Subscribe to our Newsletter | To Post On IoT Central, Click here


Data AI (27)

Arm DevSummit 2020 debuted this week (October 6 – 8) as an online virtual conference focused on engineers and providing them with insights into the Arm ecosystem. The summit lasted three days over which Arm painted an interesting technology story about the current and future state of computing and where developers fit within that story. I’ve been attending Arm Techcon for more than half a decade now (which has become Arm DevSummit) and as I perused content, there were several take-a-ways I noticed for developers working on microcontroller based embedded systems. In this post, we will examine these key take-a-ways and I’ll point you to some of the sessions that I also think may pique your interest.

(For those of you that aren’t yet aware, you can register up until October 21st (for free) and still watch the conferences materials up until November 28th . Click here to register)

Take-A-Way #1 – Expect Big Things from NVIDIAs Acquisition of Arm

As many readers probably already know, NVIDIA is in the process of acquiring Arm. This acquisition has the potential to be one of the focal points that I think will lead to a technological revolution in computing technologies, particularly around artificial intelligence but that will also impact nearly every embedded system at the edge and beyond. While many of us have probably wondered what plans NVIDIA CEO Jensen Huang may have for Arm, the Keynotes for October 6th include a fireside chat between Jensen Huang and Arm CEO Simon Segars. Listening to this conversation is well worth the time and will help give developers some insights into the future but also assurances that the Arm business model will not be dramatically upended.

Take-A-Way #2 – Machine Learning for MCU’s is Accelerating

It is sometimes difficult at a conference to get a feel for what is real and what is a little more smoke and mirrors. Sometimes, announcements are real, but they just take several years to filter their way into the market and affect how developers build systems. Machine learning is one of those technologies that I find there is a lot of interest around but that developers also aren’t quite sure what to do with yet, at least in the microcontroller space. When we hear machine learning, we think artificial intelligence, big datasets and more processing power than will fit on an MCU.

There were several interesting talks at DevSummit around machine learning such as:

Some of these were foundational, providing embedded developers with the fundamentals to get started while others provided hands-on explorations of machine learning with development boards. The take-a-way that I gather here is that the effort to bring machine learning capabilities to microcontrollers so that they can be leveraged in industry use cases is accelerating. Lots of effort is being placed in ML algorithms, tools, frameworks and even the hardware. There were several talks that mentioned Arm’s Cortex-M55 architecture that will include Helium technology to help accelerate machine learning and DSP processing capabilities.

Take-A-Way #3 – The Constant Need for Reinvention

In my last take-a-way, I eluded to the fact that things are accelerating. Acceleration is not just happening though in the technologies that we use to build systems. The very application domain that we can apply these technology domains to is dramatically expanding. Not only can we start to deploy security and ML technologies at the edge but in domains such as space and medical systems. There were several interesting talks about how technologies are being used around the world to solve interesting and unique problems such as protecting vulnerable ecosystems, mapping the sea floor, fighting against diseases and so much more.

By carefully watching and listening, you’ll notice that many speakers have been involved in many different types of products over their careers and that they are constantly having to reinvent their skill sets, capabilities and even their interests! This is what makes working in embedded systems so interesting! It is constantly changing and evolving and as engineers we don’t get to sit idly behind a desk. Just as Arm, NVIDIA and many of the other ecosystem partners and speakers show us, technology is rapidly changing but so are the problem domains that we can apply these technologies to.

Take-A-Way #4 – Mbed and Keil are Evolving

There are also interesting changes coming to the Arm toolchains and tools like Mbed and Keil MDK. In Reinhard Keil’s talk, “Introduction to an Open Approach for Low-Power IoT Development“, developers got an insight into the changes that are coming to Mbed and Keil with the core focus being on IoT development. The talk focused on the endpoint and discussed how Mbed and Keil MDK are being moved to an online platform designed to help developers move through the product development faster from prototyping to production. The Keil Studio Online is currently in early access and will be released early next year.

(If you are interested in endpoints and AI, you might also want to check-out this article on “How Do We Accelerate Endpoint AI Innovation? Put Developers First“)

Conclusions

Arm DevSummit had a lot to offer developers this year and without the need to travel to California to participate. (Although I greatly missed catching up with friends and colleagues in person). If you haven’t already, I would recommend checking out the DevSummit and watching a few of the talks I mentioned. There certainly were a lot more talks and I’m still in the process of sifting through everything. Hopefully there will be a few sessions that will inspire you and give you a feel for where the industry is headed and how you will need to pivot your own skills in the coming years.

Originaly posted here

Read more…

Will We Ever Get Quantum Computers?

In a recent issue of IEEE Spectrum, Mikhail Dyakonov makes a pretty compelling argument that quantum computing (QC) isn't going to fly anytime soon. Now, I'm no expert on QC, and there sure is a lot of money being thrown at the problem by some very smart people, but having watched from the sidelines QC seems a lot like fusion research. Every year more claims are made, more venture capital gets burned, but we don't seem to get closer to useful systems.

Consider D-Wave Systems. They've been trying to build a QC for twenty years, and indeed do have products more or less on the market, including, it's claimed, one of 1024 q-bits. But there's a lot of controversy about whether their machines are either quantum computers at all, or if they offer any speedup over classical machines. One would think that if a 1K q-bit machine really did work the press would be all abuzz, and we'd be hearing constantly of new incredible results. Instead, the machines seem to disappear into research labs.

Mr. Duakonov notes that optimistic people expect useful QCs in the next 5-10 years; those less sanguine expect 20-30 years, a prediction that hasn't changed in two decades. He thinks a window of many decades to never is more realistic. Experts think that a useful machine, one that can do the sort of calculations your laptop is capable of, will require between 1000 and 100,000 q-bits. To me, this level of uncertainty suggests that there is a profound lack of knowledge about how these machines will work and what they will be able to do.

According to the author, a 1000 q-bit machine can be in 21000 states (a classical machine with N transistors can be in only 2N states), which is about 10300, or more than the number of sub-atomic particles in the universe. At 100,000 q-bits we're talking 1030,000, a mind-boggling number.

Because of noise, expect errors. Some theorize that those errors can be eliminated by adding q-bits, on the order of 1000 to 100,000 additional per q-bit. So a useful machine will need at least millions, or perhaps many orders of magnitude more, of these squirrelly microdots that are tamed only by keeping them at 10 millikelvin.

A related article in Spectrum mentions a committee formed of prestigious researchers tasked with assessing the probability of success with QC concluded that:

"[I]t is highly unexpected" that anyone will be able to build a quantum computer that could compromise public-key cryptosystems (a task that quantum computers are, in theory, especially suitable for tackling) in the coming decade. And while less-capable "noisy intermediate-scale quantum computers" will be built within that time frame, "there are at present no known algorithms/applications that could make effective use of this class of machine," the committee says."

