Subscribe to our Newsletter | To Post On IoT Central, Click here


Data (117)

The other day we were discussing and debating on a solution to be designed to meet the sensing needs for access, temperature and humidity for some devices with form part of a networking infrastructure ecosystem. The idea was to build a IoT based system for monitoring and control.

The design discussions veered around the ability to collect data from the sensors and the types of short range communication protocols which could be deployed .Questions and clarification were raised if we were compliant to use short range communication protocols in sensitive areas as customer Data Centres which are like owned and  that they may be custodians of data of their end customers .

The hidden perils of data acquisition and data ownership reared its head which needed to be addressed as we moved forward .

The data which is acquired by sensors is essentially Machine Generated Data (MGD) .This post will  dwell on the subject of data ownership of MGD as follows :

  1. Sensors ( Data Acquisition and Communication )
  2. Machine Generated Data
  3. The Lifecycle of the MGD and the Ownership Paradigm
  4. Who should be the owner of the MGD?
  5. Sensors (Data Acquisition and Communication):

In the IoT ecosystem, the physical computing frontier is managed by the Sensors .Sensors essentially include three fundamental functions:

  • The act of sensing and acquiring the data
  • Communication of the data through appropriate protocols to communicate their readings to internet cloud services for further aggregation and trend analysis
  • The activity is energised by power supply,

The additional functions would include processing/system management and user interface

The Digital Computing part comprises the IoT application. This   is determined by the types of sensors, cloud connectivity, power sources, and (optionally) user interface used in an IoT sensor device. The following diagram showcases the primacy of sensors in a typical IoT Ecosystem.

When making physical measurements such as temperature, strain, or pressure, we need a sensor to convert the physical properties into an electrical signal, usually voltage. Then, the signal must be converted to the proper amplitude and filtered for noise before being digitized, displayed, stored, or used to make a decision. Data-acquisition systems use ADCs (analog-to-digital converters) to digitize the signals with adequate signal conditioning.

Sensor data communication to the cloud can be done in multiple ways from wireline to wireless communication of various complexities. While wire line communication has some important benefits (such as reliability, privacy, and power delivery over the same wires), wireless communication is the technology that is the key catalyst in the majority of IoT applications that were not previously practical with wired systems. Reliability, channel security, long range, low power consumption, ease of use, and low cost are now reaching new levels, previously thought infeasible

Some examples of recently popular IoT wireless communication types: Wi-Fi, Bluetooth Low Energy (aka Smart), Zigbee (and other mesh 802.15.4 variants), cellular, LPWA (Low-Power, Wide-Area network variants: Ingenu, LoRaWAN, Sigfox, NB-LTE, Weightless), and Iridium satellite.

  1. Machine Generated Data (MGD)  :

Sensor data is the integral component of the increasing reality of the Internet of Things (IoT) environment. With IpV6 , anything can be outfitted with a unique ip address with  the capacity to transfer data over a network. Sensor data  is essentially Machine Generated Data . MGD is that is produced entirely by devices / machines though an event or observation.

Here we would define human-generated data, what is recorded is the direct result of human choices. Examples are buying on the web, making an inquiry, filling in a form , making payments with corresponding updates on database. We would not consider the ownership of this data in the post and would be limiting our post to MGD.

  1. The journey of the MCD and the Ownership Paradigm:

The different phases exist in the typical  journey of Machine Generated Data .

Capture and Acquisition of Data– This is a machine or a device based function through signal reception.

Processing and Synthesis of the Data – This is a function which ensures enrichment and integration of Data

Publication of the Data – This is done by expert systems and analysts who work on exception management , triggers and trends .

Usage of Data – The action which need to be taken on the processed and reported information is used by the end user .

Archival and Purging of Data – This function is essentially done by the data maintenance team with supervision.

Now let us dwell on the Ownership Paradigms .They range from the origination of data , adding value to the data through make over , monetising of data through insights generated. Interestingly, let us explore if there is any conclusive method for determining how ownership should be assigned. A number of players may be involved in the journey of the data (e.g. the user, hardware manufacturer, application developer, provider of database architecture and the purchaser of data, each having an equal lay of the claim in different stages of this journey )

  1. Who should be the owner of MGD :

Let me share the multiple and conflicting views  :

  1. The owner of the device which records Data .In essence, the owner of machine-generated data(MGD), is the entity who holds title to the device that recordw the data. In other words, the entity that owns the IoT device also owns the data produced by that device.

But there could be a  lack of clarity if the device is leased rather than owned.. When real-world constructs such as lease holdings of (say servers) come into play, it indeed gets complex and even murky.

  1. Who should be the owner of MGD :

Let me share the multiple and conflicting views  :

The owner of the device which records Data .In essence, the owner of machine-generated data(MGD), is the entity who holds title to the device that recordw the data. In other words, the entity that owns the IoT device also owns the data produced by that device.

But there could be a  lack of clarity if the device is leased rather than owned.. When real-world constructs such as lease holdings of (say servers) come into play, it indeed gets complex and even murky.

The owner is the user of the Data :The other dimension is data may be owned by one party and controlled by another. Possession of data does not necessarily equate to title. Through possession there is control. Title is ownership. Referred to as usage rights, each time data sets are copied, recopied and transmitted, control of the data follows it. There could be cases where the owner of the device could be the user of the data.

 The maker of the Database who essentially invests in aggregating, processing and making the data usable is the owner of the Data :This has a number of buyers of this paradigm . The owner of a smart thermostat does not, for example, own the data about how he uses it. The only thing that is ‘ownable’ is an aggregation or collection of such data provided there has been a relevant investment in carrying out that aggregation or collection (the individual user is very unlikely to have made that investment). The owner here could be the Home automation company . The value which could be generated though this investment could be producing market intelligence , exploiting the insights form data to build market presence and differentiation ,

The purchaser of Data could be the owner of the Data: An auto insurance company could buy the  vehicle generated data ( from the makers of automobiles )  and could design a product for  targeted offerings to specific market segments based on say driving behaviour patterns  and  demographics  .This may not be as easy as this seems – refer the url  :  http://joebarkai.com/who-owns-car-data/ which states that the owner of the vehicle and not the maker of the car owns the data collected from the electronic data recorder .

The value chain of who owns the data can be a complex one with multiple claimants . As one aggregates more sources it just gets more complicated. A good example is in the making of smart cities. The sources of data can be from multiple layers and operational areas . City authorities would be making the effort to make use of the data in areas of waste management , traffic congestion , air pollution etc . So does the city authority own the data?

My personal take is , if someone in the MGD value chain  is making the data usable for  a larger good , and  in the process may monetize the data to cover the investments , that entity deserves to  be the owner of the data  as that is where value is generated .


Posted on August 14, 2017

Read more…

Why Data Visualization Matters Now?

