Subscribe to our Newsletter | To Post On IoT Central, Click here


Data (182)

Brontobytes, Yottabytes, Geopbytes, and Beyond

Guest blog post by Bill Vorhies

Now that everyone is thinking about IoT and the phenomenal amount of data that will stream past us and presumably need to be stored we need to break out a vocabulary well beyond our comfort zone of mere terabytes (about the size of a good hard drive on your desk).

In this article Beyond Just “Big” Data author Paul McFedries argues for nomenclature even beyond Geopbytes (and I'd never heard of that one).  There is a presumption though that all that IoT data actually needs to be stored which is misleading.  We may want to store some big chunks of it but increasingly our tools are allowing for 'in stream analytics' and for filtering the stream to identify only the packets we're interested in.  I don't know that we'll ever need to store Geopbytes but you'll enjoy his argument.  Use the link Beyond Just “Big” Data.

Here's the beginning of his thoughts:

Beyond Just “Big” Data

We need new words to describe the coming wave of machine-generated information

When Gartner released its annual Hype Cycle for Emerging Technologies for 2014, it was interesting to note that big data was now located on the downslope from the “Peak of Inflated Expectations,” while the Internet of Things (often shortened to IoT) was right at the peak, and data science was on the upslope. This felt intuitively right. First, although big data—those massive amounts of information that require special techniques to store, search, and analyze—remains a thriving and much-discussed area, it’s no longer the new kid on the data block. Second, everyone expects that the data sets generated by the Internet of Things will be even more impressive than today’s big-data collections. And third, collecting data is one significant challenge, but analyzing and extracting knowledge from it is quite another, and the purview of data science.

Follow us @IoTCtrl | Join our Community

Read more…

Guest blog post by ajit jaokar

Often, Data Science for IoT differs from conventional data science due to the presence of hardware.

Hardware could be involved in integration with the Cloud or Processing at the Edge (which Cisco and others have called Fog Computing).

Alternately, we see entirely new classes of hardware specifically involved in Data Science for IoT(such as synapse chip for Deep learning)

Hardware will increasingly play an important role in Data Science for IoT.

A good example is from a company called Cognimem which natively implements classifiers(unfortunately, the company does not seem to be active any more as per their twitter feed)

In IoT, speed and real time response play a key role. Often it makes sense to process the data closer to the sensor.

This allows for a limited / summarized data set to be sent to the server if needed and also allows for localized decision making.  This architecture leads to a flow of information out from the Cloud and the storage of information at nodes which may not reside in the physical premises of the Cloud.

In this post, I try to explore the various hardware touchpoints for Data analytics and IoT to work together.

Cloud integration: Making decisions at the Edge

Intel Wind River edge management system certified to work with the Intel stack  and includes capabilities such as data capture, rules-based data analysis and response, configuration, file transfer and  Remote device management

Integration of Google analytics into Lantronix hardware –  allows sensors to send real-time data to any node on the Internet or to a cloud based application.

Microchip integration with Amazon Web services  uses an  embedded application with the Amazon Elastic Compute Cloud (EC2) service. Based on  Wi-Fi Client Module Development Kit . Languages like Python or Ruby can be used for development

Integration of Freescale and Oracle which consolidates data collected from multiple appliances from multiple Internet of things service providers.

Libraries

Libraries are another avenue for analytics engines to be integrated into products – often at the point of creation of the device. Xively cloud services is an example of this strategy through xively libraries

APIs

In contrast, keen.io provides APIs for IoT devices to create their own analytics engines ex (smartwatch Pebble’s using of keen.io)  without locking equipment providers into a particular data architecture.

Specialized hardware

We see increasing deployment  of specialized hardware for analytics. Ex egburt from Camgian which uses sensor fusion technolgies for IoT.

In the Deep learning space, GPUs are widely used and more specialized hardware emerges such asIBM’s synapse chip. But more interesting hardware platforms are emerging such as Nervana Systemswhich creates hardware specifically for Neural networks.

Ubuntu Core and IFTTT spark

Two more initiatives on my radar deserve a space in themselves – even when neither of them have currently an analytics engine:  Ubuntu Core – Docker containers+lightweight Linux distribution as an IoT OS and IFTTT spark initiatives

Comments welcome

This post is leading to vision for Data Science for IoT course/certification. Please sign up on the link if you wish to know more when launched in Feb.

Image source: cognimem

Follow us @IoTCtrl | Join our Community

Read more…
RSS
Email me when there are new items in this category –