I don't have a dog in this fight, but am relieved that useful QC seems to be no closer than The Distant Shore (to quote Jan de Hartog, one of my favorite writers). If it were feasible to easily break encryption schemes banking and other systems could collapse. I imagine Blockchain would fail as hash algorithms became reversable. The resulting disruption would not be healthy for our society.

On the other hand, Bruce Schneier's article in the March issue of IEEE Computing Edge suggests that QC won't break all forms of encryption, though he does think a lot of our current infrastructure will be vulnerable. The moral: if and when QC becomes practical, expect chaos.

I was once afraid of quantum computing, as it involves mechanisms that I'll never understand. But then I realized those machines will have an API. Just as one doesn't need to know how a computer works to program in Python, we'll be insulated from the quantum horrors by layers of abstraction.

Originaly posted here

Read more…

A scientist from Russia has developed a new neural network architecture and tested its learning ability on the recognition of handwritten digits. The intelligence of the network was amplified by chaos, and the classification accuracy reached 96.3%. The network can be used in microcontrollers with a small amount of RAM and embedded in such household items as shoes or refrigerators, making them 'smart.' The study was published in Electronics.

Today, the search for new neural networks that can operate on microcontrollers with a small amount of random access memory (RAM) is of particular importance. For comparison, in ordinary modern computers, random access memory is calculated in gigabytes. Although microcontrollers possess significantly less processing power than laptops and smartphones, they are smaller and can be interfaced with household items. Smart doors, refrigerators, shoes, glasses, kettles and coffee makers create the foundation for so-called ambient intelligece. The term denotes an environment of interconnected smart devices. 

An example of ambient intelligence is a smart home. The devices with limited memory are not able to store a large number of keys for secure data transfer and arrays of neural network settings. It prevents the introduction of artificial intelligence into Internet of Things devices, as they lack the required computing power. However, artificial intelligence would allow smart devices to spend less time on analysis and decision-making, better understand a user and assist them in a friendly manner. Therefore, many new opportunities can arise in the creation of environmental intelligence, for example, in the field of health care.

Andrei Velichko from Petrozavodsk State University, Russia, has created a new neural network architecture that allows efficient use of small volumes of RAM and opens the opportunities for the introduction of low-power devices to the Internet of Things. The network, called LogNNet, is a feed-forward neural network in which the signals are directed exclusively from input to output. Its uses deterministic chaotic filters for the incoming signals. The system randomly mixes the input information, but at the same time extracts valuable data from the information that are invisible initially. A similar mechanism is used by reservoir neural networks. To generate chaos, a simple logistic mapping equation is applied, where the next value is calculated based on the previous one. The equation is commonly used in population biology and as an example of a simple equation for calculating a sequence of chaotic values. In this way, the simple equation stores an infinite set of random numbers calculated by the processor, and the network architecture uses them and consumes less RAM.

7978216495?profile=RESIZE_584x

The scientist tested his neural network on handwritten digit recognition from the MNIST database, which is considered the standard for training neural networks to recognize images. The database contains more than 70,000 handwritten digits. Sixty-thousand of these digits are intended for training the neural network, and another 10,000 for network testing. The more neurons and chaos in the network, the better it recognized images. The maximum accuracy achieved by the network is 96.3%, while the developed architecture uses no more than 29 KB of RAM. In addition, LogNNet demonstrated promising results using very small RAM sizes, in the range of 1-2kB. A miniature controller, Atmega328, can be embedded into a smart door or even a smart insole, has approximately the same amount of memory.

"Thanks to this development, new opportunities for the Internet of Things are opening up, as any device equipped with a low-power miniature controller can be powered with artificial intelligence. In this way, a path is opened for intelligent processing of information on peripheral devices without sending data to cloud services, and it improves the operation of, for example, a smart home. This is an important contribution to the development of IoT technologies, which are actively researched by the scientists of Petrozavodsk State University. In addition, the research outlines an alternative way to investigate the influence of chaos on artificial intelligence," said Andrei Velichko.

Originally posted HERE.

by Russian Science Foundation

Image Credit: Andrei Velichko

 

 

 

 

Read more…

Can AI Replace Firmware?

Scott Rosenthal and I go back about a thousand years; we've worked together, helped midwife the embedded field into being, had some amazing sailing adventures, and recently took a jaunt to the Azores just for the heck of it. Our sons are both big data people; their physics PhDs were perfect entrees into that field, and both now work in the field of artificial intelligence.

At lunch recently we were talking about embedded systems and AI, and Scott posed a thought that has been rattling around in my head since. Could AI replace firmware?

Firmware is a huge problem for our industry. It's hideously expensive. Only highly-skilled people can create it, and there are too few of us.

What if an AI engine of some sort could be dumped into a microcontroller and the "software" then created by training that AI? If that were possible - and that's a big "if" - then it might be possible to achieve what was hoped for when COBOL was invented: programmers would no longer be needed as domain experts could do the work. That didn't pan out for COBOL; the industry learned that accountants couldn't code. Though the language was much more friendly than the assembly it replaced, it still required serious development skills.

But with AI, could a domain expert train an inference engine?

Consider a robot: a "home economics" major could create scenarios of stacking dishes from a dishwasher. Maybe these would be in the form of videos, which were then fed to the AI engine as it tuned the weighting coefficients to achieve what the home ec expert deems worthy goals.

My first objection to this idea was that these sorts of systems have physical constraints. With firmware I'd write code to sample limit switches so the motors would turn off if at an end-of-motion extreme. During training an AI-based system would try and drive the motors into all kinds of crazy positions, banging destructively into stops. But think how a child learns: a parent encourages experimentation but prevents the youngster from self-harm. Maybe that's the role of the future developer training an AI. Or perhaps the training will be done on a simulator of some sort where nothing can go horribly wrong.

Taking this further, a domain expert could define the desired inputs and outputs, and then a poorly-paid person do the actual training. CEOs will love that. With that model a strange parallel emerges to computation a century ago: before the computer age "computers" were people doing simple math to create tables of logs, trig, ballistics, etc. A room full all labored at a problem. They weren't particularly skilled, didn't make much, but did the rote work under the direction of one master. Maybe AI trainers will be somewhat like that.

Like we outsource clothing manufacturing to Bangladesh, I could see training, basically grunt work, being sent overseas as well.

I'm not wild about this idea as it means we'd have an IoT of idiots: billions of AI-powered machines where no one really knows how they work. They've been well-trained but what happens when there's a corner case?

And most of the AI literature I read suggests that inference successes of 97% or so are the norm. That might be fine for classifying faces, but a 3% failure rate of a safety-critical system is a disaster. And the same rate for less-critical systems like factory controllers would also be completely unacceptable.

But the idea is intriguing.

Original post can be viewed here

Feel free to email me with comments.

