 

Today, technology standards exist to foster horizontal interoperability by fueling global cross-vendor support through robust, transparent and consistent technology specifications. For example, a standard-based wireless protocol allows you to benefit from a growing portfolio of off-the-shelf hardware across industry domains. When it comes to vertical interoperability, versatile APIs and open messaging protocols act as the glue to connect the edge network with a multitude of value-deriving backend applications. Leveraging these open interfaces, you can also scale your deployment across locations and seamlessly aggregate IoT data across premises.  

IoT data is the lifeblood of business intelligence and competitive differentiation and IoT connectivity is the crux to ensuring reliable and secure access to this data. When it comes to building a future-proof wireless architecture, it’s important to consider not only existing requirements, but also those that might pop up down the road. A wireless solution that offers data ownership, minimal infrastructure requirements, built-in network management and integration and interoperability will not only ensure access to IoT data today, but provide cost-effective support for the influx of data and devices in the future.

Originally posted here.

Read more…

by Ariane Elena Fuchs

Solar power, wind energy, micro cogeneration power plants: energy from renewable sources has become indispensable, but it makes power generation and distribution far more complex. How the Internet of Things is helping make energy management sustainable.

It feels like Ground Hog Day yet again – in 2020 it happened on August 22. That was the point when the demand for raw materials exceeded the Earth’s supply and capacity to reproduce these natural resources. All reserves that are consumed from that date on cannot be regenerated in the current year. In other words, humanity is living above its means, consuming around 50 percent more energy than the Earth provides naturally.

To conserve these precious resources and reduce climate-damaging CO2 emissions, the energy we need must come from renewable sources such as wind, sun and water. This is the only way to reduce both greenhouse gases and our fossil fuel use. Fortunately, a start has now been made: In 2019, renewable energies – predominantly from wind and sun – will already cover almost 43 percent of Germany's energy requirements and the trend is rising.

DECENTRALIZING ENERGY PRODUCTION

This also means, however, that the traditional energy management model – a few power plants supplying a lot of consumers – is outdated. After all, the phasing out of large nuclear and coal-fired power plants doesn’t just have consequences for Germany’s CO2 balance. Shifting electricity production to wind, solar and smaller cogeneration plants reverses the previous pattern of energy generation and distribution from a highly centralized to an increasingly decentralized organizational structure. Instead of just a few large power plants sending electricity to the grid, there are now many smaller energy sources such as solar panels and wind turbines. This has made the management of it all – including the optimal distribution of the electricity – far more complex as a result. It’s up to the energy sector to wrangle this challenging transformation. As the country’s energy is becoming more sustainable, it’s also becoming harder to organize, since the energy generated from wind and sun cannot be planned in advance as easily as coal and nuclear power can. What’s more, there are thousands of wind turbines and solar panels making electricity and feeding it into the grid. This has made the management of the power network extremely difficult. In particular, there’s a lack of real-time information about the amount of electricity being generated.

KEY TECHNOLOGY IOT: FROM ENERGY FLOW TO DATA STREAM

This is where the Internet of Things comes into play: IoT can supply exactly this data from every power generator and send it to a central location. Once there, it can be evaluated before ideally enabling the power grid to be controlled automatically. The result is an IoT ecosystem. In order to operate wind farms more efficiently and reliably, a project team is currently developing an IoT-supported system that bundles and processes all relevant parameters and readings at a wind farm. They can then reconstruct the current operating and maintenance status of individual turbines. This information can be used to detect whether certain components are about to wear out and replace them before a turbine fails.

POTENTIAL FOR NEW BUSINESS MODELS

According to a recent Gartner study, the Internet of Things (IoT) is becoming a key technology for monitoring and orchestrating the complex energy and water ecosystem. In addition, consumers want more control over energy prices and more environmentally friendly power products. With the introduction of smart metering, data from so-called prosumers is becoming increasingly important. These energy producing consumers act like operators of the photovoltaic systems on their roofs. IoT sensors are used to collect the necessary power generation information. Although they are only used locally and for specific purposes, they provide energy companies with a lot of data. In order to be able to use the potential of this information for the expansion of renewable energy, it must be combined and evaluated intelligently. According to Gartner, IoT has the potential to change the energy value chain in four key areas: It enables new business models, optimizes asset management, automates operations and digitalizes the entire value chain from energy source to kWh.

