Subscribe to our Newsletter | To Post On IoT Central, Click here


Management (17)

By Sanjay Tripathi, Kevin Egge, and Shane Kehoe

Each Industrial Revolution has been catalyzed by the convergence of technologies from multiple domains. Industry 4.0 is no different.

Machines were first introduced into a manual manufacturing process between 1760 and 1820.  But, it was the concurrent introduction of means to power machines that led to the First Industrial Revolution. An example is the first commercially viable Textile Power Loom which was introduced by Edmund Cartwright in England. It used water-power at first. But in two short years water-powered looms were replaced with looms powered with the steam-engines created by James Watts. The relatively smaller steam-engines allowed textile looms to be deployed in many sites enabling persons to be employed in factories.

Multiple innovations such as new manufacturing methods, electricity, steel, and machine tools ushered in the era of mass manufacturing and the Second Industrial Revolution. Henry Ford’s River Rouge Complex in Michigan, completed in 1928, deployed these modern inventions and was the largest integrated factory in the world at that time. The era of mass manufacturing subsequently brought about an explosion in the consumption of goods by households.

The Third Industrial Revolution improved Automation and Controls across many industries through the use of Programmable Logic Controllers (PLCs). PLCs were first introduced by Modicon in 1969. PLC-based automation and controls were introduced to a mostly mechanical world, and helped improve yields and decrease manufacturing costs. This revolution helped provide cheaper products.

Fast forward to the Industry 4.0 Revolution made possible by the synergistic combination of expertise from the worlds of Operating Technologies (OT) and Information Technologies (IT). The current revolution is bringing about intelligent, interconnected and autonomous manufacturing equipment and systems. This is by augmenting deep domain expertise within OT companies with IT technologies such as artificial intelligence (AI), big data, cloud computing and ubiquitous connectivity.

The widespread use of open protocols across heterogeneous equipment makes it feasible to optimize horizontally across previously disjointed processes. In addition, owner/operators of assets can more easily link the shop-floor to the top-floor. Connections across multiple layers of the ISA-95/Purdue Model stack provides greater vertical visibility and added ability to optimize processes.

The increased integration brings together both OT data (from sensors, PLCs, DCS, SCADA systems) and IT data (from MES, ERP systems). However, this integration has different impacts on different functions such as operations, engineering, quality, reliability, and maintenance.

To learn more about how the integration positively impacts the organization, read the next installment in this series to see how you can bridge the gap between OT and IT teams to improve production resilience.

Originally posted here.

Read more…

Then it seemed that overnight, millions of workers worldwide were told to isolate and work from home as best as they could. Businesses were suddenly forced to enable remote access for hundreds or thousands of users, all at once, from anywhere across the globe. Many companies that already offered VPN services to a small group of remote workers scurried to extend those capabilities to the much larger workforce sequestering at home. It was a decision made in haste out of necessity, but now it’s time to consider, is VPN the best remote access technology for the enterprise, or can other technologies provide a better long-term solution?

Long-term Remote Access Could Be the Norm for Some Time

Some knowledge workers are trickling back to their actual offices, but many more are still at home and will be for some time. Global Workplace Analytics estimates that 25-30% of the workforce will still be working from home multiple days a week by the end of 2021. Others may never return to an official office, opting to remain a work-from-home (WFH) employee for good.

Consequently, enterprises need to find a remote access solution that gives home-based workers a similar experience as they would have in the office, including ease of use, good performance, and a fully secure network access experience. What’s more, the solution must be cost effective and easy to administer without the need to add more technical staff members.

VPNs are certainly one option, but not the only one. Other choices include appliance-based SD-WAN and SASE. Let’s have a look at each approach.

