Subscribe to our Newsletter | To Post On IoT Central, Click here


Data (199)

The automation of industry is steadily advancing into a new era – the fourth industrial revolution (4IR or Industry 4.0), where all things from machines and devices to people and systems will be digitally connected. Industry 4.0 technologies such as the internet of things (IoT), 5G, artificial intelligence (AI) and machine learning will enable industries to better manage their processes, improve efficiencies and boost their productivity. For many, the objectives for implementing 4IR technologies include greater control and predictability of production quality, improved safety and lower costs. Industry 4.0 also adds flexibility to an organization’s operations, enabling them to rapidly respond to shifts in consumer demand. To achieve these objectives cost-efficiently, however, requires taking a platform approach to digital transformation that is as much organizational as technological.

Industries that have been digitalized for decades, such as finance and online retail, treat IT and its infrastructure strategically — as crucial to their competitiveness. Amazon and Alibaba, the world’s two largest online retailers, for example, have invested hugely in their digital technology platforms. Ironically, Amazon’s AWS cloud business is currently its most profitable business, although it was originally only a platform for enabling its retail side. And these are not isolated examples of the importance of technology platforms in the digital era.

In industries where physical assets lie at the heart of operations, digitalization has been a slower and more complicated process. In these industries, Operational Technology (OT) organizations typically manage a wide range of production and logistics equipment — from manufacturing and assembly equipment to quality control and monitoring systems, to various hand-held devices/tools and material handling systems.

Legacy communications technologies and control protocols still prevail for these physical assets — with each supplier implementing their own customized versions of industry standards. That is why digital adoption has been slow; there are multiple layers of communication technologies and control protocols that create data siloes where exchanging of information between them is limited. This makes it difficult for operations to obtain a complete and accurate view of their production facilities.

As manufacturing and other industries are moving toward Industry 4.0, it’s becoming more apparent that this legacy communications architecture must change. Unfortunately, according to 451 Research, only 34% of industrial companies have a formal strategy to actively digitalize their business processes and assets — 10 percentage points less than non-industrial organizations. In order to fully move into an Industry 4.0 era, industrial-focused organizations are beginning to link OT with IT, embrace emerging technologies and build out digital platforms that can securely support new applications and use cases as they develop.

The building blocks of an Industry 4.0 platform include industrial IoT (IIoT), cloud, edge computing (MEC), AI and machine learning, digital twins and wireless communications — LTE/4G today, and 5G tomorrow.

IIoT systems connect all the physical assets with the digital platform. IIoT produces digital data that can be collected, integrated and analyzed across operations. Cloud computing enables organizations to quickly scale out resources for storing and processing the new, large volumes of data generated by IIoT. Edge computing, or edge clouds, distribute those parts of the processing that need to be closer to IIoT sensors and machinery for more rapid and precise response to sensor input; which is critical for automation. And as data security becomes an increasingly important part of operations, edge computing will enable critical processing data to remain within the facility premises, thereby protecting its integrity.

The sheer volume and complexity of IIoT data would be overwhelming without AI and machine learning (ML), which filter and process the data to look for actionable patterns. As a result, AI and ML create digital twins; essentially, digital models of the “virtual state” of a physical device, process or system. Leveraging the immense computing power of the cloud, digital twin technology enables these virtual representations to be used to provide predictive maintenance, conduct product or process simulations in order to optimize industrial processes before they are deployed, and in worker training to speed up competency. As a result, digital twins are the foundation component of Industry 4.0.

Given the key role that data plays in industrial automation, it’s clear why the communications network is vital as well. Unfortunately, however, the disparate communications technologies currently in use in many industries cannot provide the digital platform unification that’s required. This is where OT is learning from IT.

Because the platform has to be based on the current digital communications standard — IP — multiservice IP/MPLS networks are helping to accommodate the older communications technology use cases. Cabled networks, such as Ethernet, will still play a role, but linking hundreds of IIoT sensors, as well as mobile robots and vehicles, requires industrial-strength, next-generation wireless. And office wireless technologies, such as Wi-Fi, are not up to manufacturing performance requirements in terms of coverage, capacity, latency or security. As a result, digitally transforming organizations moving toward Industry 4.0 are leveraging IP-based LTE/4G to cover the vast majority of today’s requirements. Moving forward, 5G, with its improved performance beyond LTE, will be able to support many new use cases and applications as Industry 4.0 adoption accelerates.

For those organizations that are already investing in IIoT and cloud platforms, the importance of their communications network to enable industrial automation and the digital transformation of their facilities can’t overlook or under-estimated. To ensure that no site, employee, or system is left behind, organizations in industrial-focused fields must also think strategically about their communications platform.

Over the last few decades, productivity growth for some industrial sectors has lagged behind others where digital technologies have been widely adopted. One of the key lessons that asset-intensive industries can learn from these more progressive “digital” businesses is in the power of digital platforms to remain competitive in a fast-changing world.

 

Read more…

$13 trillion in ROI will be generated by 2025 - BI Intelligence.

Over 20 billion devices will be connected to the IoT by 2020 - Gartner

These predictions about IoT clearly reflects how rapidly this futuristic technology is evolving. To stay ahead of the curve, diverse industry-specific businesses are already investing heavily in different IoT initiatives. No wonder why IoT has become the “talk of the town” in the digital world. 

In this article, you are going to get a detailed insight on IoT - perks of adopting IoT in businesses, which industries are benefiting the most from it, how IoT is transforming the mobile app development sector along with what we can expect from this futuristic technology in 2020 and beyond.

IoT advantages for businesses 

By 2020, the IoT platform is expected to grow at a Compound Annual Growth Rate (CAGR) of 40%. So, what’s the secret behind its global popularity?

Well, through customized IoT mobile solutions, this advanced technology helps in addressing some common business challenges including

 

  • Safe data access
  • Safe data storage
  • Device control and management
  • Integration and maintenance

 

Allowing the real-time data exchange to carry out different business actions and analysis is one of the major reasons why businesses are going gaga over it. The list of IoT’s wide range of business benefits includes

 

  • Enhanced productivity

 

When it comes to the point of dealing with real-time data and variables, IoT does it the best. IoT-based applications help in management procedures. Also, it can help in carrying out automation of routine-based functions, informing employees about expected technical disruptions along with supporting remote troubleshooting procedures.

 

  • Better customer experience

 

With IoT-based applications, businesses can offer a seamless and smart customer experience. Users can carry out transactions using smart trackers, mobile card readers, etc. Also, the smart meters and smart grid technologies help users to identify and resolve issues. 

IoT-based devices are capable of collecting a plethora of data on users’ behavior which helps businesses to come up with innovative ways to keep their customers engaged and offer better customer experience.

 

  • Cost-effectiveness

 

Both the IoT devices and the IoT-based applications assist professionals not only to monitor equipment but also to diminish the downtime along with the risk factors. The applications based on this advanced technology can successfully predict possible system misalignments and failures which in turn helps in saving a lot for businesses.

Thus, IoT has become one of the most loved technologies to implement these days. 

Industries to benefit from IoT applications

As IoT technologies help in reducing overall business operating costs, increasing business visibility, business efficiency and productivity along with creating additional revenue streams, businesses across diverse industries are embracing it wholeheartedly. 

Healthcare and fitness

Today’s market is flooded with different IoT-enabled wearables. Such smart wearables help in monitoring calorie intake, heart rate, steps taken while walking, sleep along with tracking various other activities that help us to stay fit and healthy. 

Other than personal use of health wearables, some smart appliances like thermometers, scales, blood pressure monitors, etc. are presently available in the market. 

Smart home

The idea of home automation was relatively unfamiliar to most people until recently. With the emerging IoT technology, smart home automation has started to show its true power. Smart homes make our lives easier, more convenient, and more comfortable. 

Increased energy efficiency, better home security, savings on the electricity bill, maximized comfort, etc. are some popular reasons why smart home automation development with IoT is trending in the market these days. 