Data Visualization is not new, it has been around in various forms for more than thousands of years. 
Ancient Egyptians used symbolic paintings, drawn on walls & pottery, to tell timeless stories of their culture for generations to come.
Human brain understands the information via pictures more easily than writing sentences, essays, spreadsheets etc. You must have seen traffic symbols while driving…why do they have only 1 picture instead of writing a whole sentence like school ahead, deer crossing or narrow bridge? Because you as driver can grasp the image faster while keeping your eyes on the road.
Over last 25 years technology has given us popular methods like line, bar, and pie charts showing company progress in different forms, which still dominate the boardrooms.
Data visualization has become a fundamental discipline as it enables more and more businesses and decision makers to see big data and analytics presented visually. It helps identify the exact area that needs attention or improvement than leaving it to the leaders to interpret as they want.
Until recently making sense of all of that raw data was too daunting for most, but recent computing developments have created new tools like Tableau, Qlik with striking visual techniques, especially for use online, including the use of animations.
There is a wealth of information hiding in the data in your database that is just waiting to be discovered. Even historical complicated data collected from disparate sources start to make sense when shown pictorially. Data Scientists do a fantastic job of analyzing this data using machine learning, finding relationship but communicating the story to others is the last milestone.
In today's Digital age, we as consumers generate tons of data every day and businesses want to use that for hyper-personalization, sending right offers to us by collecting, storing & analyzing this data. Data Visualization is the necessary ingredient to bring power of this big data to mainstream.
It is hard to tell how the data behaves in the data table. Only when we apply visualization via graphs or charts, we get a clear picture how the data behaves. 
Data visualization allows us to quickly interpret the data and adjust different variables to see their effect and technology is increasingly making it easier for us to do so. 
The best data visualizations are ones that expose something new about the underlying patterns and relationships contained within the data. Data Visualization brings multiple advantages such as showing the big picture quickly with simplicity for further action.
Finally as they say “A picture is worth a thousand words” and it is much important when you are trying to show the relationships within the data.
Data is the new oil, but it is crude, and cannot really be used unless it is refined with visualization to bring the new gold nuggets
Read more…

Go Digital or Die - What will you chose?

Just before 2007, we didn't have access to smartphones like iPhone or social media apps like Instagram, Whatsapp and even email was much more limited only to desktops. 
Zoom in to Today - Digital Transformation has revolutionized everything we do. It has been one of the hottest topics for every business. It’s a subject which keeps the CEOs awake. 
Today it is Digital or Die.
Digital is happening fast and forcefully, whether businesses are ready for it or not. You can’t hide from it. There is a possibility that five of out ten businesses like Blockbuster, Kodak and Borders that will become digital dinosaur because of their lack of ability to adapt.
Going digital is not about moving to a specific technology like Cloud or Big DataAnalytics but it is really about  accommodating a change of how technology enables business. Billions of people across the world are attached to a global high-speed, real-time Internet. 
There are over 7+ billion mobile connections worldwide. In couple of years, Millennials will make up half of the working population. They expect highly personalized products and services, they want instant-gratification and they areomni-channel, online anytime, anyplace and any device. Using Mobile firstas your strategy to go digital is no-brainer.
As technology becomes an increasing part of our everyday lives, it also becomes a vital part of business strategy to become more efficient in customer service and disrupt the market with exemplary customer experience.
Business models are changing, from products to services and have to have a sharp focus of extraordinary customer experience with digital, like Apple. To transform to digital, companies must place customer experience at the center of digital strategy.
Customers really want access to support via digital channels without the intervention of customer reps, unless they don’t find what they are looking for at the first point of contact or something goes wrong with the product which needs to be fixed quickly.
Burberry was one of the first players to turn their fashion shows into digital happenings. The company used the buzz around the events to lure its customer base, interact with and strengthen relationships with customers, and attract new ones.
Nike had moved on from a sports apparel company to fitness driven personalized wearables like FuelBand manufacturer.
Apple, Disney, Nordstrom and Nestle are just a handful of the household names that have mastered digital.
It’s a never-ending program of improvement. As important as the technologies and channels, are the employee training and mastering the skill set that empowers them to thrive in this more integrated and ‘digital first’ environment. 
Working from home is adopted by many organizations and moving to cloud based systems enables your employees to do that more effectively. They can access all relevant work content and more. 
Digital should not be bolt-on to home grown age old systems but must be central theme for every touch point to customer and internal processes.
Every company is a technology company today. The pace of digital is rising exponentially, making it very difficult to be the leaders in market. Your thereat is not your traditional competitor but someone who comes up with innovative ideas to steal your customers.
As Charles Darvin once said - It is not the strongest of the species that survives, nor the most intelligent that survives, it is the one that is the most adaptable to change

It is Digital or Die. You are an easy prey if you don’t change.

Read more…

How to measure Digital Transformation maturity?

The digital revolution has created significant opportunities and threats for every industry. Companies that cannot or do not make significant changes faster to their business model in response to a disruption are unlikely to survive
It is extremely important to do digital maturity assessment before embarking on digital transformation.
Digital leaders must respond to the clear and present threat of digital disruption by transforming their businesses. They must embed digital capabilities into the very heart of their business, making digital a core competency, not a bolt-on. Creating lasting transformative digital capabilities requires you to build a customer-centric culture within your organization.
This requires new capabilities that organizations need to acquire and develop which include disruptive technologies like Big Data,AnalyticsInternet of Things, newer business models.
Digital maturity model measures readiness of the organization to attain higher value in digital customer engagement, digital operations or digital services. It helps in incremental adoption of digital technologies and processes to drive competitive strategies, greater operationally agility and respond to rapidly changing market conditions.
Business can use the maturity model to define the roadmap, measuring progress on the milestones.
The levels of maturity can be defined as per multiple reports available and

adopt the ones which makes more sense to your business.

·     Level 1 : Project based solutions are developed for a particular problem, no integration to home grown systems, unaware of risks and opportunities
·     Level 2 : Departmentalized projects but still not known to organization, little integration
·     Level 3 : Solutions are shared between the departments for a common business problem, better integration
·     Level 4 : Organization wide efforts of digital, highly integrated, adaptive culture for fail fast  and improve
·     Level 5 : Driven by CXOs, customer centric and complete transformation changes happen to organization
Here are the 7 categories on which business should ask questions to all the stakeholders to gauge the maturity of Digital Transformation and identify the improvement and priorities.
1.   Strategy & Roadmap - how the business operates or transforms to increase its competitive advantage through digital initiatives which are embedded within the overall business strategy
2.   Customer – Are you providing experience to customers on theirpreferred channels, online, offline, anytime on any device
3.   Technology – Relevant tools and technologies to make data available across all the systems
4.   Culture – Do you have the organization structure and culture to drive the digital top down
5.   Operations – Digitizing & automating the processes to enhance business efficiency and effectiveness.
6.   Partners – Are you utilizing right partners to augment your expertise
7.   Innovation – How employees are encouraged to bring the continuous innovation to how they serve the customers
Finally you know when you are digital transformed?
·             When there is nobody having “Digital” in their title
·             There is no marketing focused on digital within the organization
·             There is no separate digital strategy than company’s business strategy
Read more…

How Augmented Reality is improving Digital Age!!