VPNs Weren’t Designed to Support an Entire Workforce

While VPNs are a useful remote access solution for a small portion of the workforce, they are an inefficient technology for giving remote access to a very large number of workers. VPNs are designed for point-to-point connectivity, so each secure connection between two points – presumably a remote worker and a network access server (NAS) in a datacenter – requires its own VPN link. Each NAS has a finite capacity for simultaneous users, so for a large remote user base, some serious infrastructure may be needed in the datacenter.

Performance can be an issue. With a VPN, all communication between the user and the VPN is encrypted. The encryption process takes time, and depending on the type of encryption used, this may add noticeable latency to Internet communications. More important, however, is the latency added when a remote user needs access to IaaS and SaaS applications and services. The traffic path is convoluted because it must travel between the end user and the NAS before then going out to the cloud, and vice versa on the way back.

An important issue with VPNs is that they provide overly broad access to the entire network without the option of controlling granular user access to specific resources. Stolen VPN credentials have been implicated in several high-profile data breaches. By using legitimate credentials and connecting through a VPN, attackers were able to infiltrate and move freely through targeted company networks. What’s more, there is no scrutiny of the security posture of the connecting device, which could allow malware to enter the network via insecure user devices.

SD-WAN Brings Intelligence into Routing Remote Users’ Traffic

Another option for providing remote access for home-based workers is appliance-based SD-WAN. It brings a level of intelligence to the connectivity that VPNs don’t have. Lee Doyle, principal analyst with Doyle Research, outlines the benefits of using SD-WAN to connect home office users to their enterprise network:

  • Prioritization for mission-critical and latency-sensitive applications
  • Accelerated access to cloud-based services
  • Enhanced security via encryption, VPNs, firewalls and integration with cloud-based security
  • Centralized management tools for IT administrators

One thing to consider about appliance-based SD-WAN is that it’s primarily designed for branch office connectivity—though it can accommodate individual users at home as well. However, if a company isn’t already using SD-WAN, this isn’t a technology that is easy to implement and setup for hundreds or thousands of home-based users. What’s more, a significant investment must be made in the various communication and security appliances.

SASE Provides a Simpler, More Secure, Easily Scalable Solution

Cato’s Secure Access Service Edge (or SASE) platform provides a great alternative to VPN for remote access by many simultaneous workers. The platform offers scalable access, optimized connectivity, and integrated threat prevention that are needed to support continuous large-scale remote access.

Companies that enable WFH using Cato’s platform can scale quickly to any number of remote users with ease. There is no need to set up regional hubs or VPN concentrators. The SASE service is built on top of dozens of globally distributed Points of Presence (PoPs) maintained by Cato to deliver a wide range of security and networking services close to all locations and users. The complexity of scaling is all hidden in the Cato-provided PoPs, so there is no infrastructure for the organization to purchase, configure or deploy. Giving end users remote access is as simple as installing a client agent on the user’s device, or by providing clientless access to specific applications via a secure browser.

Cato’s SASE platform employs Zero Trust Network Access in granting users access to the specific resources and applications they need to use. This granular-level security is part of the identity-driven approach to network access that SASE demands. Since all traffic passes through a full network security stack built into the SASE service, multi-factor authentication, full access control, and threat prevention are applied to traffic from remote users. All processing is done within the PoP closest to the users while enforcing all corporate network and security policies. This eliminates the “trombone effect” associated with forcing traffic to specific security choke points on a network. Further, admins have consistent visibility and control of all traffic throughout the enterprise WAN.

SASE Supports WFH in the Short-term and Long-term

While some workers are venturing back to their offices, many more are still working from home—and may work from home permanently. The Cato SASE platform is the ideal way to give them access to their usual network environment without forcing them to go through insecure and inconvenient VPNs.

Originally posted here

Read more…

By Patty Medberry

After 2020’s twists and turns, here’s hoping that 2021 ushers in a restored sense of “normal.” In thinking about what the upcoming year might bring for industrial IoT, three key trends emerge.

Trend #1: Securing operational technology (OT)

 IT will take a bolder posture to secure OT environments.