Retail and Supply Chain Management

Well, if you think different IoT devices and applications in the Retail industry is limited to only shopping and SCM, you are wrong. Enabling IoT in business is an opportunity for hospitality service providers, restaurants, and other businesses to manage not only their supplies but also to gather valuable insights. 

It allows business owners to avert order overflow, effectively restricting the employees who abuse their privileges along with managing the merchandising and logistical expenses in a better way. Business owners now can manage their inventory in real-time with IoT. 

Automotive

Self-driven cars or connected cars are no longer fiction only. Thanks to IoT. Thus, in the automotive industry, IoT use cases are actively expanding. Smart applications are being developed and integrated into car infotainment systems so that providing telematics, in-car navigation, and entertainment becomes easier than ever.

Also, IoT-enabled apps make sure predictive maintenance, surveillance, security, and safety of the vehicle along with real-time monitoring, cognitive insights for the management, etc. 

Other than the above-mentioned ones, industries related to manufacturing, agriculture, logistics are also ripping benefits out of IoT. 

IoT in mobile app development - what to expect next? 

You have already seen how IoT is transforming the way different industries operate. According to experts, IoT adoption is still in the early phase. The way the connected world of IoT is evolving, soon we can experience its power to the fullest. Even worldwide app developers would agree that IoT is leaving significant impacts on iPhone and iPad app development services. So, what can we expect from this futuristic technology in the future?

Edge computing will become more popular than cloud computing

We all know how cloud computing brought a wave in the digital world. Even today’s IoT devices store all the data in their cloud. However, in the tech world, change is the only constant. And this is why we will probably soon witness edge computing becoming more popular than cloud computing. 

Now, the question is how?

Instead of sending all the data from devices to the cloud, now, the IoT devices will transfer data to a local storage device first. This device can filter, sort, and accordingly can calculate the data and transfer only the required data set to the cloud. 

Undoubtedly, it will reduce traffic to the network. Also, collecting and processing data locally will allow the IoT apps to consume less bandwidth and work in bad connectivity to the cloud. 

IoT security will get more priority

The graph for IoT application adoption in businesses is increasing exponentially. Now, with more devices being connected to the network, not only the data volume increase but the risk for data security increases as well. 

We have seen how the smart home industry and health care industry is adopting various IoT-based applications. So, be it patient’s health-related data or data related to the home security, everything is being stored in the cloud. So, with sensitive data floating in the cloud, we can expect IoT security will get more priority in the next year and beyond. 

A unified framework for integration

To keep the industry safe and secure, a unified framework is required. The lack of a unified IoT framework - this is a serious challenge that IoT has faced while cooperating with different industries. However, another trending technology Blockchain will be a great help to accelerate the IoT adoption process by allowing the app developers to improve and develop mobile and web applications. 

So if someone is looking to develop IoT apps and looking for an Android or iOS app development company, it is important to know beforehand if they are capable and know the integration. 

IoT and AI

Both Artificial Intelligence and IoT are data-driven technologies. And both technologies are used for storing and analyzing data. So, to make automation more efficient, we may see these two thriving technologies being implemented together to gain better visibility along with accurate insights into various services. 

Other than what we mentioned above,

  • We will see the rise of predictive maintenance
  • Businesses will deliver more personalized customer experiences
  • Software-as-a-Service will be the new normal

And all of these will be the direct or indirect impact of IoT being implemented in the mobile apps. 

However, mobile app developers have to advance their skill sets to integrate IoT successfully in their apps. Having sheer knowledge of Swift or Xcode won’t be enough for smart iPhone or iPad app development services. 

Of course, we will witness new technologies being emerged. However, these will make IoT easier to use and more intuitive to a large extent. 

Read more…

Blockchain and IoT: are they a perfect match?

As IoT becomes more prevalent, more CIOs are asked to take the reins of IoT projects. Gartner recently found that just under a third of responding organizations expected their CIO would lead their IoT efforts, and that by 2020, more than 10% of IoT projects in traditional industries would be headed by the CIO.

This prompted Jenny Beresford, research director, to caution: ‘The IoT will expand rapidly and extensively, continually surfacing novel and unforeseen opportunities and threats.’

Among those threats — which will definitely be CIOs’ responsibility — is the woeful security of traditional IoT and IIoT networks, as well as the privacy, connectivity and transaction speed issues that frequently plague IoT implementation.

To be maximally effective such a network must somehow be both highly connected and highly secure, and currently only one technology — blockchain — can achieve this.

However, obstacles remain, including the lack of an IoT-friendly blockchain consensus protocol.

Network Security and Data Exchange

IoT and IIoT networks typically lack physical security, host-based defences, and software updates and patches. These networks typically also use less-secure wifi protocols, web apps and APIs, combining larger-than-usual attack surface with weaker-than-usual security while retaining single points of control and failure.

In IoT, hackers see a new prize: gigantic botnets which can be used to spread malware, as with the Mirai botnet. And in IIoT, the rewards of network penetration can be industrial sabotage, espionage or large-scale blackmail, like Florida’s Riviera Beach.

Yet, companies cannot afford to hold off indefinitely on deploying IoT technology, since doing so exposes the organization to risk of being outmanoeuvred by competitors. Blockchain offers CIOs a way to deliver their IoT projects with the inherent security issues of large, distributed networks essentially solved.

Blockchain for IoT inherently eliminates single points of control and failure while simultaneously offering modular encryption and auditable transaction logs, so security issues are isolated, easy to identify and cannot spread through the network. Even if they do, they can’t gain control of it.

Transaction Processing

Machine-to-machine (M2M) communications generate gigantic amounts of data in transit — and the number of connected devices is growing rapidly:

3636380048?profile=RESIZE_710x

With centralized control, much of the processing power of these devices is lost to idling, while trust issues keep transaction costs high. CIOs find themselves in the position of paying for computational capacity they can’t use, and for traditional data centers that represent a ‘honeypot’ for attackers and a bottleneck for their networks.

Peer-to-peer communication across connected devices would enable dynamic transaction load balancing, enabling spare computing power to be identified and employed and potentially eliminating centralized data storage.

To do this successfully, IoT will need to become trustless as well as peer-to-peer. Blockchain offers a trustless peer-to-peer communication and transaction medium with secure, unforgeable and auditable transaction logs; smart contracts can be used to set policies, control and monitor access rights and execute actions autonomously based on pre-defined conditions.

Privacy and Autonomy

IoT systems built on traditional networks cannot prevent access by governments, service providers or criminal actors. With weak security and single points of control, trust on these networks is impossible to guarantee.

IoT and IIoT both require connectivity and modular security. The current solution, ‘security through obscurity,’ must be replaced by a systemic shift to open-source systems that achieve ‘security through transparency’ and are far less vulnerable to sophisticated, persistent institutional attacks.

Without this shift, both consumer and industrial networks will be increasingly vulnerable, and as the number of connected devices grows, radically lower-cost privacy and autonomy will be necessary to save the IoT.

IoT Connectivity Costs

In the current iteration of the IoT, costs are prohibitively high while revenues fail to meet expectations. Many existing IoT solutions are expensive because of the high infrastructure and maintenance costs associated with centralized cloud delivery and large server farms.

IoT devices violate the traditional pricing and revenue model of the IT industry too: device costs and incomes don’t line up, and maintenance costs consume substantial amounts of revenue. Inherent technical reasons make this unavoidable using the current model, but CEOs still don’t like hearing it from their CIOs.

Cost reduction

Blockchain technology allows reliable data to be pooled and shared without trust, directly among stakeholders. This allows for a significant cost reduction, eliminating intermediaries and allowing for automatic transactions and payments across devices using smart contracts.

Blockchain-IoT Integration Challenges: Lack of an IoT-centric consensus protocol

The current consensus protocols available for blockchains — PoW, PoS, PoET, and IOTA — are all designed for permissionless blockchains focusing on financial value transfer. PoS and PoET can also be used in permissioned blockchains, but their consensus is probabilistic and does not end in a permanently-committed block, resulting in an unacceptably high ‘hard fork’ rate.

PoET requires specialist hardware and the enclave allocating wait time is a trusted entity; it has also proven vulnerable to node compromise.