ENERGY TRANSITION REQUIRES TECHNOLOGICAL CHANGE

Installing smaller power-generating systems will soon no longer pose the greatest challenge for operators. In the near future, coherently linking, integrating and controlling them will be the order of the day. The energy transition is therefore spurring technological change on a grand scale. For example, smart grids will only function properly and increase overall capacity when data on generation, consumption and networks is available in real-time. The Internet of Things enables the necessary fast data processing, even from the smallest consumers and prosumers on the grid. With the help of the Internet of Things, more and more household appliances can communicate with the Internet. These devices are then in turn connected to a smart meter gateway, i.e. a hub for the intelligent management of consumers, producers and storage locations at private households and commercial enterprises. To be able to use the true potential of this information, however, all the data must flow together into a common data platform, so that it can be analyzed intelligently.

FROM INDIVIDUAL APPLICATIONS TO AN ECOSYSTEM

For the transmission of data from the Internet of Things, Germany has national fixed-line and mobile networks available. New technology such as the 5G mobile standard allows data to be securely and reliably transferred to the cloud either directly via the 5G network or a 5G campus networks. Software for data analytics and AI tailored to energy firms are now available – including monitoring, analysis, forecasting and optimization tools. Any analyzed data can be accessed via web browsers and in-house data centers. Taken together, it all provides the energy sector with a comprehensive IoT ecosystem for the future.

Originally posted here.

Read more…

by Philipp Richert

New digital and IoT use cases are becoming more and more important. When it comes to the adoption of these new technologies, there are several different maturity levels, depending on the domain. Within the retail industry, and specifically food retail, we are currently seeing the emergence of a host of IoT use cases.

Two forces are driving this: a technology push, in which suppliers in the retail domain have technologies available to build retail IoT use cases within a connected store; and a market pull by their customers, who are boosting the demand for such use cases.

Retail-IoT-use-case-technology-push-and-market-pull-1136x139.png

However, we also need to ask the following questions: What are IoT use cases good for? And what are they aiming at? We currently see three different fields of application:

  • Increasing efficiency and optimizing processes
  • Increasing customer satisfaction
  • Increasing revenues with new business models

No matter what is most important for your organization or whatever your focus, it is crucial to set up a process that provides guidance for identifying the right use cases. In the following section, we share some insights on how retailers can best design this process. We collated these insights together with the team from the Food Tech Campus.

How to identify the right retail IoT use cases

When identifying the right use cases for their stores, retailers should make sure to look into all phases within the entire innovation process: from problem description and idea collation to solution concept and implementation. Within this process, it is also essential to consider the so-called innovator’s trilemma and ensure that use cases are:

  • Desirable ones that your customer really needs
  • Technically feasible
  • Profitable for your sustainable business development

Before we can actually start identifying retail IoT use cases, we need to define search fields so that we can work on one topic with greater dedication and focus. We must then open up the problem space in order to extract the most relevant problems and pain points. Starting with prioritized and selected pain points, we then open up the solution space in order to define several solution concepts. Once these have been validated, the result should be a well-defined problem statement that concisely describes one singular pain point.

In the following, we want to take a deep dive into the different phases of the process while giving concrete examples, tips and our top-rated tools. Enjoy!

Search fields

Retailers possess expertise and face challenges at various stages along their complex process chains. It helps here to focus on a specific target group in order to avoid distraction. Target groups are typically users or customers in a defined environment. A good example would be to focus your search on processes that happen inside a store location and are relevant to the customer (e.g., the food shopper).

Understand and observe problems

User research, observation and listening are keys to a well-defined problem statement that allows for further ideation. Embedding yourself in various situations and conducting interviews with all the stakeholders visiting or operating a store should be the first steps. Join employees around the store for a day or two and support them during their everyday tasks. Empathize, look for any friction and ask questions. Take your key findings into workshops and spend some time isolating specific causes. Use personas based on your user research and make use of frameworks and canvas templates in order to structure your findings. Use working titles to name the specific problem statements. One example might be: Long queueing as a major nuisance for customers.