Cyber risks in industrial environments will continue to grow causing IT to take bolder steps to secure the OT network in 2021. The CISO and IT teams have accountability for cybersecurity across the enterprise. But often they do not have visibility into the OT network. Many OT networks use traditional measures like air gapping or an industrial demilitarized zone to protect against attacks. But these solutions are rife with backdoors. For example, third-party technicians and other vendors often have remote access to update systems, machines and devices. With increasing pressure from board members and government regulators to manage IoT/OT security risks, and to protect the business itself, the CISO and IT will need to do more.

Success requires OT’s help. IT cybersecurity practices that work in the enterprise are not always appropriate for industrial environments. What’s more, IT doesn’t have the expertise or insight into operational and process control technology. A simple patch could bring down production (and revenues).

Bottom line? Organizations will need solutions that strengthen cybersecurity while meeting IT and OT needs. For IT, that means visibility and control across their own environment to the OT network. For OT, it means security solutions that allow them respond to anomalies while keeping production humming.

Trend #2: Remote and autonomous operations

The need for operational resiliency will accelerate the deployment of remote and autonomous operations – driving a new class of networking.

The impact of changes brought on in 2020 is driving organizations to increasingly use IoT technologies for operational resiliency. After all, IoT helps keep a business up and running when people cannot be on the ground. It also helps improve safety and efficiencies by preventing unnecessary site visits and reducing employee movement throughout facilities.

In 2021, we will see more deployments aimed at sophisticated remote operations. These will go well beyond remote monitoring. They will include autonomous operational controls for select parts of a process and will be remotely enabled for other parts. Also, deployments will increasingly move toward full autonomy, eliminating the need for humans to be present locally or remotely. And more and more, AI will used for dynamic optimization and self-healing, in use cases such as:

  • autonomous guided vehicles for picking and packing, material handling, and autonomous container applications across manufacturing, warehouses and ports
  • increased automation of the distribution grid
  • autonomous haul trucks for mining applications
  • Computer-based train control for rail and mass transit

All these use cases require data instantly and in mass, demanding a network that can support that data plus deliver the speed required for analysis. This new class of industrial networking must provide the ability to handle more network bandwidth, offer zero latency data and support edge compute. It also needs security and scale to adapt quickly, ensuring the business is up and running – no matter what.

Trend #3: Managing multiple access technologies

Organizations will operate multiple-access technologies to achieve operational agility and flexibility.

While Ethernet has always been the foundation for connectivity in industrial IoT spaces, that connectivity is quickly expanding to wireless. Wireless helps reduce the pain of physical cabling and provides the flexibility and agility to upgrade, deploy and reconfigure the network with less operational downtime. Newer wireless technologies like Wi-Fi 6 and 5G also power use cases not possible in the past (or possible only with wired connectivity).

As organizations expand their IoT deployments, the need to manage multiple access technologies will grow. Successful deployments will require the right connectivity for the use case, otherwise, costs, complexity and security risks increase. With wireless choices including Wi-Fi, LoRaWAN, Wi-SUN, public or private cellular, Bluetooth and more, organizations will need to determine the best technology for each use case.  

Cisco’s recommendation: Build an access strategy to optimize costs and resources while ensuring security. Interactions between access technologies should deliver a secured and automated end-to-end IP infrastructure – and must avoid a “mishmash” leading to complexity and failed objectives.

As the end of 2020 fast approaches, I wish everyone a safe and healthy New Year. As you continue building and refining your plans for 2021, please consider how you can unleash these IoT network trends to reduce your cybersecurity risks and increase your operational resiliency. 

Originally posted HERE.

Read more…

If in previous years many of the Internet of Things (IoT) predictions have failed, the year 2020 has been no exception. This time justified by the virus outbreak.