What’s needed is a consensus that can keep the benefits of the distributed, auditable, trustless environment blockchain provides, but deliver it in real time and at scale — without mining or excessing transaction costs, and without multiple hard forks.

Read more…

Having a smart home is all well and good until you become a victim of data leakage. 

This is not a discouragement against IoT implementation into your home, however. The Internet of Things market has been on the rise, and thanks to that, even our homes have become smarter. We don’t have to worry about doing our laundry, or making coffee manually anymore. With just a command we can do these things without having to move away from that comfy couch. 

Parks-Associates--Consumer-Trust-Smart-Home-Product-Purchase-Channels-645px.gif

But over the last couple of years, some incidents have shown that the matter of smart homes might not be all it’s hyped up to be. Just like everything, IoT implementation in smart homes has a bright and a dark side, but it seems the dark side is more sinister than the bright one. 

Incident one:

The combined research conducted by Northeastern University and Imperial College of London has shown how consumer devices are not to be trusted when dealing with client data. The researchers conducted 34,586 controlled experiments on 81 different IoT devices, 46 of which are from the US and 35 are from the UK, and this is what they found out-

  • 72 out of these 81 devices are connecting to services that are not the first party. Which means they are connecting domains and addresses that have no business connecting to the device. 
  • The research showed that 56% of the US devices and 83.8% of the UK devices were connecting to domains that were not in their region. 
  • The safety of the data on an online connection depends on the level of encryption, but here’s the kicker- according to the research, all the tested devices have at least one plain-text flow, which means at least one data flow from all the devices is non-encrypted. Not to mention, any cyber-evesdroppers can analyze device traffic, encrypted or not, and figure out the user and device behavior. 

But in any case, this is just research. What happens when a smart home management platform leaves a server with important user data exposed on the internet without any password or protection?

Incident Two:

Around mid-June, the security team at vpnMentor, lead by security researchers Noam Rotem and Ran Locar, spotted a completely exposed server containing the customer details of 2 million users, including their usernames, passwords, and password reset codes. 

The server in question belongs to a Chinese smart home management platform Orvibo. Their smart home management Smartmate helps users control every aspect of their smart home, from security to closing the curtains. 

Not only a smart-home management system, but Orvibo also deals in self-manufactured smart home products such as smart light bulbs, HVAC systems, home entertainment systems, security cameras, smart power plugs, and many more. 

The open server containing user information poses a huge threat to everyone who’s data has been exposed. Since the data breach being exposed, Orvibo has taken steps to secure the server. Even then, the data breach can have serious repercussions for the users. What are these repercussions though? Let’s find out what can happen to your data if it is leaked by your smart home device. 

What will happen if your data is breached?

When hearing about IoT and data breach, the user can have two kinds of reactions.

One group would panic, and probably stop using all kinds of smart devices. 

Another group would ask so what if their data is being breached? And this point is to answer the question for the latter group. 

There is a reason why smart home security is something to be concerned about. The personal and sensitive data, the users enter in order to run the devices, can be manipulated in various ways, and each one would only harm the users. 

So what are the ways hackers can manipulate the IoT devices and data that make your home smart?

1. Manipulating The Devices

The first thing you might do after getting a smart device for your home is to configure its username and password. 

However, this is not a widespread practice. Most people often end up using the same default username and password the device came with, which means that it’s going to be super easy for the hackers to get your data and gain access to your device. And from there on, it’s an open sandbox for them to play with. They can do whatever they want with your device, but there’s one guarantee- whatever they do is not going to do you any good. 

2. Holding Your Data And Device For Ransom

The ransomware attack is the most familiar in the IoT industry. Through this, what the hacker usually does is that they would gain access to an IoT device, and cut off the legitimate user’s access. Then they would ask for a ransom for restoring the user’s access to that device. 

While this may not seem to be as dangerous, it is a serious threat. Once the hackers have gained access to your data, they can use it for many malicious ends, things you don’t even have any idea about. And not to mention, there is no guarantee that they would give you back the access to your data once you pay them. And that’s why implementing some serious security protocols in place is needed to prevent your device and data from ransomware attacks. 

3. Doing Serious Damage To Your Home

This one might seem a little petty, but here we go anyways. 

Imagine having a smart thermostat, which you can control using online access. Now imagine going out on a vacation with your family, making sure that everything around the house is shut down, even the thermostat. However, when you get back, you see that the thermostat turned up to its highest setting on its own, melting every plastic thing in your house. 

But did it happen on its own? How are you going to find out whether it just happened or someone purposefully hacked into your smart home system and used the thermostat to seriously damage your home? Stealing the authorization details, hackers can do this for multiple reasons, ranging from personal vendetta to trivial entertainment because they were bored. Either way, it is your home that will be damaged. 

4. Actively Robbing Your Home

When details such as passwords and user IDs, along with device IDs are being sent to an unknown third-party domain without any encryption, the data can be used in many ways, and one of them can be to rob your home. 

Think about how a hacker-robber group can hack into the security system of your home, disable it and then walk into your home to steal everything from you. This is a bold use of smart home data breaches, and it can be quite fatal in case someone is home when they decided to hit the house. In this case, the loss of data security can result in serious loss of physical property as well. 

5. Launching A Botnet Attack

Last but not least, gaining access to your IoT smart home devices, the hackers can turn these devices into zombie devices and launch a botnet attack. A botnet is a number of internet-connected devices. Each of these devices is running one or more bots, which can be used to perform distributed denial-of-service attacks. 

Through this, the hackers can also steal important data, send spam emails, getting the attacker access to the device, this is not only going to create a problem for you but others as well. 

With a DDoS attack, the botnets can connect to a website, generating so much traffic that the website crashes, leaving them vulnerable for many data exploitations. Using your IoT device, the hackers can launch a similar botnet attack to that of the Mirai Botnet attack of 2016. The Mirai botnet attack brought down a french host OVH. and that’s how your smart home devices can be turned into a weapon to bring down popular websites around the world. 

What Is Going To Be The Solutions?

Every problem has a solution, and so does this one. 

There have been plenty of solutions suggested for the data security of IoT devices. But so far only two of these solutions stand out. One is the use of machine learning, another being Blockchain. 

The Machine Learning Solution For Smart Homes

Rather than looking for a security solution for each device, AI and machine learning can create a shield of security for all the IoT devices for your home network. Deep learning and machine learning can not only monitor each and every device connected to the network, but they can also detect and prevent any unwanted and unknown device trying to connect with the home network. 

The use of AI comes in handy when analyzing the network traffic. This way the AI can keep up with the general traffic flow of each of the devices and detect any anomalies in the normal flow of traffic. Which means fewer chances of any hackers getting inside your home network. You can check out these top 10 highly performing smart home apps making it big.

Along with these benefits, the use of Machine learning and deep learning can also detect botnet activity, manage device authentication and access management. This way they can manage to give your smart home network 360-degree security without worrying you. 

The Blockchain Solution To All Things Smart-homes

The main problem with the smart home network is the centralization of data, which could be easily hacked into. And that’s why Blockchain can provide a decentralized solution to this problem. 

Once the smart home IoT systems start utilizing the blockchain system for data communication, the security will increase tenfold, because it is close to impossible to hack into a blockchain network and change the data. To do so, the hacker would have to have control of 51% of the devices connected, and when the number of connected devices spans millions, it can be a little tough. 

Not to mention, blockchain in IoT will end the trend of data monopolization. Your data won’t be a subject of daily business deals with large conglomerates. Blockchain can bring affordability and security for smart homes that people have been asking for a long time.

Conclusion 

So does it mean you should not be using smart home technology?

The answer is no, absolutely not. It is undeniable that smart home technology has its own benefits and you should be able to take advantage of that. But only after you have made sure of your data security. Once you have made sure that all the devices you are using are secure. You can make use of IoT devices for your home as much as you want. Always remember that the security measures for your home IoT devices are not a matter of joke.