Synthesize findings

Are your findings somehow connected? Single-purpose processes and their owners within a store environment are prone to isolated views. Creating a common problem space increases the chances of adoption of any solution later. So it is worth taking the time to map out all findings and take a look at projects in the past and their outcome. In our example, queueing is linked to staff planning, lack of communication and unpredictable customer behavior.

Prioritize problems and pain points

Ask users or stakeholders to give their view on defined problem statements and let them vote. Challenge their view and make them empathize and broaden their view towards a more holistic benefit. Once the quality of a problem statement has been assessed, evaluate the economic implications. In our example, this could mean that queueing affects most employees in the store, directly or indirectly. This problem might be solved through technology and should be further explored.

The result of a well-structured problem statement list should consist of a few new insights that might result in quick gains; one or two major known pain points, where the solution might be viable and feasible; and a list with additional topics that exist but are not too pressing at the moment.

Define opportunity areas

Map technologies and problems together. Are there any strategic goals that these problem statements might be assigned to? Have things changed in terms of technical feasibility (e.g., has the cost of a technology dropped over the past three years?). Can problems be validated within a larger setup easily or are we talking about singular use cases? All these considerations should lead towards the most attractive problem to solve. Again, in our example, this might be: Queuing is a major problem in most locations, satisfying our customers should be our main goal, existing solutions are too expensive or inflexible.

Retail-IoT-use-case-problem-solution-space-1-1136x580.png

When identifying the right use cases for their stores, retailers should make sure to look into all phases within the entire innovation process: from problem description and idea collation to solution concept and implementation.

Ideate and explore use cases

When conducting an ideation session, it is very helpful to bring in trends that are relevant to the defined problem areas so as to help boost creativity. In our example, for instance, this might be technology trends such as frictionless checkout for retail, hybrid checkout concepts, bring your own device (BYOD) and sensor approaches. It is always important to keep the following in mind: What do these trends mean for the customer journey in-store and how can they be integrated in (legacy) environments?

Define solutions concepts

In the process of further defining the solution concepts, it is essential to evaluate the market potential and to consider customer and user feedback. Depending on the solution, it might be necessary to ask the various stakeholders – from store managers to personnel to customers – in order to get a clearer picture. When talking to customers or users, it is also helpful to bring along scribbles, pictures or prototypes in order to increase immersion. The insights gathered in this way help to validate assumptions and to pilot the concept accordingly.

Set metrics and KPIs to prove success

Defining data-based metrics and KPIs is essential for a successful solution. When setting up metrics and KPIs, you need to consider two aspects:

  • Use existing data – e.g., checkout frequency – in order to demonstrate the impact of the new solution. This offers a very inexpensive way of validating the business potential of the solution early on.
  • Use new data – e.g. measure waiting time – from the solution and evaluate it on a regular basis. This helps to get a better understanding of whether you are collecting the right data and to derive measures that help to improve your solution.

Prototype for quick insights

In terms of technology, practically everything is feasible today. However, the value proposition of a use case (in terms of business and users) can remain unclear and requires testing. Instead of building a technical prototype, it can be helpful to evaluate the value proposition of the solution with humans (empathy prototyping). This could be a person triggering an alarm based on the information at hand instead of an automatic action. Insights and lessons learnt from this phase can be used alongside the technical realization (proof-of-concept) in order to tweak specific features of the solution.

Initiate a PoC for technical feasibility

When it comes to technical feasibility, a clear picture of the objectives and key results (OKRs) for the PoC is essential. This helps to set the boundaries for a lean process with respect to the installation of hardware, an efficient timeline and minimum costs. Furthermore, a well-defined test setup fosters short testing timespans that often yield all needed results.

How IoT platforms can help build retail IoT use cases

The strong trend towards digitization within the retail industry opens up new use cases for the (food) retail industry. In order to make the most of this trend and to build on IoT, it is crucial first of all to determine which use cases to start with. Every retailer has a different focus and needs for their stores.