Back to Jack's blog index page.

Read more…

7811924256?profile=RESIZE_400x

 

CLICK HERE TO DOWNLOAD

This complete guide is a 212-page eBook and is a must read for business leaders, product managers and engineers who want to implement, scale and optimize their business with IoT communications.

Whether you want to attempt initial entry into the IoT-sphere, or expand existing deployments, this book can help with your goals, providing deep understanding into all aspects of IoT.

CLICK HERE TO DOWNLOAD

Read more…

Edge Products Are Now Managed At The Cloud

Now more than ever, there are billions of edge products in the world. But without proper cloud computing, making the most of electronic devices that run on Linux or any other OS would not be possible.

And so, a question most people keep asking is which is the best Software-as-a-service platform that can effectively manage edge devices through cloud computing. Well, while edge device management may not be something, the fact that cloud computing space is not fully exploited means there is a lot to do in the cloud space.

Product remote management is especially necessary for the 21st century and beyond. Because of the increasing number of devices connected to the internet of things (IoT), a reliable SaaS platform should, therefore, help with maintaining software glitches from anywhere in the world. From smart homes, stereo speakers, cars, to personal computers, any product that is connected to the internet needs real-time protection from hacking threats such as unlawful access to business or personal data.

Data being the most vital asset is constantly at risk, especially if individuals using edge products do not connect to trusted, reliable, and secure edge device management platforms.

Bridges the Gap Between Complicated Software And End Users

Cloud computing is the new frontier through which SaaS platforms help manage edge devices in real-time. But something even more noteworthy is the increasing number of complicated software that now run edge devices at homes and in workplaces.

Edge device management, therefore, ensures everything runs smoothly. From fixing bugs, running debugging commands to real-time software patch deployment, cloud management of edge products bridges a gap between end-users and complicated software that is becoming the norm these days.

Even more importantly, going beyond physical firewall barriers is a major necessity in remote management of edge devices. A reliable Software-as-a-Service, therefore, ensures data encryption for edge devices is not only hackproof by also accessed by the right people. Moreover, deployment of secure routers and access tools are especially critical in cloud computing when managing edge devices. And so, developers behind successful SaaS platforms do conduct regular security checks over the cloud, design and implement solutions for edge products.

Reliable IT Infrastructure Is Necessary

Software-as-a-service platforms that manage edge devices focus on having a reliable IT infrastructure and centralized systems through which they can conduct cloud computing. It is all about remotely managing edge devices with the help of an IT infrastructure that eliminates challenges such as connectivity latency.

Originally posted here

Read more…

Introducing Profiler, by Auptimizer: Select the best AI model for your target device — no deployment required.

Profiler is a simulator for profiling the performance of Machine Learning (ML) model scripts. Profiler can be used during both the training and inference stages of the development pipeline. It is particularly useful for evaluating script performance and resource requirements for models and scripts being deployed to edge devices. Profiler is part of Auptimizer. You can get Profiler from the Auptimizer GitHub page or via pip install auptimizer.

The cost of training machine learning models in the cloud has dropped dramatically over the past few years. While this drop has pushed model development to the cloud, there are still important reasons for training, adapting, and deploying models to devices. Performance and security are the big two but cost-savings is also an important consideration as the cost of transferring and storing data, and building models for millions of devices tends to add up. Unsurprisingly, machine learning for edge devices or Edge AI as it is more commonly known continues to become mainstream even as cloud compute becomes cheaper.

Developing models for the edge opens up interesting problems for practitioners.

  1. Model selection now involves taking into consideration the resource requirements of these models.
  2. The training-testing cycle becomes longer due to having a device in the loop because the model now needs to be deployed on the device to test its performance. This problem is only magnified when there are multiple target devices.

Currently, there are three ways to shorten the model selection/deployment cycle:

  • The use of device-specific simulators that run on the development machine and preclude the need for deployment to the device. Caveat: Simulators are usually not generalizable across devices.
  • The use of profilers that are native to the target device. Caveat: They need the model to be deployed to the target device for measurement.
  • The use of measures like FLOPS or Multiply-Add (MAC) operations to give approximate measures of resource usage. Caveat: The model itself is only one (sometimes insignificant) part of the entire pipeline (which also includes data loading, augmentation, feature engineering, etc.)

In practice, if you want to pick a model that will run efficiently on your target devices but do not have access to a dedicated simulator, you have to test each model by deploying on all of the target devices.

Profiler helps alleviate these issues. Profiler allows you to simulate, on your development machine, how your training or inference script will perform on a target device. With Profiler, you can understand CPU- and memory-usage as well as run-time for your model script on the target device.

How Profiler works

Profiler encapsulates the model script, its requirements, and corresponding data into a Docker container. It uses user-inputs on compute-, memory-, and framework-constraints to build a corresponding Docker image so the script can run independently and without external dependencies. This image can then easily be scaled and ported to ease future development and deployment. As the model script is executed within the container, Profiler tracks and records various resource utilization statistics including Average CPU UtilizationMemory UsageNetwork I/O, and Block I/O. The logger also supports setting the Sample Time to control how frequently Profiler samples utilization statistics from the Docker container.

Get Profiler: Click here

How Profiler helps

Our results show that Profiler can help users build a good estimate of model runtime and memory usage for many popular image/video recognition models. We conducted over 300 experiments across a variety of models (InceptionV3, SqueezeNet, Resnet18, MobileNetV2–0.25x, -0.5x, -0.75x, -1.0x, 3D-SqueezeNet, 3D-ShuffleNetV2–0.25x, -0.5x, -1.0x, -1.5x, -2.0x, 3D-MobileNetV2–0.25x, -0.5x, -0.75x, -1.0x, -2.0x) on three different devices — LG G6 and Samsung S8 phones, and NVIDIA Jetson Nano. You can find the full set of experimental results and more information on how to conduct similar experiments on your devices here.

The addition of Profiler brings Auptimizer closer to the vision of a tool that helps machine learning scientists and engineers build models for edge devices. The hyperparameter optimization (HPO) capabilities of Auptimizer help speed up model discovery. Profiler helps with choosing the right model for deployment. It is particularly useful in the following two scenarios:

  1. Deciding between models — The ranking of the run-times and memory usages of the model scripts measured using Profiler on the development machine is indicative of their ranking on the target device. For instance, if Model1 is faster than Model2 when measured using Profiler on the development machine, Model1 will be faster than Model2 on the device. This ranking is valid only when the CPU’s are running at full utilization.
  2. Predicting model script performance on the device — A simple linear relationship relates the run-times and memory usage measured using Profiler on the development machine with the usage measured using a native profiling tool on the target device. In other words, if a model runs in time x when measured using Profiler, it will run approximately in time (a*x+b) on the target device (where a and b can be discovered by profiling a few models on the device with a native profiling tool). The strength of this relationship depends on the architectural similarity between the models but, in general, the models designed for the same task are architecturally similar as they are composed of the same set of layers. This makes Profiler a useful tool for selecting the best suited model.