Read more…

How PKI & Embedded Security Can Help Stop Aircraft Cyberattacks

 by August 27, 2019 by Alan Grau, VP of IoT, Embedded Systems, Sectigo

 

On July 30th, the U.S. Department of Homeland Security Cybersecurity and Infrastructure Agency (CISA) issued a security alert warning small aircraft owners about vulnerabilities that can be exploited to alter airplane telemetry. At risk to cyberattack, the aircraft’s Controller Area Network (CAN bus) connects the various avionics systems–control, navigation, sensing, monitoring, communication, and entertainment systems–that enable modern-day aircraft to safely operate. This includes the aircraft’s engine telemetry readings, compass and attitude data, airspeeds, and angle of attack; all of which could be hacked to provide false readings to pilots and automated computer systems that help fly the plane.

The CISA warning isn’t hypothetical, and the consequences of inaction could prove deadly. Airplane systems have already been compromised. In September 2016, a U.S. government official revealed that he and his team of IT experts had successfully remotely hacked into a Boeing 757 passenger plane as it sat on a New Jersey runway, and were able to take control of its flight functions. The year before, a hacker reportedly used vulnerabilities with the IFE (In Flight Entertainment) system to reportedly take control of flight functions, causing the airplane engines to climb.

InFlightLIStockImage.png
The Boeing 757 attack was performed using the In-Flight Entertainment Wi-Fi network.
 

A researcher with security analytics and automation provider Rapid7 wrote about the security of CAN Bus avionics systems in a recent blog and discussed the challenge at this year’s DEFCON security conference. He explained, "I think part of the reason [the avionics sector is lagging in network security when it comes to CAN bus] is its heavy reliance on the physical security of airplanes . . . Just as football helmets may actually raise the risk of brain injuries, the increased perceived physical security of aircraft may be paradoxically making them more vulnerable to cyberattack, not less."

A False Sense of [Physical Access] Security

The DHS CISA warning stated, "An attacker with physical access to the aircraft could attach a device to an avionics CAN bus that could be used to inject false data, resulting in incorrect readings in avionic equipment.” CISA fears that, if exploited, these vulnerabilities could provide false readings to pilots, and lead to crashes or other air incidents involving small aircraft. Attackers with CAN bus access could alter engine telemetry readings, compass and attitude data, altitude, and airspeeds. Serious stuff.

Not all of these attacks required physical access.

These risks should serve as a wake-up call to everyone in manufacturing. Any device, system, or organization that controls operation of a system is at risk, and the threats can originate from internal or external sources. It’s critical for OEMs, their supply chains, and enterprises to include security and identity management at the device level and continually fortify their security capabilities to close vulnerabilities.

Security Solutions for Avionics Devices

Today’s airplanes have dozens of connected subsystems transmitting critical telemetry and control data to each other. Currently, tier-one suppliers and OEMs in aviation have failed to broadly implement security technologies such as secure boot, secure communication and embedded firewalls on their devices, leaving them vulnerable to hacking. While OEMs have begun to address these issues, there is much more to be done.

Sectigo offers solutions so that OEMs, their supply chains, and enterprises can take full advantage of PKI and embedded security technology for connected devices. Our industry-first end-to-end IoT Platform, made possible through the acquisition of Icon Labs, a provider of security solutions for embedded OEMs and IoT device manufacturers, can be used to issue and renew certificates using a single trust model that’s interoperable with any issuance model and across all supported devices, operating systems (OS), protocols, and chipsets.

Much like the automotive industry, the aviation sector has a very complex supply chain, and implementing private PKI and embedded security introduces interoperability challenges. With leading avionics manufacturers introducing hundreds of SKUs per year, maintaining hundreds of different secure boots within a single aircraft is complex, cumbersome, and ultimately untenable. Using a single homogenous secure boot implementation greatly simplifies the model.

Purpose-built PKI for IoT, such as the Sectigo IoT Manager, enables strong authentication and secure communication between devices within the airframe. Using PKI-based authentication prevents communication from unauthorized components or devices and will eliminate a broad set of attacks.

Embedded firewall technology provides an additional, critical security layer for these systems. This is particularly relevant for attacks such as the Boeing 757 attack via the airline Infotainment Wi-Fi Network. An embedded firewall provides support for filtering rules to prevent access from the Wi-Fi network to the control network.

Icon Labs embedded firewall has been has deployed in airline and automotive systems to address attacks such as these. In both instances, our embedded firewall sits on a gateway device in the vehicle or airplane to prevent unauthorized access from external networks or devices into the control network, or from the Infotainment network to the control network. We continue to see interest in this area, indicating manufacturers are beginning to act.

From Cockpits to Control Towers

Securing connected devices in aviation is not limited to airplanes. The industry requires secure communication between everything on the tarmac, from cockpits and control towers to provisioning vehicles and safety personnel. For that reason, Sectigo provides an award-winning co-root of the AeroMACS consortium, which addresses all broadband communication at airports across the world and calls for security using PKI certificates to be deployed into airplanes, catering trucks, and everything else on the tarmac.

Future Proofing with Crypto Agility

It’s worth noting that aviation is also uniquely challenged by the tenure of its components. Unlike devices that are designed to last for months or years, airplanes are designed to last for decades. Advances in quantum computing, which many experts believe is just around the corner, threaten to make today’s cryptographic standards obsolete. Aeronautical suppliers need to be prepared for this coming “crypto-apocalypse” and to update the security on their devices in the field while the devices are in operation. Sectigo’s over-the-air update abilities provide the cryptographic agility to guard against this upcoming crypto-apocalypse (listen to the related Root Causes podcast).

The ecosystem has fast work to do. Manufacturers must secure the CAN buses in their existing, and future fleets – whether those planes idle on fenced tarmacs, or in airplane hangars. In the meantime, CISA counsels that aircraft owners restrict access to planes avionics' components "to the best of their abilities,” leaving passengers to hope security soon extends beyond their TSA experiences.

Read this blog online at https://sectigo.com/blog/how-pki-and-embedded-security-can-help-stop-aircraft-cyberattacks

Read more…

The Impact of AI on Taxi Dispatch Systems

Taxis have long been a part of the daily transportation system all over the globe. Also, they are so crucial that it is hard to imagine life without them even if your city offers a proficient and well-connected network of public transportation. Moreover, as the cost of private vehicle ownership continues to grow at a mind-boggling pace, it is easy to see why people are turning to taxis for completing their commutes to work or anywhere else they may need to go. However, is that all there is to the sudden increase in demand for taxis? Actually, no.

Today, customers live in a highly digital world that accommodates all their needs, demands, and requests. This expectation is also extended to taxi failing services. Thankfully, companies that provide such services have been quick to adapt to evolving customer expectations, thus marking yet another crucial reason behind the high demand for taxi dispatch systems. It has also given rise to intense competition as well as the need for robust solutions to establish an edge over rivals. Moreover, in this search for a tool, you will find that one name stands out from the crows: Artificial intelligence. So, without further ado, let’s take a look at how this technological novelty can help your taxi business.

  1. Personalization: There’s not a user on the face of the earth who doesn’t like personalized service. It holds for customers of taxi businesses as well. To that end, AI helps by providing access to users’ locations and their activity on your taxi app along with data about other apps, platforms, and the services they use frequently. This data is crucial for understanding a user’s preferences, which can then be used to push more relevant content and offers to them.
  2. Better decision making: Data is a truly versatile gift that technology has given us. Data gathered by the company can be processed to glean insights and identify trends, among other things. Such information can then inform strategic decisions executives have to make for the business. AI empowers businesses with comprehensive analytics about vital factors like customer behavior, service demand, and more. that can go a long way in making smarter decisions for the business’ future.
  3. Predict demand: Besides driving better and more intelligent business decisions, AI can also be used for predictive analytics to predict demand and that too with a high degree of precision. AI helps gather data, including historical data, and then utilizes predictive analytics to deliver appropriate predictions about the kind of demand your taxi business should expect and when it can wait to start showing.