Augmented reality (AR) means amplified reality with graphics, sounds, haptic feedback and smell to the natural world as it exists. Virtual objects and information are displayed on top of the physical world, will make its way to our phones.
Just like the Internet of Things & Big dataAnalytics, augmented reality is going mainstream.Search engines are already expanding on image search, allowing you to point your camera at something and search for information based on what the lens takes in.
Both video games and cell phones are driving & exploiting the development of augmented reality. Everyone from tourists to someone looking for the closest McDonalds can now benefit from the ability to place computer-generated graphics in their field of vision.
Unlike Virtual Reality, which creates a totally artificial environment like you are on the top of Eiffel tower or looking at Taj Mahal right now from your living room couch, augmented reality uses the existing environment and overlays new information on top of it.
Pokemon Go released in 2016 was the most successful game to use AR to superimpose Pokemon on physical background and all children and adults were mad chasing them in real world.
Recent innovation, Heads-Up Display (HUDs) glass with AR superimpose crystal-clear driving directions on top of the real world so you can easily navigate without taking your eyes off the road. It’s like Pokemon Go but all the adorable monsters have been replaced by driving directions.
Digital Marketing will get a boost with AR.  A new augmented reality campaign from Pepsi Max have stunned people in London, giving experiences like a prowling tiger, a meteor crashing, an alien tentacle grabbing people on the street, the bus stop window serves as a scarily realistic screen to bring these scenarios to life.
With AR, you can view your living room on a smartphone and see how virtual furniture would fit into the real world and decide what is good to buy.
Artificial Intelligence has brought virtual assistants like Siri, Alexa, Cortana, Google to life but AR can put a face to it and beef up the experience. Microsoft Hololens is currently leading the AR headset race. 
There are several industries that will benefit from AR applications, including healthcare, tourism and entertainment. However, it is retailers who are the ones to use it more. With AR, your retail website is brought to life with a 360° online presentation of your store. In-store, augmented reality can easily display information and other visuals on packaged items with a simple image scan.
Lego’s “Digital Box” Provides Customers with an Interactive 3D Digital Experience. Aside from kiosks in stores, soon they will have mobile devices to be equipped with the capability to instantly bring up relevant information about any product in real-time.
Fashion retailer Forever 21 had put up a giant billboard which features a model walking in front of an image of the crowd below. The model occasionally leans over, and pluck someone out of the crowd. Sometimes, she drops them in her bag and happily walks off.
French cosmetic super chain Sephora is one of the leaders in AR marketing area. Their mobile apps & AR mirrors allow people to see how clothing, jewelry, and accessories look on them.
Augmented Reality cleverly blurs the line between the digital and the real by way of specially designed apps and unique visual ‘markers’ to intuitively visualise 3D virtual forms in physical realms.
We are still in the very early days of AR, and all of the future possibilities are difficult to imagine at this point. As this technology advances and gets more affordable, it will be easier for businesses to take advantage of it. AR helps to bridge the divide between the digital and offline world.
Read more…

With its growing prevalence, the Internet of Things is ushering in a new form of ecommerce – the Commerce of Things, where everyday objects are internet connected and capable of initiating a series of purchases on their own. This new way of buying and selling online is radically changing traditional ecommerce rules and creating a new set of challenges for companies. In this new world of commerce, the product sale is no longer just a transaction; it’s the beginning of an ongoing relationship between brands and customers. Successful online brands are focused on nurturing this relationship – and taking deliberate steps to turn transactional customers into loyal members. 

There is a subtle but critical difference between a repeat customer and a member. Understanding this difference is the key to succeeding in an environment that is swiftly becoming a hyper-connected network of consumers who value the access and amenities that come with membership.

How do you build these relationships?

1.)   Create lasting relationships to make members out of customers. Members share the experience and the story of the brand, rather than just execute a basic business transaction or product purchase. For years, Disney, where everything is a show and employees are cast members, has stood by the adage “Be Our Guest,” calling to their customers in a more intimate, personable way. Cable companies refer to their customers as “subscribers;” LinkedIn has always called users “members.”

To move customers from “transaction to membership” on a relationship continuum, companies must provide extra, incremental value that replaces pure monetary benefits with more intangible rewards of being, in Disney’s case, a guest.

2.)   Use data and metrics to strengthen relationships. Once a company starts to grow its base of members, a whole new set of metrics becomes the benchmark for evaluating the customer relationship.

Asking one simple question, “What is a subscriber’s actual usage?” can yield revelations regarding whether someone is a transactional customer or an invested member. For example, January is the peak season for signing new members at fitness centers around the country. Are those who sign up then really members? If they are not actually getting personal value out of their membership, then the relationship remains transactional and fleeting at best.

Good data is powerful. If the data shows customers are not acting like members, then a company can follow up to discern the true nature of the relationship and figure out how it can become more valuable to the customer. This creates a win for both the customer and the company. 

Delta Airlines’ SkyMiles program, for example, makes great use of data to cut through barriers that could otherwise prevent strong relationships from developing. When members call in, the automated phone system quickly recognizes callers based on their phone numbers, addresses them by name and asks about recent or upcoming trips.

Personalizing interactions, continually making improvements and utilizing customer insights are key in this new, Commerce of Things world. Taking these steps can help transform transactional customers into loyal members – and take an online business to the next level.

Read more…
Digital Transformation is a phenomenon that every company must deal with and it is a reality. It is a top priority for boardroom executives. Most companies know that digital transformation is vital to survival.
Customers are demanding new instant experiences, partners want more visibility & greater access, and employees want greater convenience and work from anywhere.
Many companies are claiming that they have started it but those initiatives are isolated or tactical.  If not executed properly the only result is failure.
As you will look at weather reports, travel times, flight connections, hotel reviews before going on holiday journey, similarly you will need a road map for navigation from point A to point B.
The digital roadmap has 3 main leavers:
·        Strategy: to make it completely clear how digital transformation support overall business strategy,  define 30,60,90 days & beyond plan for measurements
·        Technology:  what are the tools and technologies you will need to go from current state to future state – big dataanalyticsmobilityIoTcloud,microservices etc, dedicated hardware, software innovation labs, standards, guidelines, security
·        Processes & People: who are the leaders to drive the digital, what is the organization structure, operational integration of all processes, how to change to customer centric culture, training to employees and empower them
It is all about starting with baby steps, gaining trust from business by delivering quick value and celebrating and marketing the successes to generate internal buzz.
The roadmap begins with a digital vision, mission & assessment of the digital maturity of your business today. Once the assessment and vision are completed, then next step it becomes possible to identify the systemic gaps that need to be filled. Then those steps can be built into the roadmap.
Here are the broad milestones of a successful digital transformation roadmap:
·        Boardroom/Senior management buy in, decision to go Digital and drive it across organization
·        Cultural alignment & commitment to Digital from board of directors to entry level employees
·        Identify and assess the current state of the organization on Digital
·        Put Customer first - Prepare customer journey maps to identify all the touch points with organization
·        Find out pain areas at each touch point and respective stakeholders involved who can correct them
·        Prioritize and break them in small projects to adopt fail fast approach. If anything did not work, just accept the failure, publish the learnings and move on.
·        Seek partners to help you in your journey, who take shared risk and shared rewards
·        Deploy agile implementation approach for quick results
·        Market your successes to whole world and repeat the process for next pain area
Transformation programs may be massive and take place over multiple years, but understanding the ROI for each phase helps keep a multi-year journey on track. With a structured approach, all of the moving parts can be managed and progress sustained throughout this journey.
Finally, you know when you are digital transformed?
·        When there is nobody having “digital” in their title
·        There is no separate digital strategy than company’s business strategy
·        There are no posters or marketing focused on digital within the organization
Enterprises that adapt, evolve and exploit this new digital reality will thrive, while those that do not, will be lost to the sands of time like Dinosaur.
Read more…
Since many embedded devices are deployed outside of the standard enterprise security perimeter, it is critical that security be included in the device itself. Ultimately, some combination of hardware and software may be required. Building protection into the device itself provides a critical security layer whatever options are used. Security must be considered early in the design of a new device or system.
Read more…

