Subscribe to our Newsletter | To Post On IoT Central, Click here


I think so.  

If you run a manufacturing factory, you have just a handful of variables that let you cut costs. Chief among them is energy use. Energy conservation saves money obviously, but turning off one switch at a time compared to controlling thousands, that would be interesting.

A lot of efforts are taken to save energy historically, for instance, use of motion sensitive bulbs, limited time use of air conditioners, or cutting the number of shifts and functioning hours is another way to save energy costs. But those actions require productivity/OEE boosting focus of the facility rather than effect energy conservation. Energy conservation is a byproduct of those efforts.

Adding IoT on the other hand, can enable direct energy savings for the smart factory of today.

Many experts recommend IoT-based real time monitoring systems to bring optimum use of energy. But the issue is more nuanced than that. Sure, real time monitoring helps you track energy consumption, but that might not lead directly to energy conservation. For that, the realtime energy monitoring should lead to better predictions of energy usage and guide to implement right load level energy equipment.

The 2 components of electrical energy billing

Let us take an example of electrical energy. Usually, electrical energy billing has two components:  Demand charge and runtime/consumption related charges. Demand load is usually the peak load provided by the electricity service providers from the power grid. This usually has a hard and fast limit. Crossing it will prompt penalties of around 20 times the usual rates.

To avoid this, there are usually two options: Reduce the total load required by the machinery. Or ensure that the threshold limit is never reached.

The problem of motors

One of the major sources of electricity usage in the plant are the electrical motors and HVAC systems. They consume a large chunk of the power. A motor is considered under-loaded when it is in the range where efficiency drops significantly with the decreasing load. Most electric motors are designed to run at 50% to 100% of rated load. Maximum efficiency is usually near 75%. Below the 50% rated load, the efficiency tends to lower dramatically.

In many cases, operating motors are either overloaded resulting in overheating or under-loaded, working at most at 40% of their capacity. That causes huge spikes in energy consumption. Oversized motors have a higher initial cost and are very expensive to repair and maintain. Undersized motors don't perform well and prompt higher losses than properly sized electric motors. Same goes with air conditioners if their tonnage and room size or room dynamics aren’t suitable, it leads to higher energy consumption.

Addressing a Wide Range of Energy Consumers:
Apart from regular electrical consumption of motors and HVAC, IoT can address a wider energy sources and resources, including: 

  • Air compressors, the source of air across plant.
  • Boilers, serving as the main source of steam used across plants.
  • Backup generators - an alternative electricity source in case of failure of the primary.
  • Fuel, including diesel, coal, wood, solar, and batteries that are used to run above systems

How the Industrial IoT can help

In the pre-IoT era, the traditional energy management system would collect a sample of energy usage at an interval. The traditional EMS is good to get energy consumption data, but it does not help you with alerts in case of spikes, curating usage pattern, predicting the seasonal demand, or suggesting appropriate configuration. Pre-IoT era, the motor load test was a lengthy and cumbersome affair. Engineers used slip tests and electrical tests with a digital stroboscope. They had to spend hours with the equipment to obtain samples. Even then, the data collected was only a sample, and not real time. With the IoT in place, the analyses can occur on real time data from the motor. That makes the analysis quick, painless and more accurate. IoT brings realtime alerts, ability to predict energy demand, usage patterns and ways to optimize energy consumption.

With the right IoT platform, you can recommend the proper sizing needed for motors. That saves money on the original investment. IoT-based conditional monitoring ensures the motor never reaches its threshold limit. That means the motor lasts longer and suffers fewer failures.

The IoT-based monitoring system gives early warnings of electric motor vibration/temperature problems. Condition monitoring saves time from unplanned production outages. And the unnecessary stress of carrying out urgent repairs can be avoided.

Additionally, a properly designed IoT system can not only track the energy consumptions at distribution points throughout a smart factory, but with the help of smart meters, they can track energy consumption right from its source to all the way consumption point. Moreover it can help predict leakages or voltage drops at nodes if any.

The ultimate goal of the smart factory is a generating a real-time energy audit that traditional Energy Monitoring Systems (EMS) cannot provide.  IoT enabled energy monitoring can solve a lot of issues that are core to hindering a plant from real energy conservation efforts. That not only saves money but paves the way for true implementation of Industry 4.0. If you run a factory and are looking to cut energy costs, then IoT is worth a closer look.

Email me when people comment –

You need to be a member of IoT Central to add comments!

Join IoT Central