Looking forward

Profiler continues to evolve. So far, we have tested its efficacy on select mobile- and edge-platforms for running popular image and video recognition models for inference, but there is much more to explore. Profiler might have limitations for certain models or devices and can potentially result in inconsistencies between Profiler outputs and on-device measurements. Our experiment page provides more information on how to best set up your experiment using Profiler and how to interpret potential inconsistencies in results. The exact use case varies from user to user but we believe that Profiler is relevant to anyone deploying models on devices. We hope that Profiler’s estimation capability can enable leaner and faster model development for resource-constrained devices. We’d love to hear (via github) if you use Profiler during deployment.

Originaly posted here


Authors: Samarth Tripathi, Junyao Guo, Vera Serdiukova, Unmesh Kurup, and Mohak Shah — Advanced AI, LG Electronics USA

Read more…

by Dan Carroll, Carnegie Mellon University, Department of Civil and Environmental Engineering

7451650263?profile=RESIZE_400x
Credit: Pixabay/CC0 Public Domain
 
Across the U.S., there has been some criticism of the cost and efficacy of emissions inspection and maintenance (I/M) programs administered at the state and county level. In response, Engineering and Public Policy (EPP) Ph.D. student Prithvi Acharya and his advisor, Civil and Environmental Engineering's Scott Matthews, teamed up with EPP's Paul Fischbeck. They have created a new method for identifying over-emitting vehicles using remote data transmission and machine learning that would be both less expensive and more effective than current I/M programs.
 

Most states in America require passenger vehicles to undergo periodic emissions inspections to preserve air quality by ensuring that a vehicle's exhaust emissions do not exceed standards set at the time the vehicle was manufactured. What some may not know is that the metrics through which emissions are gauged nowadays are usually measured by the car itself through on-board diagnostics (OBD) systems that process all of the vehicle's data. Effectively, these emissions tests are checking whether a vehicle's "check engine light" is on. While over-emitting identified by this system is 87 percent likely to be true, it also has a 50 percent false pass rate of over-emitters when compared to tailpipe testing of actual emissions.

With cars as smart devices increasingly becoming integrated into the Internet of Things (IoT), there's no longer any reason for state and county administrations to force drivers to come in for regular I/M checkups when all the necessary data is stored on their vehicle's OBD. In an attempt to eliminate these unnecessary costs and improve the effectiveness of I/M programs, Acharya, Matthews, and Fischbeck published their recent study in IEEE Transactions on Intelligent Transportation Systems.

Their new method entails sending data directly from the vehicle to a cloud server managed by the state or county within which the driver lives, eliminating the need for them to come in for regular inspections. Instead, the data would be run through machine learning algorithms that identify trends in the data and codes prevalent among over-emitting vehicles. This means that most drivers would never need to report to an inspection site unless their vehicle's data indicates that it's likely over-emitting, at which point they could be contacted to come in for further inspection and maintenance.

Not only has the team's work shown that a significant amount of time and cost could be saved through smarter emissions inspecting programs, but their study has also shown how these methods are more effective. Their model for identifying vehicles likely to be over-emitting was 24 percent more accurate than current OBD systems. This makes it cheaper, less demanding, and more efficient at reducing vehicle emissions.

This study could have major implications for leaders and residents within the 31 states and countless counties across the U.S. where I/M programs are currently in place. As these initiatives face criticism from proponents of both environmental deregulation and fiscal austerity, this team has presented a novel system that promises both significant reductions to cost and demonstrably improved effectiveness in reducing vehicle emissions. Their study may well redefine the testing paradigm for how vehicle emissions are regulated and reduced in America.

 
Originally posted here on Tech Xplore
 
Read more…

In the era of digitalization, IoT is fostering the upcoming revolution in mobile apps. The ways companies used to provide mobile app development are changing because of IoT. After helping thousands of corporates to deliver extraordinary user experiences, IoT is all set with some new and advanced mobile app development trends. 

The tech world is the one that is continuously evolving. Every year and each day, innovations come to light. Each of them is revolutionizing our lives in one or the other ways. From the first wheel to smart cities, humans have come a long way.

The evolution and foundation of smart cities is the result of IoT or the Internet of Things. IoT has definitely stirred quite an uproar in the digital world with the mass potential it has. It can bring everything and everyone online. 

As per the latest mobile app stats, IoT will become a more significant player in the mobile app development industry. The market share of IoT is going to increase more than double in 2021 with a staggering amount of 520 billion USD. While four years back in 2017, this number was 235 billion USD. 

Soon the IoT mobile app development will face new trends in the coming year and beyond.

Let us take a look at the top IoT mobile app development trends.

IoT App Trend #1: Cybersecurity for IoT

With an increase in the number of devices online, cybersecurity is the top priority for all businesses as IoT gains popularity. The network is expected to expand in the coming years, and so the data volume will also increase. All this draws attention to more information to protect.

IoT security will see an exponential rise as more users will store their data over the cloud. From banking details to home security, everything is easily breached if the security firewall is weak in IoT applications. 

Therefore mobile app development companies need to work upon the up-gradation of their IoT enabled mobile apps. 

IoT App Trend #2: Roaring Popularity of Smart Home Devices

When smart home devices were launched, many mocked them by calling them unrealistic toys for lazy youngsters. Now, the same people are finding it increasingly difficult to resist the charm of IoT devices. 

IoT devices are expected to be very popular in 2021 and the years to come. The reason behind their growing popularity is that the IoT devices are becoming highly intuitive and innovative. They are extended not only to the comfort of home automation but also to home security and the safety of your family.

Another great advantage of implementing smart IoT development adoption is the need to save energy. The intelligent lights or intelligent thermostats help in conserving energy, reducing bills. These reasons will lead to more and more people to adopt smart home devices.

IoT App Trend #3: Backed by AI and ML

Artificial Intelligence and Machine Learning both are thriving technologies. Both of these are the facilitators of automation. We all know how Artificial Intelligence has touched millions of lives around the globe. 

Together with IoT, AI and ML are unique data-driven technologies shaping the future of human-machine interactions. The developers set up a combination of IoT and Artificial Intelligence that helps automate the routine tasks, simplifies work, and gets the most accurate information.

IoT App Trend #4: IoT and Healthcare

With the revolution in the health-tech industry, healthcare companies are turning towards mobile platforms. IoT enabled apps to open up new opportunities to improve the medical sector.

IoT has immense applications that are already running in the healthcare field and is expected to increase by 26.2% 

Healthcare apps featuring IoT technology are expected to reform the world of medical sciences. These IoT mobile apps can even help doctors and medical professionals treat their patients even from a distance.