In the course of our retail projects, we have identified some of the recurring use cases that food retailers are currently implementing. We have also learnt a lot about how they can best leverage IoT in order to build a connected store. We share these insights in our white paper “The connected retail store.”

Originally posted here.

Read more…

By Sanjay Tripathi, Lauren Luellwitz, and Kevin Egge

There are petabytes of data generated by intelligent, interconnected and autonomous systems of Industry 4.0. When combined with artificial intelligence tools that provide actionable insight, it has the potential to improve every function within a plant, i.e. operations, engineering, quality, reliability and maintenance.

The maintenance function, while crucial to the smooth functioning of a plant has, until recently not seen much innovation. Many among us have experienced the equipment downtime, process drifts, massive hits to yield, and decline in product reliability because of maintenance performed poorly or late. Yet, Enterprise Asset Management (EAM) systems – ERP systems that help maintain assets – remained as systems of record that typically generated work-orders and recorded maintenance performed. Even as production processes became mind-numbingly complex, EAM systems remained much the same.

IBM Maximo 8.0, or Maximo Application Suite, is one example of a system that combines artificial intelligent (AI), big data and cloud computing technologies with domain expertise from operating technologies (OT) to simplify maintenance and deliver production resilience.

Maximo 8.0 leverages AI to visually inspect gas pipelines, rail tracks, bridges and tunnels; AI guides technicians as they conduct complex repairs; it provides maintenance supervisors real-time visibility into the health and safety of their technicians. Domain expertise is incorporated in the form of data to train AI models. These capabilities improve the ability to avoid unscheduled downtime, improve first-time-fix rate, and reduce safety incidents.

Maintenance records residing in Maximo are combined with real-time operational data from production assets and their associated asset model to better predict when maintenance is required. In this example, asset models embody domain expertise. These models characterize how a production asset such as a power generator or catalytic converter should perform in the context of where it is installed in the process.

The Maximo application itself is encapsulated (containerized) using Red Hat’s OpenShift technology. Containerization allows the application to be easily deployed on-premises, on private clouds or hybrid clouds. This flexibility in deployment benefits IT organizations that need to continually evolve their infrastructure, which is almost every organization.

Maximo 8.0 is available as a suite that includes both core and advanced capabilities. A single software entitlement provides access to all capabilities. The entitlement provides access to the core EAM functionality of work and resource scheduling, asset management, industry-specific customizations, EHS guidelines, and mobile functionality. And it provides access to advanced functionality such as Maximo Monitor, which automatically detects anomalies in how an asset may be performing; Maximo Health, which measures equipment health; Maximo Predict, which, as the name suggests, predicts when maintenance is required; and Maximo Assist which assists technicians conduct repairs.

Originally posted here.

Read more…

by Olivier Pauzet

Over the past year, we have seen the Industrial IoT (IIoT) take an important step forward, crossing the chasm that previously separated IIoT early adopters from the majority of companies.

New solutions like Octave, Sierra Wireless’ edge-to-cloud solution for connecting industrial assets, have greatly simplified the IIoT, making it possible now for practically any company to securely extract, transmit, and act on data from bio-waste collectors, liquid fertilizer tanks, water purifiers, hot water heaters and other industrial equipment.

So, what IIoT trends will these 2020 developments lead to in 2021? I expect that they will drive greater adoption of the IIoT next year, as manufacturing, utility, healthcare, and other organizations further realize that they can help their previously silent industrial assets speak using the APIs integrated in new IoT solutions. At the same time, I expect we will start to see the development of some revolutionary IIoT applications that use 5G’s Ultra-Reliable, Low-Latency Communications (URLLC) capabilities to change the way our factories, electric grid, and healthcare systems operate.

In 2021, Industrial Equipment APIs Will Give Quiet Equipment A Voice

Cloud APIs have transformed the tech industry, and with it, our digital economy. By enabling SaaS and other cloud-based applications to easily and securely talk to each other, cloud APIs have vastly expanded the value of these applications to users. These APIs have also spawned billion-dollar companies like Stripe, Tableau, and Twilio, whose API-focused business models have transformed the online payments, data visualization, and customer service markets.