What are Digital Twins?

Digital Transformation has brought in all the new concepts and technologies at the hands of consumers and businesses alike.
Digital Twin is one of them. It is a virtual image of your machine or asset, maintained throughout thelife cycle and easily accessible at any time. It involves internet of things connected devices generating real time data in Big Data platform.  This data is further analyzed in the cloud.
With a digital twin, machine manufacturers are able to use the power of digitalization to achieve improved efficiency and quality. This approach helps ensure optimized machine design and smooth operation.
Today, machine intelligence and connectivity to the cloud allows a huge potential of digital twin technology for companies in a variety of industries
Digital Twin allows the asset operator to predict precisely when maintenance will be required based on the unique conditions, experienced by that particular asset.
GE has built a digital wind farm collecting data from turbine sensors, which uses big data and the Industrial Internet to drive down the cost of renewable electricity.
Here are the several advantages of Digital Twin technology:
·        Explore the impact of various design alternatives
·        Do simulations and testing to ensure that product designs will meet requirement
·        Understand how a projected change to a manufacturing process might impact costs or schedule
·        see the current operating status along with any recent alarms and maintenance performed on a machine
·        be instructed on how to perform proper maintenance procedures, for the specific problem they’re addressing
·        Preventing the failure, or anticipating it and doing the required maintenancebefore failure occurs, can shorten outages
Digital twins give airlines a better idea of what happens when a jet flies through a flock of birds, or through dust storms in hot environments.
The digital twin, combined with advanced analytical tools and machine learning, will provide a platform that changes the traditional way of how we look at the analysis of asset’s condition and performance.

It will enable a new generation of advanced predictive analytics.
Read more…

Identifying the Immediate in the Industrial IoT

Manufacturers seek quantifiable ROI before making leap to IIoT implementation

By now, most manufacturers have heard of the promise of the Industrial Internet of Things (IIoT).

In this bold new future of manufacturing, newly installed sensors will collect previously unavailable data on equipment, parts, inventory and even personnel that will then be shared with existing systems in an interconnected “smart” system where machines learn from other machines and executives can analyze reports based on the accumulated data.

By doing so, manufacturers can stamp out inefficiencies, eliminate bottlenecks and ultimately streamline operations to become more competitive and profitable.

However, despite the tremendous potential, there is a palpable hesitation by some in the industry to jump into the deep end of the IIoT pool.

When asked, this hesitation stems from one primary concern: If we invest in IIoT, what specific ROI can we expect and when? How will it streamline my process such that it translates into greater efficiencies and actual revenue in the short and long term?

Although it may come as a surprise, the potential return can actually be identified and quantified prior to any implementation. Furthermore, implementations can be scalable for those that want to start with “baby steps.”

In many cases, this is being facilitated by a new breed of managed service providers dedicated to IIoT that have the expertise to conduct in-plant evaluations that pinpoint a specific, achievable ROI.

These managed service providers can then implement and manage all aspects from end-to-end so manufacturers can focus on core competencies and not becoming IIoT experts. Like their IT counterparts, this can often be done on a monthly fee schedule that minimizes, or eliminates, up-front capital investment costs.


DEFINING IIOT

Despite all the fanfare for the Internet of Things, the truth is many manufacturers still have a less-than-complete understanding of what it is and how it applies to industry.

While it might appear complicated from the outside looking in, IIoT is merely a logical extension of the increasing automation and connectivity that has been a part of the plant environment for decades.

In fact, in some ways many of the component parts and pieces required already exist in a plant or are collected by more manual methods.

However, a core principle of the Industrial “Internet of Things” is to vastly supplement and improve upon the data collected through the integration of sensors in items such as products, equipment, and containers that are integral parts of the process.

In many cases, these sensors provide a tremendous wealth of critical information required to increase efficiency and streamline operations.

Armed with this new information, IIoT then seeks to facilitate machine-to-machine intelligence and interaction so that the system can learn to become more efficient based on the available data points and traffic patterns. In this way, the proverbial “left hand” now knows what the “right hand” is doing.

In addition, the mass of data collected can then be turned into reports that can be analyzed by top executives and operations personnel to provide further insights on ways to increase operational savings and revenue opportunities.

In manufacturing, the net result can impact quality control, predictive maintenance, supply chain traceability and efficiency, sustainable and green practices and even customer service.


BRINGING IT ALL TOGETHER

The difficulty, however, comes from bridging the gap between “here” and “there.”

Organizations need to do more than just collect data; it must be turned into actionable insights that increase productivity, generate savings, or uncover new income streams.

For Pacesetter, a national processor and distributor of flat rolled steel that operates processing facilities in Atlanta, Chicago and Houston, IIoT holds great promise.

“At Pacesetter, there are so many ways we can use sensors to streamline our operation, says CEO Aviva Leebow Wolmer. “I believe we need to be constantly investigating new technologies and figuring out how to integrate them into our business.”

Pacesetter has always been a trendsetter in the industry. Despite offering a commodity product, the company often takes an active role in helping its customers identify ways to streamline operations as well.

The company is currently working with Industrial Intelligence, a managed service provider that offers full, turnkey end-to-end installed IIoT solutions, to install sensors in each of its facilities to increase efficiency by using dashboards that allow management to view information in real time.

“Having access to real-time data from the sensors and being able to log in and see it to figure out the answer to a problem or question so you can make a better decision – that type of access is incredible,” says Leebow Wolmer.

She also appreciates the perspective that an outsider can bring to the table.

“Industrial Intelligence is in so many different manufacturing plants in a given year and they see different things,” explains Leebow Wolmer. “They see what works, what doesn’t, and can provide a better overall solution not just from the IIoT perspective but even best practices.”

For Pacesetter, the move to IIoT has already yielded significant returns.

In a recently completed project, Industrial Intelligence installed sensors designed to track production schedules throughout the plant. The information revealed two bottlenecks: one in which coils were not immediately ready for processing – slowing production – and another where the skids on which they are placed for shipping were often not ready.