Smart wearables and implants will be able to record diverse parameters to keep the patient’s health in check. By integrating sensors, portable devices, and all kinds of medical equipment, real-time updates of a patient’s health can be recorded and sent to the concerned person. 

IoT App Trend #5: Edge Computing to Overtake Cloud Computing

This is a change where we have to be careful. For the past many years, IoT devices have been storing their data on cloud storage. However, the IoT developers, development services, and manufacturers have started thinking about the utility of storing, calculating, and analyzing data to the limit.

So basically this means, in place of sending the entire data from IoT devices to the cloud, the data is first transmitted to a local or nearer storage device located close to the IoT device or on the edge of the network. 

This local storage device then analyzes, sorts, filters and calculates the data and then sends all or only a part of the data to the cloud, reducing the traffic on the network avoiding any bottleneck situation.

Known as “edge computing”, this approach has several advantages if used correctly. Firstly, it helps in the better management of the large amount of data that each device sends. Second, the reduced dependency on cloud storage allows devices and applications to perform faster and also reduce latency.

Being able to collect and process data locally, the IoT application is expected to consume lesser bandwidth and work even when connectivity to the cloud is affected. After seeing these positive aspects, state-of-the-art computing is looking forward to better innovation and broad adoption in IoT, both consumer and industrial.

Reduced connectivity to the cloud will also result in fewer security costs and facilitate better security practices. 2021 will see better state-of-the-art IT in IoT.

IoT App Trend #6: Are You Excited About Smart Cities?

Well, all of us are super excited to witness smart cities. Smart cities are one of the significant accomplishments of IoT and modernization. Integrated with IoT-powered devices, smart cities promise improved efficiency and security for the common folk on the streets and inside their homes.

With superfast data transfer supported by 5G, public transportation will also see a massive change in the way they work. 

By now, we know that IoT will focus on developing smart parking lots, street lights, and traffic controls. To add up to this, with IoT and fast internet, we will live inside a world where our refrigerators will be aware of what food we have inside.

IoT will impact traffic congestion and security. It will also help in the development of sustainable cities leading us to a green future.

IoT App Trend #7: Blockchain for IoT Security

Many financial and governmental institutions, entrepreneurs, consumers as well as industrialists will be decentralized, self-governing, and be quite smart. Most of the new companies are seen building their territory on the entanglement of IOTA to develop modules and other components for firms without the cost of SaaS and Cloud.

IOTA is a distributed ledger especially designed to record and execute transactions between devices in the IoT ecosystem.

If you are in this industry, then you should prepare to see the centralized and monolithic computer models that are separated in the jobs and microservices. All this will be distributed to decentralized machines and devices. 

In the coming future, IoT will penetrate the disciplines of health, government, transactions, and others that we cannot think of right now. Such types of IoT technology trends will create significant effective differences.

IoT App Trend #8: IoT for Retail Apps

The eCommerce industry will also get benefited from IoT integration. Retail supply change will be more efficient after the incorporation of IoT mobile apps. It is expected to improve the online shopping experience for individuals across the globe.

Also, IoT will make the retail experience more personalized for each customer with in-app advertisements based on the user’s shopping history. We already get notifications once we purchase a product from a particular eStore. With IoT enabled mobile apps, the app will guide us to our favorite store using in-site maps.

IoT App Trend #9- Will IoT Boost Predictive Maintenance?

Yes, it will. In 2021 and beyond, the smart home system will notify the owner about plumbing leaks, appliance failures, or any other problem so that the house owner can avoid any disaster. Soon these intelligent sensors will enter our houses.

In response to these predictive skills of IoT, we can expect to see home care offers as a contractor service. If there will be a need for any emergency action, your presence in the house will not be necessary. 

IoT App Trend #10: Easy and Better Commuting

IoT mobile applications are expected to make commuting easier for students, the elderly, the business person, and many more. Today, due to heavy traffic, commuting is a significant issue for most of us. With major innovations in technology and integration of IoT, mobile applications will make traveling a breeze for everyone.

Here are some of the conventional ways that commuting will change:

  • Smart street lights will make walking on the road safe for pedestrians
  • Finding parking spaces will be a lot easier and seamless with data-driven parking apps. 
  • In-app navigation and public transportation will definitely make public transit more reliable 
  • IoT powered mobile apps will also improve routing between different modes of transfer.

With so many innovative ideas and benefits for iOS and android based IoT mobile apps, the mobile app development market will see an influx of transportation apps in the years to come.

IoT App Trend #11: Sustainable-as-a-Service Becomes the Norm.

While talking about the IoT trends, SaaS or Sustainable-as-a-Service is considered as one of the hot topics for the estimated market. Because of the low cost of entry, SaaS is quickly getting to the top list for being the favorite firm in the IT gaming sector. 

Out of these emerging technological IoT trends, Software-as-a-service will make the lives of people better than ever.

IoT App Trend #12- Energy and Resource Management 

Do you know what affects energy management the most? Well, energy management majorly depends on the acquisition of a better understanding of how to consume resources. IoT mobile app-based electronics are expected to play a significant role in the conservation of energy. 

All of these IoT trends can be integrated into resource management, making lives more accessible, more comfortable, and responsible.

Automatic notifications can also be added to the mobile app in order to send information to the owner in case the power threshold exceeds. Various other fancy features can also be added to these IoT mobile apps such as sprinkler control, in-house temperature management, etc.

Conclusion

We all know that IoT has great potential to bring revolutionary changes in the present mobile app development industry trends. It is expected to open up immense possibilities for every business or individual related to this field. Directly or indirectly, IoT will drive the future of almost every industry.

The above mentioned are some of the trends that will dominate the IoT app development ecosystem in the years to come. Amid all these predictions and trends, the future is promising and worth the wait. 

 

 

 

 

Read more…

By: Kelly McNelis

We have faced unprecedented disruption from the many challenges of COVID-19, and PTC’s LiveWorx was no exception. The definitive digital transformation event went virtual this year, and despite the transition from physical to digital, LiveWorx delivered.

Of the many insightful virtual keynotes, one that caught everyone’s attention was ‘Digital Transformation: The Technology & Support You Need to Succeed,’ presented by PTC’s Executive Vice President (EVP) of Products, Kevin Wrenn, and PTC’s EVP and Chief Customer Officer, Eduarda Camacho.

Their keynote focused on how companies should be prioritizing the use of best-in-class technology that will meet their changing needs during times of disruption and accelerated digital transformation. Wrenn and Camacho highlighted five of our customers through interactive case studies on how they are using PTC technology to capitalize on digital transformation to thrive in an era of disruption.

6907721673?profile=RESIZE_400x

Below is a summary of the five customers and their stories that were highlighted during the keynote.