2021 will be the year industrial companies begin seeing their markets transformed by APIs, as more of these companies begin using industrial equipment APIs built into new IIoT solutions to enable their industrial assets to talk to the cloud.

Using new edge-to-cloud solutions - like Octave -with built-in Industrial equipment APIs for Modbus and other industrial communications protocols, these companies will be able to securely connect these assets to the cloud almost as easily as if this equipment was a cloud-based application.

In fact, by simply plugging a low-cost IoT gateway with these IIoT APIs into their industrial equipment, they will be able to deploy IIoT applications that allow them to remotely monitor, maintain, and control this equipment. Then, using these applications, they can lower equipment downtime, reduce maintenance costs, launch new Equipment-as-a-Service business models, and innovate faster.

Industrial companies have been trying to connect their assets to the cloud for years, but have been stymied by the complexity, time, and expense involved in doing so. In 2021, industrial equipment APIs will provide these companies with a way to simply, quickly, and cheaply connect this equipment to the cloud. By giving a voice to billions of pieces of industrial equipment, these Industrial IoT APIs will help bring about the productivity, sustainability, and other benefits Industry 4.0 has long promised.

In 2021 Manufacturing, Utility and Healthcare Will Drive Growth of the Industrial IoT

Until recently, the consumer sector, and especially the smart home market, has led the way in adopting the IoT, as the success of the Google Nest smart thermostat, the Amazon Echo smart speaker and Ring smart doorbell, and the Phillips Hue smart lights demonstrate. However, in 2021 another IIoT trend we can expect to see is the industrial sector starting to catch up to the consumer market regarding the IoT, with the manufacturing, utility, and healthcare markets leading the way.

For example, new IIoT solutions now make it possible for Original Equipment Manufacturers (OEMs) and other manufacturing companies to simply plug their equipment into the IIoT and begin acting on data from this equipment almost immediately. This has lowered the time to value for IIoT applications to the point where companies can begin reaping financial benefits greater than the total cost for their IIoT application in a few short months.

At this point, manufacturers who don’t have a plan to integrate the IIoT into their assets are, to put it bluntly, leaving money on the table – money their competitors will happily snap up with their own new connected industrial equipment offerings if they do not.

Like manufacturing companies, utilities will ramp up their use of the IIoT in 2021, as they seek to improve their operational efficiency, customer engagement, reliability, and sustainability. For example, utilities will increasingly use the IIoT to perform remote diagnostics and predictive maintenance on their grid infrastructure, reducing this equipment’s downtime while also lowering maintenance costs. In addition, a growing number of utilities will use the IIoT to collect and analyze data on their wind, solar and other renewable energy generation portfolios, allowing them to reduce greenhouse gas emissions while still balancing energy supply and demand on the grid.

Along with manufacturing and utilities, healthcare is the third market sector I expect to lead the way in adopting the IIoT in 2021. The COVID-19 pandemic has demonstrated to healthcare providers how connectivity – such as Internet-based telemedicine solutions -- can improve patient outcomes while reducing their costs. In 2021 they will increase their use of the IIoT, as they work to extend this connectivity to patient monitors, scanners and other medical devices. With the Internet of Medical Things (IoMT), healthcare providers will be better able to prepare patient treatments, remotely monitor and respond to changes to their patients’ conditions, and generate health care treatment documents.

Revolutionary Ultra-Reliable, Low-Latency 5G Applications Will Begin to Be Developed

There is a lot of buzz regarding 5G New Radio (NR) in the IIoT market. However, having been designed to co-exist with 4G LTE, most of 5G NR’s impact in this market is still evolutionary, not revolutionary. Companies are beginning to adopt 5G to wring better performance out of their existing IIoT applications, or to future-proof their connectivity strategies. But they are doing this while continuing to use LTE, as well as Low Power Wide Area (LPWA) 5G technologies, like LTE-M and NB-IoT, for now.