The world already has and continues to benefit from the potential of artificial intelligence. Just take a look at e-commerce — giants like Amazon, Flipkart, and more have integrated AI so profoundly within their platforms and are reaping the benefits of that decision too. So that’s just one industry. Suffice it to say that taxi app development mixed with AI stands to offer so much to a taxi business: Better customer service, enhanced customer experiences, massive business growth, and more. We could go on and on, but you get the drift, don’t you?

Read more…

The emerging internet of things (IoT) is an extension of digital connectivity to devices and sensors in homes, businesses, vehicles and potentially almost anywhere. This innovation means that virtually any appropriately designed device can generate and transmit data about its operations, which can facilitate monitoring and a range of automatic functions. To do this IoT requires a set of event-centered information and analytic processes that enable people to use that event information to make optimal decisions and take act effectively.

To better understand how this technology is being deployed and used Ventana Research is launching benchmark research on The Internet of Things. The research will explore organizations’ experiences with IoT initiatives and with attempts to align IT projects, resources and spending with new business objectives that demand real-time intelligence and event-driven architectures.

In many industries, organizations can gain competitive advantage if they can reduce the elapsed time between an event occurring and being able to take action or make decisions in response to it. Existing business intelligence (BI) tools provide useful analysis of and reporting on data drawn from previously recorded transactions, but organizations now areconcluding that employees and processes in IT, business operations and front-line customer sales, service and support also need to be able to detect and respond to events as they happen.

Our previous Internet of Things benchmark research found that both business objectives and regulations are driving demand for new technology and practices. By using them many activities can be managed better, among them manufacturing, customer engagement processes, algorithmic trading, dynamic pricing, yield management, risk management, security, fraud detection, surveillance, supply chain and call center optimization, online commerce and gaming. Success in efforts to combat money laundering, terrorism or other criminal behavior also depends on reducing information latency through the application of new techniques.

vr_IoT_and_OI_11_benefits_of_IoT_deployments-1.png?width=300&name=vr_IoT_and_OI_11_benefits_of_IoT_deployments-1.png

As with any innovation, embracing IoT may require substantial changes to any organization. These are among the challenges business leaders face as they consider adopting this evolving technology:

  • They find it difficult to evaluate the business value of enabling real-time sensing of data and event streams using radio frequency identification (RFID) tags, agents and other systems embedded not only in physical locations like warehouses but also in business processes, networks, mobile devices, data appliances and other technologies.
  • They lack an IT architecture that can support and integrate these systems as the volume and frequency of information increase.
  • They are uncertain how to set reasonable business and IT expectations, priorities and implementation plans for important technologies that may conflict or overlap. These can include BI, event processing, business process management, rules management, network upgrades and new or modified applications and databases.
  • They don’t understand how to create a personalized user experience that enables nontechnical employees in different roles to monitor data or event streams, identify significant changes, quickly understand the correlation between events, and determine the right decisions or actions to take.

This research will continue our investigation of how organizations are dealing with these challenges and increasing their responsiveness to events by rebalancing the roles of networks, applications and databases to reduce latency; it also will explore ways in which they are using sensor data and alerts to anticipate problematic events. We will benchmark the performance of organizations’ implementations, including IoT, event stream processing, event and activity monitoring, alerting, event modeling and workflow, and process and rules management.

Click here to participate in this research, and here to learn more about Ventana Research’s methodology and large body of business research. Ventana Research also has conducted research in related areas including Data PreparationMachine LearningData and Analytics in the CloudNext-Generation Predictive Analytics and Big Data Analytics and Integration.

Regards,
David Menninger

Read more…

For years, I have been written about the promise and perils of the Internet of Things (IoT). In many of my articles I described how the IoT could help transform society and kickstart the next industrial revolution. However, still many people and enterprises are in the IoT. We still cannot define in a unique and clear way what IoT is and much less explain how thanks to IoT it will change our lives, without using the example of the smart refrigerator.

Why are we still lost in IoT? Let´s see some arguments.

Lost in IoT connectivity

With so many IoT connectivity options on the market, choosing the right one for your project can be complicated. It scares me to think that billions of devices will be connected in a few years to decentralized IoT networks and with no interconnectivity between them, unless we use millions of edge nodes that transfer messages among devices connected in multiple networks. If it is already difficult to justify the ROI of a use case considering a single type of connectivity, it is almost impossible to justify that these devices can communicate with other devices on different IoT subnets.

It seems that it is easy to get lost among so much connectivity technology. Isn’t true?

Lost among hundreds of IoT Platforms

At least we already intuit some of the platforms that will survive among the +700 that some analysts have identified. I have only been able to analyze with more or less depth about 100. Surely my methodology of Superheroes and Supervillanos will advance the end of most of them.

It is no longer just one IoT Platform, stupid! Although they want to make it easy for us, companies like AWS, Microsoft or Google add concepts such as Serverless, Data Lakes, AI, Edge Computing, DLT and all the artillery of Cloud services to the core features of the IoT platform. I get lost in its architecture and I feel that if I get too close to one of these black holes, they will end up absorbing me.

Glad to know that “Verizon retools ThingSpace IoT platform to focus on connectivity” and system integrators are abandoning their in house development to embrace leaders vendors’ products.

Lost between the Edge and the Clouds

In “Do not let the fog hide the clouds in the Internet of Things” , I warned about the degree of complexity that Fog / Edge Computing added to the already complex IoT solutions. Now nothing seems to be of great value if we do not include Edge Computing.

The Babel tower of Alliance & Consortiums is consolidating but we keep losing in acronyms. Industrial Internet companies felt relief with the newsThe Industrial Internet Consortium® (IIC™) and the OpenFog Consortium® (OpenFog) unite to combine the two largest and most influential international consortia in Industrial IoT, fog and edge computing. While The Open Group Open Process Automation™ Forum (OPAF) is defining the next generation edge computing standards for industrial operators.

And again, the question arises, do we need Edge to start my Industrial IoT project?

Lost in the Proof of Concept (PoC)

Businesses are spending $745 billion worldwide on IoT hardware and software in 2019 alone. Yet, three out of every four IoT implementations are failing.

Microsoft launched a new research report — IoT Signals — intended to quantify enterprise internet of things (IoT) adoption around the world. The survey of over 3,000 IT team leaders and executives provides a detailed look at the burgeoning multi-billion-dollar segment’s greatest challenges and benefits, as well as related trends. Perhaps it’s not surprising, then, that 30% of respondents say their IoT projects failed in the proof-of-concept stage, often because the implementation became too expensive or the bottom-line benefits were unclear.

There are technical reasons for example the use of Rasberry Pi or Arduino boards in the PoC and realise that you need other more expensive hardware for the project.

There are economic reasons when you try to escalate your PoC to real implementations and then the ROI doesn’t look as well as in the pilot.

There are organization reasons when leaders are failing to go all in. If you can’t get the CEO on board, then the probability to finish in the PoC is almost 100%.

If you are lost in the PoC, these tips can help you implementing IIOT.

  1. Solve a problem worth solving
  2. Keep it quick and simple
  3. Manage the Human Factor

Lost in select the right IoT Ecosystems

Today no significant ecosystem or network of collaborators had emerged in the IoT arena in spite there was early and very interesting efforts being made by several players. This article does not need changes.

Since I wrote “The value of partnership in Industrial Internet of Things”, I have heard, read and repeated hundreds of times how important it is to belong to an IoT ecosystem and how difficult it is to choose the one that suits you best.

All or at least most of those who read my articles know that there is no company in the world, no matter how great it is, it can do everything in IoT. Creating an IoT ecosystem either horizontal (technology) or vertical (industry) requires a lot of talent managers able to maintain win-win transactions over the time. And according to the results, it seems to me that it is becoming very complicated.

Remember, you are not the only one lost in IoT

When it comes to achieving a return on their investment from IoT, businesses really need rethink how they are deploying it so that they can manage remotely and secure their assets, use the sensors and devices data to make better real time decisions and be able to monetise it. However, for both to happen, and for IoT project to not end up in the purgatory, businesses need independent and expert advice at several levels to find the right people to lead the project and the right technology and partners to make implementation successful.