In my article " 2020 IoT Trends and Predictions: Be prepared for the IoT Tsunami" I wrote that we should be prepared for the Internet of Things (IoT) tsunami, but it won't be in 2020". I didn't imagine the special circumstances of the year "MMXX". Today, I do see clearly that Covid-19’s impact is difficult to ignore looking forward into 2021 and beyond. This pandemic is going to accelerate adoption in many industries that have been affected and will have to make some changes to how they operate.

The year 2020 has been a significant year in terms of the emergence of technologies leading to a much better space of IoT to flourish and grow.

I'm not going to make my own predictions this year. Although I have taken a responsibility for my followers to collect and publish the predictions of other recognized or enthusiastic voices of the IoT.

Here I summarize some of them. My advice is to keep relying on optimistic predictions as there are many Reasons to Believe in Internet of Things.

  • Forrester - Predictions 2021: Technology Diverity Drives IoT Growth
    • Network connectivity chaos will reign. We expect interest in satellite and other lower-power networking technologies to increase by 20% in the coming year.
    • Connected device makers will double down on healthcare use cases. In 2021, proactive engagement using wearables and sensors to detect patients’ health at home will surge.
    • Smart office initiatives will drive employee-experience transformation. We expect at least 80% of firms to develop comprehensive on-premises return-to-work office strategies that include IoT applications to enhance employee safety and improve resource efficiency.
    • The near ubiquity of connected machines will finally disrupt traditional business. In 2021, field service firms and industrial OEMs will rush to keep up with customer demand for more connected assets and machines.
    • Consumer and employee location data will be core to convenience. In 2021, brands must utilize location to generate convenience for consumers or employees with virtual queues, curbside pickup, and checking in for reservations.
  • CRN - 5 Hot IoT Trends To Watch in 2021 And Beyond
    • Changes In Real Estate Trends Will Push Smart Office Initiatives
    • The Internet Of Behavior Is Coming To Your Workplace
    • Location Data Will Become More Prominent
    • This Year’s Pivot To Remote Operations Will Expand Connected Assets
    • Connected Health Care Will Ramp Up In 2021
  • The future of IoT: 5 major predictoins for 2021, based on Forrester
  • TechoPedia - 6 IoT Predictions for 2021: What's Next? –
    1. An Increase in IoT Remote Workforce Management Products
    2. More IoT-Enabled Options for Smart Cities
    3. Improving Driving and Autonomous Vehicles
    4. The IoT Will Boost Predictive Maintenance
    5. The Connected Home over Internet Protocol (CHIP) Standard Will Become a Reality
    6. Market Enticements With Multipurpose Products
  • Forbes - 5 IoT Trends To Watch In 2021
    1. Can You Turn Off Your Alexa? We'll likely see an increase in the security surrounding smart devices, including AI-driven, automated ability to scan networks for IoT devices.
    2. More Use Cases in More Industries - the IoT has the ability to mean big money for almost any industry.
    3. IoT Helping to Build Digital Twins - the IoT may be the perfect partner for the development of digital twins, for almost any application. Especially for things like construction, engineering, and architecture, that could mean huge cost and time savings.
    4. IoT and Data Analytics - the IoT is no longer just about monitoring behavior and spitting out data. It's about processing data quickly and making recommendations (or taking actions) based on those findings.
    5. Improving Data Processing at the Edge - With the confluence of 5G networks, an increase in IoT and IIoT devices, and a dramatic increase in the amount of data we are collecting, I don't see this trend going anywhere but up
  • Security Today - By 2021, 36 bilion IoT devices will be installed around the world.
  • IoT Agenda - Mitch Maiman - Intelligent Product Solutions (IPS)- IoT predictions for 2021–
    • Medical IoT
    • Radio frequency services
    • AI and augmented reality
    • Electric vehicles
    • Remote work
  • IoT Agenda - Carmen Fontana, Institute of Electrical and Electronics Engineer -Top 5 IoT predictions for gworing use cases in 2021
    • Wearables will blur the line between consumer gadgets and medical devices