In 2021 however I think we will begin to see companies starting to develop revolutionary new IIoT application proof of concepts designed to take advantage of 5G NR’s Ultra-Reliable, Low-Latency Communications (URLLC) capabilities. These URLLC applications – including smart Automated Guided Vehicle (AGVs) for manufacturing, self-healing energy grids for utilities and remote surgery for health care – are simply not possible with existing wireless technologies.

Thanks to its ability to deliver ultra-high reliability and latencies as low as one millisecond, 5G NR enables companies to finally build URLLC applications – especially when 5G NR is used in conjunction with new edge computing technologies.

It will be a long time before any of these URLLC application proof-of-concepts are commercialized. But as far as 5G Wave 5+, next year is when we will first begin seeing this wave forming out at sea. And when it does eventually reach shore, it will have a revolutionary impact on our connected economy.

Originally posted here.

Read more…

By Sanjay Tripathi, Kevin Egge, and Shane Kehoe

Each Industrial Revolution has been catalyzed by the convergence of technologies from multiple domains. Industry 4.0 is no different.

Machines were first introduced into a manual manufacturing process between 1760 and 1820.  But, it was the concurrent introduction of means to power machines that led to the First Industrial Revolution. An example is the first commercially viable Textile Power Loom which was introduced by Edmund Cartwright in England. It used water-power at first. But in two short years water-powered looms were replaced with looms powered with the steam-engines created by James Watts. The relatively smaller steam-engines allowed textile looms to be deployed in many sites enabling persons to be employed in factories.

Multiple innovations such as new manufacturing methods, electricity, steel, and machine tools ushered in the era of mass manufacturing and the Second Industrial Revolution. Henry Ford’s River Rouge Complex in Michigan, completed in 1928, deployed these modern inventions and was the largest integrated factory in the world at that time. The era of mass manufacturing subsequently brought about an explosion in the consumption of goods by households.

The Third Industrial Revolution improved Automation and Controls across many industries through the use of Programmable Logic Controllers (PLCs). PLCs were first introduced by Modicon in 1969. PLC-based automation and controls were introduced to a mostly mechanical world, and helped improve yields and decrease manufacturing costs. This revolution helped provide cheaper products.

Fast forward to the Industry 4.0 Revolution made possible by the synergistic combination of expertise from the worlds of Operating Technologies (OT) and Information Technologies (IT). The current revolution is bringing about intelligent, interconnected and autonomous manufacturing equipment and systems. This is by augmenting deep domain expertise within OT companies with IT technologies such as artificial intelligence (AI), big data, cloud computing and ubiquitous connectivity.

The widespread use of open protocols across heterogeneous equipment makes it feasible to optimize horizontally across previously disjointed processes. In addition, owner/operators of assets can more easily link the shop-floor to the top-floor. Connections across multiple layers of the ISA-95/Purdue Model stack provides greater vertical visibility and added ability to optimize processes.

The increased integration brings together both OT data (from sensors, PLCs, DCS, SCADA systems) and IT data (from MES, ERP systems). However, this integration has different impacts on different functions such as operations, engineering, quality, reliability, and maintenance.

To learn more about how the integration positively impacts the organization, read the next installment in this series to see how you can bridge the gap between OT and IT teams to improve production resilience.

Originally posted here.

Read more…
RSS
Email me when there are new items in this category –

Charter Sponsors

Upcoming IoT Events

More IoT News

Arcadia makes supporting clean energy easier

Nowadays, it’s easier than ever to power your home with clean energy, and yet, many Americans don’t know how to make the switch. Luckily, you don’t have to install expensive solar panels or switch utility companies…

Continue

4 industries to watch for AI disruption

Consumer-centric applications for artificial intelligence (AI) and automation are helping to stamp out the public perception that these technologies will only benefit businesses and negatively impact jobs and hiring. The conversation from human…

Continue

Answering your Huawei ban questions

A lot has happened since we uploaded our most recent video about the Huawei ban last month. Another reprieve has been issued, licenses have been granted and the FCC has officially barred Huawei equipment from U.S. networks. Our viewers had some… Continue

IoT Career Opportunities