Read more…

Bad Cars: Anatomy of a Ransomware Attack

By Alan Grau, VP of IoT, Embedded Systems, Sectigo

TV and science fiction writers have let their imaginations run wild with theories about what could happen if your car was attacked by bad actors. There have been a few real-world cases where white-hat hackers and researchers have been able – in limited, controlled instances – to actually penetrate a car’s electronics and communications systems, take over the car’s steering and acceleration systems, and potentially do real damage.

However, there are other scenarios that might not be as obvious or as dramatic.

For example, what if your car’s computer was infected by a virus that greatly reduced the engine’s efficiency or capped the car’s maximum driving speed? What if the virus did something less dramatic, such as make the car unable to lock the controls for automatic window operation, or simply prevent the car from starting? No one would die, but the car owner would be very upset, posing a disaster for the automobile’s manufacturers.

3239139993?profile=RESIZE_710x

Motor City Ransomware

Electric Vehicles require sophisticated control and safety technologies for their electrical power systems to safely manage the high voltages that store and distribute from their battery systems. If something goes wrong, the car cannot operate, people could get electrocuted, or the car could burst into flames or explode. These are real dangers that are managed by the car’s network of fuses, circuit breakers, and control systems.

What would happen if a cyber hacker got into these sensitive electronic systems and turned off the safety and control system?

Why would someone do this? Money, of course.

Suppose the bad guys successfully penetrated and infected these vehicles? Imagine now that they had the software or security keys that could fix these problems, but hold them as ransom, jeopardizing an automaker’s entire fleet of new cars.

How many millions (or tens of millions) of dollars would the automaker pay to get that solution? Holding a manufacturer hostage is a very real possibility, as evidenced by the results that today’s hackers are getting by attacking hospitals and cities and successfully extracting substantial ransoms to just return these institution’s data. In a recent WIRED article, The Biggest Cybersecurity Crisis of 2019 So Far, which discusses the risks to “things” and across supply chains, the FBI explained, "We are seeing an increase in targeted ransomware attacks. Cyber criminals are opportunistic. They will monetize any network to the fullest extent.”

Pre- and Post-Assembly Infections

It is possible that cars could be infected before they even hit the auto dealers’ lots. Bad actors have the capability to infect a small electronic part, essential to the auto manufacturing food chain, purchased from one of the hundreds of component suppliers.

How could auto manufacturers possibly test each electronic element? It is almost impossible - and requires that parts manufacturers themselves take more care in their software development process to ensure the software in these components are not infected during manufacturing process, or during the testing and shipping processes.

Of course, cyber infections could happen on the actual assembly line where the cars are put together. With many car manufacturing plants using IoT connected robots and machines, there is always a possibility of infection happening on the assembly line.

These components could even become infected after assembly, during the manufacturers’ testing and process. Infection, during installation, or with after-market parts and upgrades, could arise after the vehicles arrive at the dealers’ facilities.

Already aware of the possibility and the potential disastrous effects of infected cars reaching the market, manufacturers throughout the supply chain need to become more aware of how their devices could be attacked and infected even before they leave the warehouse. This means embedding IoT security from day one - from the smallest electronic components to final assembly of motors, transmissions and other large vehicle components.

About Sectigo

Sectigo (formerly Comodo CA) provides award-winning, purpose-built and automated PKI management solutions to secure websites, connected devices, applications, and digital identities. As the largest commercial Certificate Authority, trusted by enterprises globally for more than 20 years, and more than 100 million SSL certificates issued in over 200 countries, Sectigo has the proven performance and experience to meet the growing needs of securing today’s digital landscape. For more information, visit www.sectigo.com.

 

 

 

Read more…

How Covacsis is changing the Manufacturing?

Internet of Things (IoT) began as an emerging trend and has now become one of the key elements of Digital Transformation that is driving the world in many respects. we are evolving to a more connected, digitized world. Leveraging Industry 4.0 technologies is a necessity if you are going to meet consumer’s demands and maximize efficiencies. Now is the time to redefine how we look at gathering and analyzing data across machines and the supply chain to enable fast flexible, and more efficient processes.

General Electric coined the term Industrial Internet of Things (IIoT) in late 2012.

While many of us are familiar with the Internet of Things used by Nike FuelBand, FitBits, Nest and Samsung as connected devices, there’s much more going on in connecting industrial devices in the world of IIoT.

The Industrial Internet is still at an early stage, similar to where the Internet was in the late 1990s. The IIoT, through the use of sensors, advanced analytics and intelligent decision making, will profoundly transform the way plants & factories connect and communicate with the enterprise.

Industries impacted by IIoT are Manufacturing, Aviation, Utility, Agriculture, Oil & Gas, Transportation, Energy, Mining & Healthcare.

One of the key opportunity that early adopters of the Industrial Internet are pursuing is the improvement of worker and equipment productivity, safety and working conditions in the factories.

The IIoT will revolutionize manufacturing by enabling the acquisition and accessibility of tons of data, at lightning speeds, and far more efficiently than before.

There are several challenges factories are facing:

  • Manual data collected by floor person in a shift has human delays, errors

  • It is not continuous and also not real time

  • Data is not comprehensive enough to do analysis and provide insights to senior management

One such framework available to factories is Intelligent Plant Framework provided by Covacsis.

The benefits are tremendous:

  • It collects real-time data from all the factory machines

  • It is completely automatic so no human errors

  • The data collected is comprehensive to provide actionable insights to the factory in charge

  • With predefined algorithms, the productivity and costs are calculated automatically and recommendations are made for improvement

While systems like MES can only synchronize the operations of the factory, IPF does the performance measurement and management.

Business benefits by implementing IPF:

  • Conversion costs are reduced by 20-30% from raw materials to finished goods

  • Production productivity is improved by up to 30%

  • Plug-n-play with minimal or no customization hence no impact on running factories

  • Implemented in 3-4 weeks compared to months and years of competitive products in the market

With solid experience of implementation in over 70+ factories and 15+ sectors across manufacturing such as Pharma, Chemical, Textile, FMCG, etc; IPF is a clear winner and the need of an hour for factories of future.

The path to Industry 4.0 is via Industrial Internet of Things IIoT and implementation of automation via IPF.

Read more…

For those who do not know this famous Goya´s painting: 'Saturn Devouring a Son', it belongs to the series of Black Paintings of the artist. It's the best comparison I can make after returning from the TechXLR8   --- IoT World Europe Summit in London.

In the painting we see the god Cronos, who immutable governs the course of time, devouring a son. The act of eating your child has been seen, from the point of view of psychoanalysis as a figuration of impotence.

Saturn is the Artificial Intelligence (aka AI) and his impotent son is the Internet of Things (IoT). There are other brothers waiting their turn to be devoured by this hungry father. Soon it will be the Augmented Reality / Virtual Reality (AR/VR), the Blockchain and Digital Twins. Not even the 5G will be spared. 

If you are still waiting for the IoT boom, this event is confirmation that the IoT is badly wounded at least in Europe. The few IoT companies that exhibited their products and services at Excel London showed nothing that could overshadow the big winner, the ubiquitous father AI. Although the Augmented Reality / Virtual Reality (AR/VR) does present itself a great rival for the other brothers.

Every time I find it more difficult to justify coming to these events. Neither being a speaker or moderator has allowed me to win a project. I keep doing it to maintain my influence and keep informed my followers on social networks, but I already tell you that physical and economic effort is not justifiable.

The organization this year has sought speakers that mix vendors presentations with success stories of clients. But this year neither of them was able to raise this event.

The few large IT firms present such as Microsoft, SAP or Oracle are on the side of the father "AI" although they show demos IoT many times repeated.

The discussions of the first years of the IoT boom revolved around connectivity, security, IoT platforms, even business models. Now, nobody is interested in these matters anymore. I am sorry for my many friends and myself advising in these areas, but all the fish has sold in West Europe.

Nor have the great integrators been present here. Those who should have implemented IoT solutions for years but never risked investing and continue to squeeze clients with digitalization projects, cloud migration projects, products updates and customized developments. I believe most of them have done a disservice to the acceleration of the IoT.