By making the status of both coil and skids available for real time monitoring and alerting key personnel when production slowed, Pacesetter was able to push the production schedule through the existing ERP system.

This increased productivity at the Atlanta plant by 30%. Similar implementations in the other two facilities yielded similar increases in productivity.


TAKING THE FIRST STEP

According to Darren Tessitore, COO of Industrial Intelligence, the process of examining the possible ROI begins with a factory walk-through with trained expertise in manufacturing process improvement and IoT engineers that understand the back-end technologies.

A detailed analysis is then prepared, outlining the scope of the recommended IIoT implementation, exact areas and opportunities for improvement and the location of new sensors.

“The analysis gives us the ability to build the ROI,” says Tessitore. “We’re going to know exactly how much money this will make by making the changes. This takes much of the risk out of it so executives are not guessing how it might help.”

Once completed, a company like Industrial Intelligence can then provide a turnkey, end-to-end-solution.

According to Tessitore, this covers the entire gamut: all hardware and software, station monitors, etc.; the building of real-time alerts, reports & analytics; training management on how to use data points to increase profits; and even continuously monitoring and improving the system as needed.

“Unless you’re a huge company, you really don’t have somebody who can come in and guide you and create a cost effective solution to help you compete with the larger players in the space,” says Pacesetter’s Leebow Wolmer. “I think that’s what Industrial Intelligence offers that can’t be created on your own.”

“It’s not a one-size-fits-all approach,” she adds. “They have some things that can give you a little bit of IIoT or they can take an entire factory to a whole new level. By doing this they can be cost effective for a variety of sizes of organizations.”

Read more…

For quite some time, the term “machine learning” and “deep learning” seeped its way to the business language, especially when it is related to Artificial Intelligence (AI), analytics and Big Data. Frankly, the approach directed to AI which provides a great promise with regard to creating self-teaching and autonomous systems that can revolutionize various industries. 

What is Machine Learning (ML)?

One of the subfield of AL is machine learning. Here the basic principle is that machine, collect data and they learn it for themselves. No doubt, this is the most awesome tool of the business’s Artificial Intelligence kit. One of the interesting advantages of the ML is that you can easily apply the training and knowledge received from analyzing huge data set to perform various functions and excelling at them like speech recognition, facial recognition, translation, object recognition, and various other tasks.    

Compared to the hand-coding a given software tool filled with specific instructions which can be used for completing the task, the ML provides a suitable system to understand the pattern by itself and make the required predictions.

What is Deep Learning?

Frankly, a subset of the ML is called as deep learning. Here one utilizes ML techniques for solving various real-life issues, and this is possible by accessing the neural networks which easily help in stimulating the decision-making of human beings. In addition, deep learning is kind of expensive and one will need extensive data sets to train. This is because there are various number of parameters that one might need to have an understanding, possible by learning about the algorithm. Thus, this can be present at the initial stages and create various kinds of false-positives.

To have a fair understanding, let’s check how deep learning algorithm can be used for understanding how a cat looks. So, a huge amount of data set of pictures is used for underlying the basic details which separates the cat from other like panther, cheetah, fox etc.

How Machine Learning And Deep Learning Affects Job

There is a kind of hysteria of doom-and gloom surrounding the machine learning AI. The majority of it is all about how people will be out of work, as there are quite successful stories where machines were able to carry out specific job-related works and bought about extensive results in it.  

Indeed it has become a huge paranoia, but it turns out that machine learning only performs tasks, and not the job. Of course, many tasks constitute a job but ML programs are not much flexible.

However, it doesn’t mean that both machine learning and deep learning will not affect your job, as they have already done and will simply continue to do so. Most importantly, whether it will be a benefit or threat will depend on how you are going to react when you identify it.

No doubt, there are quite a lot of reasons on how white-collar jobs can be a great invitation for deep learning and other related technologies. There are various experts who feel that the professional impact which AI and deep learning along with other automated technologies can drastically affect the work force count.

Conclusion

In short, there have been certain reactions or changes with regard to how machine learning and deep learning brings. It has drastically reduced the role of various professionals who are considered as knowledge gatekeepers. Plus, there has been a positive trend towards proactive and reactive services. 

Read more…

Antarctica inhabits a unique place in the human exploration mythos. The vast expanse of uninhabitable land twice the size of Australia has birthed legendary stories of human perseverance and cautionary tales about the indomitable force of nature. However, since those early years, Antarctica has become a rich research center for all different kinds of data collection – from climate change, to biology, to seismic and more. And although today there are many organizations with field stations running this data collection, the nature of its, well, nature still presents daily challenges that technology has had a hand in helping address.

Can You Send Data Through Snow?

British Antarctic Survey (BAS) – of recent Boaty McBoatface fame – has been entrenched in this brutal region for over 60 years, the BAS endeavors to gather data on the polar environment and search for indicators of global change. Its studies of sediments, ice cores, meteorites, the polar atmosphere and ever-changing ice shelves are vitally important and help predict the global climate of the future. Indeed, the BAS is one of the most essential research institutions in the world.

In addition to two research ships, five aircraft and five research stations, the BAS relies on state of the art data gathering equipment to complete its mission. From GPS equipment to motion and atmospheric sensors, the BAS deploys only the most precise and reliable equipment available to generate data. Reliable equipment is vital because of the exceedingly high cost of shipping and repair in such a remote place.

To collect this data, BAS required a network that could reliably transmit it in what could be considered one of the harshest environments on the planet. This means deploying GPS equipment, motion and atmospheric sensors, radios and more that could stand up to the daily tests.

In order to collect and transport the data in this harsh environment, BAS needed a ruggedized solution that could handle both the freezing temperatures (-58 degrees F in the winer), strong winds and snow accumulation. Additionally, the solution needed to be low power due to the region’s lack of power infrastructure.

 The Application

Halley VI Research Station is a highly advanced platform for global earth, atmospheric and space weather observation. Built on a floating ice shelf in the Weddell Sea, Halley VI is the world’s first re-locatable research facility. It provides scientists with state-of-the-art laboratories and living accommodation, enabling them to study pressing global problems from climate change and sea-level rise to space weather and the ozone hole (Source: BAS website).

The BAS monitors the movement of Brunt Ice Shelf around Halley VI using highly accurate remote field site GPS installations. It employs FreeWave radios at these locations to transmit data from the field sites back to a collection point on the base.

Once there, the data undergoes postprocessing and is sent back to Cambridge, England for analysis. Below are Google Maps representation of the location of the Halley VI Research Station and a satellite image (from 2011) shows the first 9 of the remote GPS systems in relation to Halley VI.

The Problem

Data transport and collection at Halley VI requires highly ruggedized, yet precise and reliable wireless communication systems to be successful. Antarctica is the highest, driest, windiest and coldest region on earth and environmental condition are extremely harsh year round. Temperatures can drop below -50°C (-58 °F) during the winter months.