1. Royal Enfield (Mass Customization)

Royal Enfield is an Indian motorcycle company that has been manufacturing motor bikes since 1901. They have British roots, and their main customer base is located in India and Europe. Riders of Royal Enfield wants their bikes to be particular to their brand, so they worked to better manage the complexities of mass customization and respond to market demands.

Royal Enfield is a long time PTC customer, but they were on old versions of PTC technology. They first upgraded Creo and Windchill to the latest releases so they could leverage the new capabilities. They then moved on to transform their processes for platform and variant designs, introduced simulation much earlier by using Creo Simulation Live, and leveraged generative design by bringing AI into engineering and applying it to engine and chassis complex custom forged components. Finally, they retrained and retooled their engineering staff to fully leverage the power of new processes and technologies.

The entire Royal Enfield team now has digital capabilities that accelerate new product designs, variants, and accessories for personalization; as a result, they are able to deliver a much-shortened design cycle. Royal Enfield is continuing their digital transformation trend, and will invest in new ways to create value while leveraging augmented reality with PTC's Vuforia suite.

2. VCST (Manufacturing Efficiency, Quality, and Innovation)

VCST is part of the BMT Group and are a world-class automotive supplier of precision-machined power train and brake components. Their problem was that they had high costs for their production facility in Belgium. They either needed to improve their cost efficiency in their plant or face the potential of needing to shut down the facility and relocate it to another region. VCST decided to implement ThingWorx so that anyone can have instant visibility to asset status and performance. VCST is also creating the ability to digitize maintenance requests and the ability to acquire about spare parts to improve the overall efficiency in support of their costs reduction goals.

Additionally, VCST has a goal to reach zero complaints for their customers and, if any quality problems appear to their customers, they can be required to do a 100% inspection until the problem is solved. Moreover, as cars have gotten quieter with electrification, the noise from the gears has become an issue, and puts pressure on VCST to innovate and reduce gear noise.

VCST has again relied on ThingWorx and Windchill to collect and share data for joint collaborative analysis to innovate and reduce gear noise. VCST also plans to use Vuforia Expert Capture and Vuforia Chalk to train maintenance workers to further improve their efficiency and cost effectiveness. The company is not done with their digital transformation, and they have plans to implement Creo and Windchill to enable end-to-end digital thread connectivity to the factory.

3. BID Group Holdings (Connected Product)

BID Group Holdings operates in the wood processing industry. It is one of the largest integrated suppliers and North American leader in the field. The purpose of BID Group is to deliver a complete range of innovative equipment, digital technologies, turnkey installations, and aftermarket services to their customers. BID Group decided to focus on their areas of expertise, an rely on PTC, Microsoft, and Rockwell Automation’s combined capabilities and scale to deliver SaaS type solutions to their own industry.

Leveraging this combined power, the BID Group developed a digital strategy for service to improve mill efficiency and profitability. The solution is named OPER8 and was built on the ThingWorx platform. This allowed BID Group to provide their customers an out of the box solution with efficient time-to-value and low costs of ownership. BID Group is continuing to work with PTC and Rockwell Automation, to develop additional solutions that will reduce downtime of OPER8 with a predictive analytics module by using ThingWorx Analytics and LogixAI.

4. Hitachi (Service Optimization)

Hitachi operates an extensive service decision that ensures its customers’ data systems remain up and running. Their challenge was not to only meet their customers uptime Service Level Agreements, but to do it without killing their cost structure. Hitachi decided to implement PTC’s Servigistics Service Parts Management software to ensure the right parts are available when and where they are needed for service. With Servigistics, Hitachi was able to accomplish their needs while staying cost effective and delighting their customers.

Hitachi runs on the cloud, which allows them to upgrade to current releases more often, take advantage of new functionality, and avoid unexpected costs.

PTC has driven engagement and support for Hitachi through the PTC Community, and encourages all customers to utilize this platform. The network of collaborative spaces in a gathering place for PTC customers and partners to showcase their work, inspire each other, and share ideas or best practices in order to expand the value of their PTC solutions and services.

5. COVID-19 Response 

COVID-19 has put significant strain on the world’s hospitals and healthcare infrastructure, and hospitalization rates for COVID brought into question the capacity of being able to handle cases. Many countries began thinking of the value field hospitals could bring to safely care for patients and ease the admissions numbers of ‘regular’ hospitals. However, the complication is that field hospitals have essentially no isolation or air filtration capability that is required for treating COVID patients or healthcare workers.

As a result, the US Army Corp of Engineers has put out specifications to create self-contained isolation units, which are fully functioning hospital rooms that can be transported or built onsite. But, the assembly needed to happen fast, and a group of companies (including PTC) led by The Innovation Machine rallied to help design and define the SCIU’s.

With buy-in from numerous companies, a common platform was needed for companies to collaborate. PTC felt compelled to react, and many PTC customers and partners joined in to help create a collaboration platform, with cloud-based Windchill as the foundation. But, PTC didn’t just provide software to this collaboration; PTC also contributed with digital thread and design advice to help the group solve some of the major challenges. This design is a result of the many companies coming together to create deployments across various US state governments, agencies, and FEMA.

Final Thoughts

All of the above customers approached digital transformation as a business imperative. They all had sizeable challenges that needed to be solved and took leadership positions to implement plans that leveraged digital transformation technologies combined with new processes.

PTC will continue to innovate across the digital transformation portfolio and is committed to ensuring that customer success offerings capture value faster and provide the best outcomes.

Original Post Link: https://www.ptc.com/en/product-lifecycle-report/liveworx-digital-transformation–technology-and-support-you-need-to-succeed

Author Bio: Kelly is a corporate communications specialist at PTC. Her responsibilities include drafting and approving content for PTC’s external and social media presence and supporting communications for the Chief Strategy Officer. Kelly has previous experience as a communications specialist working to create and implement materials for the Executive Vice President of the Products Organization and senior management team members.

 

Read more…

The tinyML Foundation is excited to be offering a new activity to our community: tinyML Talks webcast series. A strong line-up of speakers making 30-minute presentations will take place twice a month on Tuesdays at 8 am Pacific time to make sure that tinyML enthusiasts worldwide will have an opportunity to watch them live. Presentations and videos will be available online the day afterwards for those that were not able to join live.

View Schedule of Upcoming Talks

If you want to re-watch all talks starting March 31 or were unable to join us live, the slides and links to our YouTube Channel of the talks are posted at our tinyML Forums. Many questions were asked during the presentations but not all could be answered in the allotted time frame. The answers to some of those can be found on the tinyML Forums as well.

Read more…

Helium Expands to Europe

Helium, the company behind one of the world’s first peer-to-peer wireless networks, is announcing the introduction of Helium Tabs, its first branded IoT tracking device that runs on The People’s Network. In addition, after launching its network in 1,000 cities in North America within one year, the company is expanding to Europe to address growing market demand with Helium Hotspots shipping to the region starting July 2020. 