There was no great IoT news during the event. Perhaps the most important announcement was given by Marc Overton who took advantage of his presentation to announce the recent collaboration agreement between Sierra Wireless and Microsoft to claim industry’s first full-stack IoT offerings. Something that happened far away from here.

As for my sessions, they mixed IoT and Blockchain, something that would have guaranteed success for attendees two years ago or last year but that did not arouse great enthusiasm this year. It is evident that they are becoming a commodity. Something that is not bad, since we would stop speculating about possible use cases and we could be using transparent in our lives and businesses.

Do not worry, the life of IoT events continues, and so this week there are three more:

I believe that Organizers and exhibitors need to try to reinvent the IoT events to make more attractive to visitors and generate qualified leads. We need to see an IoT event where IoT is present in every corner of the floor, in every stage, in every service (cafeteria, rest rooms, transportation, etc). We need to breath IoT every minute.

Otherwise the IoT events will continue driving away visitors and exhibitors and 'Saturn (AI) Devouring a Son (IoT).'

Thanks you all for follow me and read my articles.

Read more…

The range and depth of applications dependent on IoT sensors continues to swell – from collecting real-time data on the floors of smart factories, to monitoring supply chains, to enabling smart cities, to tracking our health and wellness behaviors. The networks utilizing IoT sensors are capable of providing critical insights into the innerworkings of vast systems, empowering engineers to take better informed actions and ultimately introduce far greater efficiency, safety, and performance into these ecosystems. 

One outsized example of this: IoT sensors can support predictive maintenance by detecting data anomalies that deviate from baseline behavior and that suggest potential mechanical failures – thus enabling an IoT-fueled organization to repair or replace components before issues become serious or downtime occurs. Because IoT sensors provide such a tremendous amount of data pertaining to each particular piece of equipment when in good working condition, anomalies in that same data can clearly indicate issues.

Looking at this from a data science perspective, anomalies are rare events which cannot be classified using currently available data examples; anomalies can also come from cybersecurity threats, or fraudulent transactions. It is therefore vital to the integrity of IoT systems to have solutions in place for detecting these anomalies and taking preventative action. Anomaly detection systems require a technology stack that folds in solutions for machine learning, statistical analysis, algorithm optimization, and data-layer technologies that can ingest, process, analyze, disseminate, and store streaming data from myriad IoT sources.

But that said, actually creating an IoT anomaly detection system remains especially challenging given the large-scale nature inherent to IoT environments, where millions or even billions of data events occur daily. To be successful, the data-layer technologies supporting an IoT anomaly detection system must be capable of meeting the scalability, computational, and performance needs fundamental to a successful IoT deployment.

I don’t work for a company that sells anomaly detection, but I – along with colleagues on our engineering team – recently created an experimental anomaly detection solution to see if it could stand up to the specific needs of large-scale IoT environments using pure open source data-layer technologies (in their 100% open source form). The testing utilized Apache Kafka and Apache Cassandra to produce an architecture capable of delivering the features required for IoT anomaly detection technology from the perspectives of scalability, performance, and realistic cost effectiveness. In addition to matching up against these attributes, Kafka and Cassandra are highly compatible and complementary technologies that lend themselves to being used in tandem. Not fully knowing what to expect, we went to work.

In our experiment, Kafka, Cassandra, and our anomaly detection application are combined in a Lambda architecture, with Kafka and our streaming data pipeline serving as the speed layer, and Cassandra acting as the batch and serving layer. (See full details on GitHub, here.) Kafka enables rapid and scalable ingestion of streaming data, while leveraging a “store and forward” technique that acts as a buffer for ensuring that Cassandra is not overwhelmed when data surges spike. At the same time, Cassandra provides a linearly scalable, write-optimized database well-suited to storing the high-velocity streaming data produced by IoT environments. The experiment also leveraged Kubernetes on AWS EKS, to provide automation for the experimental application’s provisioning, deployment, and scaling. 

We progressed through the development of our anomaly detection application test using an incremental approach, continually optimizing capabilities, monitoring, debugging, refining, and so on. Then we tested scale: 19 billion real-time events per day were processed, enough to satisfy the requirements of most any IoT use case out there. Achieving this result meant scaling out the application from three to 48 Cassandra nodes, while utilizing 574 CPU cores across Cassandra, Kafka, and Kubernetes clusters. It also included maintaining a peak 2.3 million writes per second into Kafka, for a sustainable 220,000 anomaly checks per second.

In completing this experiment, we’ve demonstrated a method that IoT-centric organizations can use for themselves in building a highly scalable, performant, and affordable anomaly detection application for IoT use cases, fueled by leveraging the unique advantages offered by pure open source Apache Kafka and Cassandra at the all-important data layer.

Read more…

Change is inevitable. People repeatedly ask me, “What is going to change in real estate business in upcoming years?” I believe that the widespread escalation of artificial intelligence, big data, and predictive analysis provides more vivid information about a location’s future challenges and opportunities. Currently, there is a staggering amount of user-generated content for land records in the form of paper files, scanned PDFs, and more. According to Forbes, Big Data adoption in enterprises reached 59% in 2018 with a CAGR of 36%.

Though the telecommunication, health care, and investment industries were among the firsts to invest in alternative data, the real estate market is now becoming more transparent using big data. It helps the buyers to get the practical knowledge about the location like past market trends, nearby places, future possible changes in the area, and more, which reduces the investment risks.

What changed in real estate with big data?
Whether it is about designing an office or home that suits the requirements of the tenant, analyzing the damage to a property after a storm, or providing history and future growth of a particular location to the prospective buyer, big data is thoroughly transforming these essential tasks of real estate industry.
Big data has opened both the quantity and quality of the available data in the property business.

National Association of REALTORS® Research Group published a real estate report of 2018, in which they noted below statistics:
• 22% of buyers read newspaper ads to search a home in 1981, while in 2018, 44% of total buyers did an online search first.
• A typical buyer used the website or mobile app to look at property photos, nearby locations, and related information while searching for the properties.
• 76% of all buyers found home on their mobile devices.

Revolution in the real estate field using big data
The concept of using data brought the revolution in terms of providing real-time traffic status, proximity trackers, places for late night activities like parks, and a plethora of user reviews that abolishes the room for any confusion about the property. Big data works on facts and figures that empowers both buyer and seller for more secure deals.

Final evaluation: Big data analytics helps to remove human error while analyzing the property value by applying the latest demographic, economic, and geographical insights. The use of big data with machine learning creates an automated evaluation model as an alternative to traditional real estate appraisals to let the buyer and seller aware of their decisions.

Finer property trading: A data-driven approach helps to make better decisions for buying and selling lands & buildings. Builders can create a healthier plan for residential or industrial units. Big Data incorporation provides relief to the inexperienced sellers and buyers who are at the initial stages of property dealing.
Finance transformation: The potential investors can make better financial decisions with the help of fetched data from public and private sources. The buyer can quickly analyze the physical structure condition, the last renovation details, the reliability of the owner, and the price-worth set for the property. Moreover, the digitization reduces the paperwork, which lowers the cost and helps in saving the environment.

Can big data become the future of the real estate industry?
Along with refining the business and trade decisions, big data analytics and its related technology help to improve the daily lifestyle of the buyers by providing the right information for the properties they are interested in. However, collecting enormous data and building accurate advanced analytics algorithms is a time consuming and arduous task. Even a top-rated real estate website development company faces the challenge to capture the data value from various industry segments to create advanced analytics that establishes straightforward processes for data governance, interpretation and then helps make effective data-driven decisions.

However, the future of the real estate industry with big data is pretty promising for both sellers and buyers. It will undoubtedly lower the obstructions that come along in the way of searching and selling a property and make the finding of the right place for living or working much faster.

Expanding the geographical information system through location intelligence, using IOT (Internet of Things) to connect and exchange data, and mapping air quality through integrated air quality sensor devices are the next big things in real estate business. The integration of big data is not meant to replace human behavior truly; instead, it helps to make better decisions using realistic data points with subjective inputs from the human.