Winds are predominantly from the east. Strong winds usually pick up the dusty surface snow, reducing visibility to a few meters. Approximately 1.2 meters of snow accumulates each year on the Brunt Ice Shelf and buildings on the surface become covered and eventually crushed by snow.

This part of the ice shelf is also moving westward by approximately 700 meters per year. There is 24-hour darkness for 105 days per year when Halley VI is completely isolated from the outside world by the surrounding sea ice (Source: BAS Website).

Additionally, the components of the wireless ecosystem need to be low power due to the region’s obvious lack of power infrastructure. These field site systems have been designed from ‘off the shelf’ available parts that have been integrated and ‘winterized’ by BAS for Antarctic deployment.

The Solution

The BAS turned to wireless data radios from FreeWave that ensure uptime and that can transport data over ice – typically a hindrance to RF communications. Currently, the network consists of 19 FreeWave 900 MHz radios, each connected to a remote GPS station containing sensors that track the movement of the Brunt Ice Shelf near the Halley VI Research Station.

The highly advanced GPS sensors accurately determine the Shelf’s position and dynamics, before reporting this back to a base station at Halley VI. Throughput consists of a 200 kilobit file over 12 minutes, and the longest range between a field site and the research station is approximately 30 kilometers.

Deployment of the GPS field site is done by teams of 3-4 staff using a combination of sledges and skidoo, or Twin Otter aircraft, depending on the distance and the abundance of ice features such as crevassing. As such, wireless equipment needed to be lightweight and easy to install and configure because of obvious human and material resource constraints.

In addition, the solution has to revolve around low power consumption. FreeWave radios have more than two decades of military application and many of the technical advancements made in collaboration with its military partners have led to innovations around low power consumption and improved field performance. The below image shows an example of a BAS remote GPS site, powered by a combination of batteries, a solar panel and a wind turbine (penguin not included).

FreeWave Technologies has been a supplier to the BAS for nearly a decade and has provided a reliable wireless IoT network in spite of nearly year-round brutal weather conditions. To learn more, visit: http://www.freewave.com/technology/.

Read more…

Top 5 uses of Internet of Things!!

While many organizations are creating tremendous value from the IoT, some organizations are still struggling to get started.  It has now become one of the key element of Digital Transformation that is driving the world in many respects.
It is really a time to look beyond the hype and get real about Internet of Things.
Just putting IoT in place may not help organizations but applyinganalytics is extremely essential for the success of IoT systems for better decision making.
Here are top 5 areas where IoT is making the disruption:
1.     Wellness - IoT helps continuously monitor the patients and symptoms to early detection, diagnosis & accelerate breakthrough drug development. Wearables like Fitbit, Apple watch, and Samsung have all created new revenue streams from giving their users workout analytics and the ability to set daily health goals. Mobile apps around wellness have been around for years now to track your sleep, weight, nutrition, and more. 
2.     Safety and Security – Sensor based monitoring of elevators, escalators improves travelers safety at airports.  Sensors, which are much cheaper these days, can let you know whether or not your water pipes are leaking or are about to burst. The droneswill allow the handful of rangers to quickly investigate reports of fires, than traveling into remote parts of the jungle over unpaved roads. Connected cars allows vehicle diagnostics and real time intervention from technicians for better safety.
3.     Marketing – with use of IoT, businesses can reach to right customer at at right time using geofencing. It is a virtual field in which apps are capable of sending alerts depending on your entrance or exit from a vicinity. With geofencing, your shopping experience can be more hyper-personalized to what you’re looking for. 1-800-Flowers covered the area around jewelry stores that were close to their flower shops to encourage customers to buy flowers with jewelry. Amazon Go is Amazon’s store concept without a check-out line. 
4.     Smart Cities & Smart Infrastructure – IoT is helping build the infrastructure which is really smart in quick response and improves the life of residents. Real time weather response systems, better traffic management, waste management, and optimal utilities management helps governments around the world.  Smart Homes helps people more peaceful life.
5.     Energy, Aviation & Manufacturing – Using IoT to do predictive maintenance can reduce downtime up to 50%. Companies like GE have put up 100s of sensors across the plant that provide round-the-clock monitoring and diagnostics of existing hardware. IoT enabled engines consume almost 15% less fuel than average jet engines, and also have reduced emissions and noise.  Smart grids helps in increasing the reliability and efficiency of grid, avoid thefts.
In future IoT will continue to enhance our lives more and more by tracking our needs in real time giving opportunity to businesses to react accordingly and immediately.
Read more…
As businesses are trying to leverage every opportunity regarding IoT by trying to find ways to partner with top universities and research centers, here is a list of the Top 20 co-occurring topics of the Top 500 Internet of Things Authors in the academic field. This gives an idea of research frontiers of the leaders.
Read more…

Cybersecurity in Digital age

You must have heard about the global cyberattack of WannaCry ransomware in over 200 countries. It encrypted all the files on the machine and asked for payment. Ransomware, which demands payment after launching a cyber-attack, has become a rising trend among hackers looking for a quick payout.
Every day it seems another news breaks about cyber-criminals hacking in and stealing data, & information. Private companies, government agencies, hospitals…no one is immune. Cybersecurity is no longer buried in the tech section of organizations, newspapers and websites - its front-page news.
With the penetration of the digital movement, cyber-attacks have also doubled year over year, making businesses and government sites more vulnerable.
In simple terms cybersecurity is use of digital technologies to protect company networks, computers and programs from unauthorized access and subsequent damage.
In recent times, every organization has launched a “go-digital” initiative. This has led to explosion of connected environments.
The growing mobility trend has sparked a rapid growth of endpoints that must be secured, and bring-your-own-device (BYOD) programs mean that employees could be accessing sensitive data on unsecured devices.
The prevalence of cloud based services and third party data storing has opened up new areas of risk.
As businesses adopt the new technologies like Big Data, Analytics, IoT & Mobility, the focus must be on how to safeguard the data spread across devices and cloud.
Cybersecurity must be a key factor during your journey to digitally transforming your business, just as you would ensure that your offices, brick-and-mortar store has locks and security systems of the highest quality, your digital storefront must have the same levels of security. If consumers do not trust these digital storefront with their data, or if that trust is broken because of a data breach, the cost to rebuild that trust is incredibly high.
The best way to protect yourself is to be suspicious of unsolicited emails and always type out web addresses yourself rather than clicking on links.
There are different types of attacks we have seen so far:
·        Hackers target the software vulnerabilities that are yet to be discovered  and patched
·        Attack on mobile devices: malwares designed specifically for smartphones to steal data
·        Data leakage: hackers steal the data by interrupting the traffic between organization and cloud environments
·        Programming: hackers use malicious code on any server that gets replicated and allow them to delete, steal data
There are multiple ways to combat these cyber-attacks:
·        Network defense: detect unwarranted traffic e.g. someone communicating with malicious host, malware entry into the network, unauthorized data transfer
·        Detect user access violations: misuse of user access within the system, ensure proper authentications, use of antivirus, malware to prevent steal user information
·        Mobile device protection: detect unauthorized devices or prevent hackers from compromising individual devices.
·        Protect data in motion & rest: ensure data transfers protected within various environments
·        Investment in securing IoT devices – today with everything is connected it is extremely important to secure all access points.
Today with machine learning organizations are in a very good position to know what users are doing that can affect the network and increase risk. Artificial Intelligence is used to constantly learn new malware behaviors and recognize how viruses may mutate to try and get around security systems.
Traditional IT security practices like network monitoring and segmentation will become even more critical as businesses and governments deploy IoT devices.