Since its launch in June 2019, Helium quickly grew its footprint with Hotspots covering more than 700,000 square miles across North America. Helium is now expanding to Europe to allow for seamless use of connected devices across borders. Powered by entrepreneurs looking to own a piece of the people-powered network, Helium’s open-source blockchain technology incentivizes individuals to deploy Hotspots and earn Helium (HNT), a new cryptocurrency, for simultaneously building the network and enabling IoT devices to send data to the Internet. When connected with other nearby Hotspots, this acts as the backbone of the network. 

“We’re excited to launch Helium Tabs at a time where we’ve seen incredible growth of The People’s Network across North America,” said Amir Haleem, Helium’s CEO and co-founder. “We could not have accomplished what we have done, in such a short amount of time, without the support of our partners and our incredible community. We look forward to launching The People’s Network in Europe and eventually bringing Helium Tabs and other third-party IoT devices to consumers there.”  

Introducing Helium Tabs that Run on The People’s Network
Unlike other tracking devices,Tabs uses LongFi technology, which combines the LoRaWAN wireless protocol with the Helium blockchain, and provides network coverage up to 10 miles away from a single Hotspot. This is a game-changer compared to WiFi and Bluetooth enabled tracking devices which only work up to 100 feet from a network source. What’s more, due to Helium’s unique blockchain-based rewards system, Hotspot owners will be rewarded with Helium (HNT) each time a Tab connects to its network. 

In addition to its increased growth with partners and customers, Helium has also seen accelerated expansion of its Helium Patrons program, which was introduced in late 2019. All three combined have helped to strengthen its network. 

Patrons are entrepreneurial customers who purchase 15 or more Hotspots to help blanket their cities with coverage and enable customers, who use the network. In return, they receive discounts, priority shipping, network tools, and Helium support. Currently, the program has more than 70 Patrons throughout North America and is expanding to Europe. 

Key brands that use the Helium Network include: 

  • Nestle, ReadyRefresh, a beverage delivery service company
  • Agulus, an agricultural tech company
  • Conserv, a collections-focused environmental monitoring platform

Helium Tabs will initially be available to existing Hotspot owners for $49. The Helium Hotspot is now available for purchase online in Europe for €450.

Read more…

This blog is the second part of a series covering the insights I uncovered at the 2020 Embedded Online Conference. 

Last week, I wrote about the fascinating intersection of the embedded and IoT world with data science and machine learning, and the deeper co-operation I am experiencing between software and hardware developers. This intersection is driving a new wave of intelligence on small and cost-sensitive devices.

Today, I’d like to share with you my excitement around how far we have come in the FPGA world, what used to be something only a few individuals in the world used to be able to do, is at the verge of becoming more accessible.

I’m a hardware guy and I started my career writing in VHDL at university. I then started working on designing digital circuits with Verilog and C and used Python only as a way of automating some of the most tedious daily tasks. More recently, I have started to appreciate the power of abstraction and simplicity that is achievable through the use of higher-level languages, such as Python, Go, and Java. And I dream of a reality in which I’m able to use these languages to program even the most constrained embedded platforms.

At the Embedded Online Conference, Clive Maxfield talked about FPGAs, he mentions “in a world of 22 million software developers, there are only around a million core embedded programmers and even fewer FPGA engineers.” But, things are changing. As an industry, we are moving towards a world in which taking advantage of the capabilities of a reconfigurable hardware device, such as an FPGA, is becoming easier.

  • What the FAQ is an FPGA, by Max the Magnificent, starts with what an FPGA is and the beauties of parallelism in hardware – something that took me quite some time to grasp when I first started writing in HDL (hardware description languages). This is not only the case for an FPGA, but it also holds true in any digital circuit. The cool thing about an FPGA is the fact that at any point you can just reprogram the whole board to operate in a different hardware configuration, allowing you to accelerate a completely new set of software functions. What I find extremely interesting is the new tendency to abstract away even further, by creating HLS (high-level synthesis) representations that allow a wider set of software developers to start experimenting with programmable logic.
  • The concept of extending the way FPGAs can be programmed to an even wider audience is taken to the next level by Adam Taylor. He talks about PYNQ, an open-source project that allows you to program Xilinx boards in Python. This is extremely interesting as it opens up the world of FPGAs to even more software engineers. Adam demonstrates how you can program an FPGA to accelerate machine learning operations using the PYNQ framework, from creating and training a neural network model to running it on Arm-based Xilinx FPGA with custom hardware accelerator blocks in the FPGA fabric.

FPGAs always had the stigma of being hard and difficult to work on. The idea of programming an FPGA in Python, was something that no one had even imagined a few years ago. But, today, thanks to the many efforts all around our industry, embedded technologies, including FPGAs, are being made more accessible, allowing more developers to participate, experiment, and drive innovation.

I’m excited that more computing technologies are being put in the hands of more developers, improving development standards, driving innovation, and transforming our industry for the better.

If you missed the conference and would like to catch the talks mentioned above*, visit www.embeddedonlineconference.com

Part 3 of my review can be viewed by clicking here

In case you missed the previous post in this blog series, here it is:

*This blog only features a small collection of all the amazing speakers and talks delivered at the Conference! 

Read more…

I recently joined the Embedded Online Conference thinking I was going to gain new insights on embedded and IoT techniques. But I was pleasantly surprised to see a huge variety of sessions with a focus on modern software development practices. It is becoming more and more important to gain familiarity with a more modern software approach, even when you’re programming a constrained microcontroller or an FPGA.

Historically, there has been a large separation between application developers and those writing code for constrained embedded devices. But, things are now changing. The embedded world intersecting with the world of IoT, data science, and ML, and the deeper co-operation between software and hardware communities is driving innovation. The Embedded Online Conference, artfully organised by Jacob Beningo, represented exactly this cross-section, projecting light on some of the most interesting areas in the embedded world - machine learning on microcontrollers, using test-driven development to reduce bugs and programming an FPGA in Python are all things that a few years ago, had little to do with the IoT and embedded industry.

This blog is the first part of a series discussing these new and exciting changes in the embedded industry. In this article, we will focus on machine learning techniques for low-power and cost-sensitive IoT and embedded Arm-based devices.

Think like a machine learning developer

Considered for many year's an academic dead end of limited practical use, machine learning has gained a lot of renewed traction in recent years and it has now become one of the most interesting trends in the IoT space. TinyML is the buzzword of the moment. And this was a hot topic at the Embedded Online Conference. However, for embedded developers, this buzzword can sometimes add an element of uncertainty.