Read more…

Considering that the IoT is in its infancy and due to the last years wasted in predictions that have not been fulfilled, in disappointing statistics of successful projects and with most companies without clear strategies, it is normal to think that R & D is today so necessary for boost and accelerate this increasingly sceptical market.

R&D should be an essential part of bringing innovation to any company via IoT projects. And though we can all agree how important R&D is, it requires a great deal of experience, senior experts, and specific toolsets—resources that not every company can say they have handy.

However, there is a risk when deriving the strategic decisions that the executive directors consider to be technological towards the R & D departments. Many times, oblivious to the reality of the markets, those responsible for R & D with the invaluable aid of the subsidies of the different Administrations, they launch to develop products and technologies for problems that do not exist, just for the fact of obtaining recognition or to continue living without pressures of the Top Management. I am enemy of granted subsidies granted most of the time by unqualified Administration organisms that does not understand that need to prevail the utility, the business model, the business case and the commercialization over the innovation that R & D said to be developed.

Now, if we ask the sellers of IoT technology, products and services, they may not be so happy with the idea of having to talk with the R & D areas instead of with other areas of the company more likely to buy. Most time, R &D departments decide to do it themselves. Vendors know, that with great probability, they will not to close deals due to lack of budget of the R &D or the low visibility of this area by the rest of the departments of the company.

The Importance of R&D for the Internet of Things

Innovation in IoT is a major competitive differentiator. See below some advices to have a decisive advantage over competitors:

  • IoT-focused companies need to invest in R&D to keep up with the rapidly changing and expanding market. It is important that an organization’s R&D iteration turn times are quick, otherwise the company is not going to be able to keep pace with the expected IoT market growth. However, it’s not enough to simply speed up R&D—innovative IoT firms, both start-ups and established companies, must also make sure their R&D processes are extremely reliable.
  • You can’t solve R&D speed issues just by increasing budget.
  • Executives must maintain strong, steady communication with R&D regarding the department’s priorities over a particular time frame and how progress will be measured.
  • Guidelines are invaluable: The more structured and streamlined R&D procedures are, the better IoT companies will be able to move from conception to delivery.
  • Design innovative IoT products but accelerate time to market.
  • Internal collaboration: R&D team should share real-time data across internal departments to spur intelligent product design
  • External collaboration: Connect with customers and partners to ensure success
  • Differentiation: Drive overall business value with IoT.

 

 

Outsource or not Outsource R & D for your IoT project

Just like any other technology, IoT products and solutions require thorough research and development, and it better be done by professionals. Despite the noise generated by analysts and companies around the IoT, the reality is that there have not been many IoT projects and therefore it is not easy to find good professionals with proven experience in IoT to hire.

When I think of Outsourcing IoT projects, Eastern European and Indian companies immediately come to my mind. No doubt because the R & D talent seems to be cheaper there. Spain could also be a country to outsource IoT, but at the moment I do not see it.

The benefits of Outsourcing R&D for IoT Projects:

  • Expertise and an Eye for Innovation
  • Bring an IoT Project to Market Faster
  • Optimize Your Costs
  • Control and Manage Risks

I am not sure about the quality of most of these companies or the experience of their teams in the development of IoT products or in the implementation of IoT projects, but there is no doubt that there are benefits to Outsource R & D for some IoT Projects. You should select any of these companies after a careful evaluation.

Recommendation: Do not stop your IoT projects if you do not have the skills and professionals in house. Luckily, there are companies who offer outsourcing R&D for IoT projects.

Note: Remember I can help you to identify and qualify the most suitable Outsource R&D for your IoT project.

Spain is not different in R & D for IoT

I have not believed in R & D in Spain for years. There are exceptions without a doubt, but it seems evident that the prosperity and welfare of Spain is not due to our R & D. Fortunately we have sun and beach and a lot of brick to put in houses that are not sold because of high prices and low wages.

With the entry into the EU, I thought that we had great markets open to us. I was also optimistic that we would have great opportunities in the Latin American market, thanks to the fact that our research and development capacity would have been consolidated effectively in our companies and universities because it would be profitable and worldwide recognized.

But it has not been that way. The technology developed in Spain and more specifically that relating to the IoT has little chance of being commercialized in France, Germany and not to mention in the UK. If we add the development gap of the countries of South America and that our local market is averse to technological risk, it is difficult to flourish R & D in IoT or Industry 4.0 here in our lovely Spain.

That does not mean that we do not have public R & D budgets for these areas. What happens is that the same thing that happened during the last 30 years has happened. The incentives and aids are few and for the most part used to finance large companies with little return to society. There is no rigorous control of the aid granted and, above all, there is no plan to encourage the local and global marketing of the products developed with the talent of our scientists and researchers.

I have stopped believing and trusting in our successive Governments for the change in R & D but there are exceptions that are worthwhile to follow and work with them. For this reason, I continue help them demonstrate that “SPAIN CAN BE DIFFERENT”.

Key Takeaway

After years of unfulfilled expectations, companies are sceptical of the potential growth of the IoT market or the benefits in their business. R&D department can be a cure to boost IoT initiatives but also a poison to kill IoT initiatives.

 

IoT may have started in R&D, but their benefits don’t have to end there. To drive overall business value, it’s important to share IoT data – both internally and externally. Facilitating open collaboration, discovering new ways to innovate products, and accelerating time to market, you can differentiate R&D and your business.

As fast turn times and reliability becomes a focal part of companies’ R&D processes, these companies will be well-positioned to thrive within the IoT market.

Thanks for your Likes and Comments

Read more…

Digital Transformation is now a number one priority for many businesses. Over the past two years, businesses have put increased focus on digitally transforming their brands from the inside out.

 It is an ongoing process of change based on the market and the needs of the customers. To deliver this change successfully, there is a need to establish a clear vision with objectives & expected outcomes.

 Simply put vision is a picture of how the organization will look like after stipulated time.

 Importance of Vision:

 ·      Provides the big picture and clearly describes what your organization will be like in several years

·      Clarifies the right direction of change to ensure that everyone is moving forward

·      Inspires everyone to take action in the set direction

·      Synchronizes the action of different people. It provides self-sufficiency to individuals and teams while reducing conflicts.

 

There are some do’s & don’ts for setting up a vision:

 

Do’s:

·      Develop a Vision that is in line with the company growth strategy.

·      Connect with partners who support your vision, not only third-party technology vendors but your own customers and employees

·      It should create the sense of urgency

·      Link vision to specific goals in future

·      Describe how the company will actually change

·      How will you engage differently with customers?

 

Don’ts:

·      It remains only as floor branding and marketing

·      Restricting the employees with set vision & its boundaries

·      Vision is way too complicated, vague and lacking actionable initiatives

·      Poor communication of the vision beyond the involved few stakeholders

·      Setup the vision before analyzing current systems and operations

 

Vision brings in the cultural change that is required for Digital Transformation. People are extremely important in this roller-coaster ride. 

  

When the digital vision is not clear, that affects the speed of adoption of both senior management and middle management. People will not act just because technology is ready. 

 Some successful vision statements, which helped companies in their digital transformation:

 Google - To provide access to the world’s information in one click

 Amazon - To be Earth’s most customer-centric company, where customers can find and discover anything they might want to buy online

 Walmart - To be the best retailer in the hearts and minds of consumers and employees

 GE - To become the world’s premier digital industrial company, transforming the industry with software-defined machines and solutions that are connected, responsive and predictive

 Ikea – To create a better everyday life for the many people

 Southwest Airlines - To become the world’s most loved, most flown, and most profitable airline

 

A top-down vision is a cornerstone & catalyst for digital transformation. These and many companies have created great vision statements to survive in this digital age.

 
 
 
Read more…
RSS
Email me when there are new items in this category –

Upcoming IoT Events

More IoT News

How wireless charging works

Wireless charging technology has been around for over 100 years, but it has only recently found mainstream practical use for powering electronic devices like smartphones. Learn how this technology works and what advancements we may see in the future.

IoT Career Opportunities