Recent events have highlighted the growing need for enhanced cybersecurity.

Read more…

18 Big Data tools you need to know!!

In today’s digital transformation, big data has given organization an edge to analyze the customer behavior & hyper-personalize every interaction which results into cross-sell, improved customer experience and obviously more revenues.
The market for Big Data has grown up steadily as more and more enterprises have implemented a data-driven strategy. While Apache Hadoop is the most well-established tool for analyzing big data, there are thousands of big data tools out there. All of them promising to save you time, money and help you uncover never-before-seen business insights.
I have selected few to get you going….
Avro: It was developed by Doug Cutting & used for data serialization for encoding the schema of Hadoop files.
 
Cassandra: is a distributed and Open Source database. Designed to handle large amounts of distributed data across commodity servers while providing a highly available service. It is a NoSQL solution that was initially developed by Facebook. It is used by many organizations like Netflix, Cisco, Twitter.
 
Drill: An open source distributed system for performing interactive analysis on large-scale datasets. It is similar to Google’s Dremel, and is managed by Apache.
 
Elasticsearch: An open source search engine built on Apache Lucene. It is developed on Java, can power extremely fast searches that support your data discovery applications.
 
Flume: is a framework for populating Hadoop with data from web servers, application servers and mobile devices. It is the plumbing between sources and Hadoop.
 
HCatalog: is a centralized metadata management and sharing service for Apache Hadoop. It allows for a unified view of all data in Hadoop clusters and allows diverse tools, including Pig and Hive, to process any data elements without needing to know physically where in the cluster the data is stored.
 
Impala: provides fast, interactive SQL queries directly on your Apache Hadoop data stored in HDFS or HBase using the same metadata, SQL syntax (Hive SQL), ODBC driver and user interface (Hue Beeswax) as Apache Hive. This provides a familiar and unified platform for batch-oriented or real-time queries.
 
JSON: Many of today’s NoSQL databases store data in the JSON (JavaScript Object Notation) format that’s become popular with Web developers
 
Kafka: is a distributed publish-subscribe messaging system that offers a solution capable of handling all data flow activity and processing these data on a consumer website. This type of data (page views, searches, and other user actions) are a key ingredient in the current social web.
 
MongoDB: is a NoSQL database oriented to documents, developed under the open source concept. This comes with full index support and the flexibility to index any attribute and scale horizontally without affecting functionality.
 
Neo4j: is a graph database & boasts performance improvements of up to 1000x or more when in comparison with relational databases.
Oozie: is a workflow processing system that lets users define a series of jobs written in multiple languages – such as Map Reduce, Pig and Hive. It further intelligently links them to one another. Oozie allows users to specify dependancies.
 
Pig: is a Hadoop-based language developed by Yahoo. It is relatively easy to learn and is adept at very deep, very long data pipelines.
 
Storm: is a system of real-time distributed computing, open source and free.  Storm makes it easy to reliably process unstructured data flows in the field of real-time processing. Storm is fault-tolerant and works with nearly all programming languages, though typically Java is used. Descending from the Apache family, Storm is now owned by Twitter.
 
Tableau: is a data visualization tool with a primary focus on business intelligence. You can create maps, bar charts, scatter plots and more without the need for programming. They recently released a web connector that allows you to connect to a database or API thus giving you the ability to get live data in a visualization.
 
ZooKeeper: is a service that provides centralized configuration and open code name registration for large distributed systems. 
 
Everyday many more tools are getting added the big data technology stack and its extremely difficult to cope up with each and every tool. Select few which you can master and continue upgrading your knowledge.
Read more…

Top 7 Virtual Reality Industry use cases

Today Digital Transformation has entered our life and we have subconsciously using it also in day to day life.
Virtual Reality technology has evolved dramatically in the past few years the costs of VR devices has gone down so it is all set to hit mainstream markets soon. While gaming applications like Pokemon Go have attracted most of the attention, there are many other use cases that could have a much larger impact on our lives.
Google Cardboard is a super low-cost headset ($15) to which a compatible, VR enabled mobile phone is attached to deliver the VR experience.
Other commercial product is Oculus Rift gear which has becomeextremely popular in gaming & business equally.
Here are some great VR use cases:
1.     VR for Tourism: do you want to sit on your couch and climb up the Eiffel tower? Or walk on the glass horse shoe at grand canyon? Wild Within is VR app available for experience of travel through rain forest in Canada. Travelers around the world are able to experience a helicopter flight around New York City or a boat ride around the Statue of Liberty.
2.     VR for Education: Over last decade eLearning had picked up very much. But it could not deliver hands on experience which is now possible with VR technology. Technicians can actually learn the real life examples and do their bit to solve the problems on the shop floor. Medical students can actually perform surgeries allowing them to make mistakes without any impact on actual patients.
3.     VR for Sales: Traditionally automakers have the showroom to show the cars to the customers and explain their features and sometimes a test drive is also possible. But customization of how the interior will look as per their choice was not possible which now can be done via VR.  Audi is experimenting this in London, where customer can configure their Audi with accessories as they want and drive virtually in real time.
4.     VR in Gaming: who does not know the excitement Pokemon Go had created and reached 50 million users in record time of 22 days.  Using AR/VR technology games have changed the life of seniors as well as teens. Game of Thrones has capitalized on VR and gone viral in various countries.
5.     VR in Designing: product designing is tedious task and changes to products based on the competition or customization is time consuming. This is where VR helps designers. They can now create the products easily, configure all the features and test them out. It is more popular in construction of buildings to see how the interior will look like.
6.     VR in Marketing: With Digital Marketing ads are becoming more intrusive. The best marketing campaigns use VR to create successful campaigns as users get completely immersed into the content, and create memorable experiences. Coca Cola created a virtual reality sleigh ride. New York times releases multiple immersive documentaries in their app. Finnair is showing their Airbus 350 via VR to attract more customers.
7.     VR in Sports coaching: The potential for VR in sports in endless. You get all the benefits of real-world interaction, but in a controlled environment. Showing is so much more effective than explaining, and experiencing something first-hand is that much more powerful again. Football, Cricket.

Virtual reality technology holds enormous potential to change the future for a number of fields, from medicine, business, and architecture to manufacturing. We are on the roller coaster ride !!
Read more…

IoT and Energy Management

It’s not uncommon to drive about any major city at night and see many buildings illuminated despite the fact that the workers went home hours earlier. Likewise, manufacturing plants the world over often have equipment unnecessarily consuming energy during idle periods. Power plants create and store energy everyday and use energy distribution grids to distribute energy to users, but are they doing it “smartly?”