The thought of developing IoT applications with the addition of machine learning can seem quite daunting. During Pete Warden’s session about the past, present and future of embedded ML, he described the embedded and machine learning worlds to be very fragmented; there are so many hardware variants, RTOS’s, toolchains and sensors meaning the ability to compile and run a simple ‘hello world’ program can take developers a long time. In the new world of machine learning, there’s a constant churn of new models, which often use different types of mathematical operations. Plus, exporting ML models to a development board or other targets is often more difficult than it should be.

Despite some of these challenges, change is coming. Machine learning on constrained IoT and embedded devices is being made easier by new development platforms, models that work out-of-the-box with these platforms, plus the expertise and increased resources from organisations like Arm and communities like tinyML. Here are a few must-watch talks to help in your embedded ML development: 

  • New to the tinyML space is Edge Impulse, a start-up that provides a solution for collecting device data, building a model based around it and deploying it to make sense of the data directly on the device. CTO at Edge Impulse, Jan Jongboom talks about how to use a traditional signal processing pipeline to detect anomalies with a machine learning model to detect different gestures. All of this has now been made even easier by the announced collaboration with Arduino, which simplifies even further the journey to train a neural network and deploy it on your device.
  • Arm recently announced new machine learning IP that not only has the capabilities to deliver a huge uplift in performance for low-power ML applications, but will also help solve many issues developers are facing today in terms of fragmented toolchains. The new Cortex-M55 processor and Ethos-U55 microNPU will be supported by a unified development flow for DSP and ML workloads, integrating optimizations for machine learning frameworks. Watch this talk to learn how to get started writing optimized code for these new processors.
  • An early adopter implementing object detection with ML on a Cortex-M is the OpenMV camera - a low-cost module for machine vision algorithms. During the conference, embedded software engineer, Lorenzo Rizzello walks you through how to get started with ML models and deploying them to the OpenMV camera to detect objects and the environment around the device.

Putting these machine learning technologies in the hands of embedded developers opens up new opportunities. I’m excited to see and hear what will come of all this amazing work and how it will improve development standards and transform embedded devices of the future.

If you missed the conference and would like to catch the talks mentioned above*, visit www.embeddedonlineconference.com

*This blog only features a small collection of all the amazing speakers and talks delivered at the Conference!

Part 2 of my review can be viewed by clicking here

Read more…

Artificial Intelligence is a popular term currently evolving around software industries. Many app development companies were developing their requirement process to recommend AI-bases workers and also many institutes were trained to learn the concept of AI. It clearly says that in the future, most of the tasks will drive through AI. Hence it is good to know how AI will help the professions to run their routine work effectively. It’s not only about learning the skill but also depends upon the interest you have to learn. AI does not only deals with a particular requirement.

It also deals with sectors like data analytics, machine learning, data mining, etc. By combining these factors will help to maintain the AI to train the job for the long term. Hence make sure to know the areas that follow to build the profession in profit. This blog will help you to know the information for the profession that helps to operate effectively.

Software Development

Software development is one of the topmost demanding jobs in every country. By getting into the job as a software developer will help to promote the career faster than the other industries. In the future, AI will help the programmers to think less as machine learning will take place to eliminate the code and introduce the algorithm to build the application. By allowing the Ai to adopt the section to work will help to play the complete function in an easy mode. IT reduces the effort of using the coding and also helps to build the apps easier and effectively. For example, software testing is one of the important roles in development, by placing AI to automate the testing will help to replace the employee and reduce the effort of them.

Machine Industry

The machine industry is a vital part to run society. Workers were working for the long term and creating a great effort to complete the work. AI will help to respond to the function to operate smarter and effectively. By utilizing the data analytics, the result to maintain the chain process will become easier and more effective. Hence complete machine industry will get a hike to improve their quality. By focusing on furthermore internets of things get communicated with the sources from industry and get huge control. Hence by using these technologies will bury the effort of workers and also increase the quality of time from the manufacturing side. It improves the quality and helps to maintain the product to get qualified.

Education System

Education is the right of every citizen of the country but most of the time students get frustrated due to the load that is given by the system. Hence it collapses the mind easily. Thus to prevent it Ai can implement it. It helps the system to decrease the load of education and improves understanding. It allows the student to get interact easier and helps to improve the concept to understand.

For example, if a student wants to learn the practical session, its easy to make it live virtually. It helps them to improve their creativity and also increase their interest to observe. Hence by implementing AI will tend to improve the whole concept of education.

Healthcare

The healthcare industry is always an important part to get noticed. Every person was looking for improving their health but most of the time they were lazy to build the habit to take care. Thus by using Ai, the cost of spending bucks for health will reduce and the improvement of the human cycle will get increases. Already Ai apps were built to support the human by analyzing their symptom. Hence in the future, apps get increased and also the technology will get improved. By acknowledging the human about their problem with the symptom will help to improve their health without any support and also help to save their money. Even data analytics will help the patient’s improvement of humans in terms of analyzing the error. Thus by using data science as it is a part of Ai will help to maintain the record of patient safer and also reliable to the human.

Supply Chain

The supply chain is one of the toughest parts of the profession as it requires used by many companies to service for them. By using the data analyst, the usage level of getting information will be much good rather than depending on humans. It helps the business person to prevent the time shortage and also increases the quality of response. By ensuring the time is important to supply chain business as it matters a lot to the supply chain profession. Hence applying Ai to the supply chain will be prettier and help the process to work properly and reliability for the system.

Wearable Gadgets

Technology is much reliable to society to help the human and increase the concentration on their work. Wearable devices are one of the popular devices that have been getting merge with human routines. Especially devices are used for health reasons. Hence by using the gadgets will allow the user to acknowledge the ratings of health. By using the gadgets, the usage will be finer to track. Also, the apps related to wearable devices were much high and also demand is also getting a hike. Many top app companies were working for wearable apps. Hence the usage of these kind apps will bring great attention to the software industry. It is related to IOT. Thus automatically Ai will get into the game to manage the data.

Business Models

Maintaining the business as per the requirement of the client is the major responsibility of every person. The important part is the data that has to be analyzed well. It should not get criticized. Hence analyzing the data with the help of AI models will improve the business requirement and also the client requirement. Thus in the future, many companies will seek data analytics to improve their business.

Final Words

Artificial intelligence is one of the topmost sectors in today’s world. And driving the field via these techniques will help to improve the complete session.

Read more…
RSS
Email me when there are new items in this category –

Upcoming IoT Events

More IoT News

Arcadia makes supporting clean energy easier

Nowadays, it’s easier than ever to power your home with clean energy, and yet, many Americans don’t know how to make the switch. Luckily, you don’t have to install expensive solar panels or switch utility companies…

Continue

Answering your Huawei ban questions

A lot has happened since we uploaded our most recent video about the Huawei ban last month. Another reprieve has been issued, licenses have been granted and the FCC has officially barred Huawei equipment from U.S. networks. Our viewers had some… Continue

IoT Career Opportunities