With rising concerns about global warming, this immense waste of energy undoubtedly hurts the environment, but it also hurts business. Offices, manufacturing plants, commercial spaces and power grids all stand to benefit financially from better and “smarter” energy management.

 

How IoT Reduces Energy Usage for Businesses and Manufacturing

In his article, “Report: Lofty Energy Management Goals Far Ahead of Reality,” (Panoramic Power, August 5, 2015) Jon Rabinowitz points out that most companies receive data on their energy usage only at the end of each billing cycle, which is usually a month at a time. By incorporating Internet of Things (IoT) technology, energy consumption data will be available in real-time, and energy-reducing measures can be implemented as soon as a problem gets detected (rather than waiting until the end of the month). Integrating smart devices through IoT technology will provide greater visibility into energy usage and help both industrial and commercial enterprises save energy, and as a result, save money.

Starting with simple, smart and low cost sensors, like User to User Information (UUI) and Feature Driven Development (FDD) devices, businesses can reduce energy usage and cost by dimming lights, turning off unnecessary equipment and improving the use the cooling/heating apparatus. Software that collects and correlates granular usage data, performs analytics and then converges information to increase efficiency will make manufacturing plants “smarter,” and thus more cost-effective.

Local and remote sensors that detect points of inefficiency quickly and perform triage to decrease waste will also reduce the need for maintenance as constant monitoring will detect small issues before they become big problems. Continuous optimization through 24/7 monitoring will assure that energy is not wasted during slow periods in between high-usage spans, while maximizing the use of energy-demanding equipment at critical times.

Specific Use Cases – Energy Production and Management

  • General Electric’s Asset Performance Management software connects disparate data sources in power plants, enabling data analytics to guide energy usage and to increase efficiency (“10 Real-Life Examples of IoT Powering the Future of Energy,” Internet of Business, Freddie Roberts, Oct. 7, 2016).

  • Duke Energy, a Florida-based electric power holding company, has developed a self-healing grid that automatically reconfigures itself when power goes out. Using digital smart sensors at sub stations and on power lines, the system automatically detects, isolates and reroutes power in the most efficient way when problems occur (Roberts).

  • Pacific Gas & Electric Company is testing drones as a means to monitor and evaluate electric infrastructure systems in hard-to-reach areas. The ease of access will allow more frequent and consistent monitoring and drastically reduce the amount of methane leaks and other unwanted disruptions. (Roberts).

 

Energy Saving in the Auto Sector

Nissan (manufacturer of the world’s best-selling electric car, the Leaf) and ENEL (Europe’s second largest power company) have teamed to develop an innovative vehicle-to-grid (V2G) system that creates mobile energy hubs, which also integrates the electric cars and the power grid. The system allows Leaf owners to charge at low-demand, cheap-tariff periods, while allowing owners to use the energy stored in the car’s battery to power their home during peak periods, or when power goes out. Owners can store excess energy, or return it to the grid, making the entire system more efficient for everyone (“Nissan and ENEL to test first Grid Integrated Vehicles in Denmark,” Copenhagen Capacity, December 11, 2015).

 

Conclusions

As evidenced by these specific use cases, IoT technology is making energy-intensive systems in power generation and in manufacturing far more efficient. It’s good for the environment, but it’s also good for business. Intelligent implementation of energy saving technology stands to benefit every business, from small commercial enterprises to the largest power producing utility companies in the world. It’s time to make the move to smarter energy usage, for both the environment and for your bottom line.

 

Originally published on the Unified Inbox blog

About the Author

Richard Meyers is a former high school teacher in the SF Bay Area who has studied business and technology at Stanford and UC-Berkeley. He has a single-digit handicap in golf and is passionate about cooking, wine and rock-n-roll.

Read more…

Internet of (Medical) things in Healthcare

Over the past few decades, we’ve gotten used to the Internet and cannot imagine our lives without it. Millennials and new age kids don’t even know what is life without being online.
With the disruption of Digital Transformation, Internet of Things have added lots of opportunities to business and consumers like us, equally.
 
IOT means connecting things, extracting data, storing, processing and analyzing in big data platforms and making decisions based on analytics. It helps in predicting certain outcomes thereby helping with taking preventive actions.
The popularity of wearables, such as fitness trackers, blood glucose monitors and other connected medical devices, has taken healthcare by storm. Connected devices have become a prevalent phenomenon in the consumer space and have made their way into healthcare.
 
Healthcare is fast adopting IoT & changing rapidly, as it reduces costs, boosts productivity, and improves quality. IoT can also boost patient engagement and satisfaction by allowing patients to spend more time interacting with their doctors.
 
There are a number of opportunities for the internet of things to make a difference in patients' lives. IoT-enabled devices capture and monitor relevant patient data and allow providers to gain insights without having to bring patients in for visits. Adding sensors to medicines or delivery mechanisms allows doctors to keep accurate track of whether patients are sticking to their treatment plan and avoid patient's readmission.
 
Patients are using these connected medical products to capture ECG readings, record medication levels, sense fall detection and act as telehealth units.
 
Diabetes self-management includes all sorts of gadgets and devices, which control glucose levels and remind patients to take their insulin dose. The newest wearables are even capable of delivering insulin on their own, according to health condition indicators. 
 
Remote patient monitoring is one of the most significant cost-reduction features of IoT in healthcare. Hospitals don’t have to worry about bed availability, and doctors or nurses can keep an eye on their patients remotely. At the same time, patients usually feel more relaxed at home and recover faster.
 
Smart beds are a convenient solution for patients who have trouble adjusting bed positions on their own. This kind of IoT tool can sense when the patient is trying to move on their own and it reacts by correcting the bed angle or adjusting pressure to make the person more comfortable. Additionally, this frees up nurses, who don’t have to be available all the time and can dedicate extra time to other duties. Many hospitals have already introduced smart beds in their rooms.
 
At Boston Medical Center, IoT is everyday life:
  • Newborn babies are given wristbands, allowing a wireless network to locate them at any time.
  • They have installed wireless sensors in refrigerators, freezers and laboratories to ensure that blood samples, medications and other materials are kept at the proper temperatures.
  • Hospital has more than 600 infusion pumps which are IoT enabled. BMC staff members can now dispense and change medications automatically through the wireless network, rather than having to physically touch each pump to load it up or make changes.
At Florida Hospital, when patients go in for surgery, they're tagged with real-time location system (RTLS) badges that track their progress through from the pre-op room to the surgical suite to the recovery unit so relatives can track the patients from outside.
 
Philips GoSafe can be worn as a pendant and it helps to detect and alert falls in elderly people.
 
There are few challenges as well in implementing IoT:
  • Data security & lack of standard security policy
  • Hospital’s internal system integration with IoT data
  • Further changes and improvements in IoT hardware
The Internet of these Medical Things is a game-changer as future will be connected, integrated & secure healthcare industry.
Read more…
RSS
Email me when there are new items in this category –

Upcoming IoT Events

More IoT News

IoT Career Opportunities