    • Consumers will be more concerned about data privacy
    • AI IoT products will be more accessible
    • Digital twin adoption will explode due to increased remote work
    • Edge computing will benefit from green energy investment
  • IoT World Today - IoT Trends 2021: A Focus on Gundamentals, Not Nice-to-Haves. IoT trends in 2021 will focus on core needs such as health-and-safety efforts and equipment monitoring, but IoT in customer experience will also develop.
  • Rockwell Automation Predictions for 2021
    • IT/OT Integration is critical for answering the $77 billion need for IIoT
    • Edge is the new cloud
    • Digital twins save $1 trillion in manufacturing costs
    • Pandemic promotes AR training as the new standard for a distributed workforce
    • Automation accelerates employee advancement through human-machine interface
  • Top 5 IoT Predictions For 2021; What Future Holds?
    • Private IoT networks
    • Digital health
    • Cities would turn smarter
    • Remote offices
    • Improved location services
  • online - 10 IoT Trends for 2020/2021: Latest Predictions According to Experts 
  • J2 Innovations - Smart Building, Equpement and IoT Trends for 2021 –
    • Remote work and management
    • Changing the way we work
    • Flexible spaces
    • Digital processes- 2021 will see ever more processes becoming digital.
    • The convergence of IT and OT - The industry will continue to see a concerted push to integrate and leverage the vast amounts of valuable data derived from Operational Technologies (OT) into the Information Technology (IT) side of the enterprise
    • A new kind of interoperability - A good example of that is The Web of Things (WoT), which is an open source standard being pioneered by Siemens
  • Krakul - IoT trends to expect in 2021 - Cloud service providers are the most prominent vendors within the IoT space. 2021 will also see the rise in IoT development partnerships. Brands, who not only require cloud transformation will need a hardware partner to ensure IoT devices perform to both consumer and business needs. Whether those IoT device applications will see use by consumers, businesses or the industry – the common concerns shaping IoT solutions for 2021 include:
    • integration
    • usability
    • security
    • interoperability
    • user safety
    • return on investment (ROI) for the business case
  • Analysis Mason - predictions for business connectivity, communications, IoT and security in 2021 –
    • A major mobile operator will buy one of the IoT market disruptors.
    • A new deployment model for private LTE/5G networks will emerge – the public industrial network
    • Private networks will become a topic for financial sponsors.
  • TBR (Ezra Gottheil)- 2021 DEVICES & COMMERCIAL IOT PREDICTIONS
    • AI in IoT will increasingly be encapsulated in specific functions like recognition and detection
    • Conversational user interfaces, based on voice or typed communication, will play an increasing role in business Solutions
    • THE EMERGENCE OF THE CHIEF DATA OFFICER ROLE WILL INCREASE ORGANIZATIONAL CLARITY, ACCELERATING IOT ADOPTION
  • Predictions for Embedded Machine Learning for IoT in 2021 
    • From increasingly capable hardware to TinyML, embedded machine learning will make strides in 2021.
    • More capable microcontrollers combined with on-device machine learning at the edge is poised to develop further in 2021. These developments with further advances in video surveillance, manufacturing and more.
    • The impact of COVID-19 on the global supply chain, however, may stunt innovation and growth of embedded machine learning.
  • Frost & Sullivan -Top 4 Growth Opportunities in the Internet of Things Industry for 2021 
    • Exponential growth of edge computing in public and private networks
    • Convergence between IT and OT to drive end-user concerns on IIoT security, privacy, and data protection
    • Emerging techs: convergence of IoT, AI, and blockchain
    • The future of retail post COVID-19

Key Takeaways               

In spite the global pandemic has influenced product introduction timelines, causing some things to be fast-tracked, while others lose priority, enterprises, consumers, and different stakeholders will continue to drive demand for new and improved internet of things applications, technologies, and solutions in 2021 across verticals and geographies.

IoT will continue to gain footholds, as people and enterprises become comfortable and familiar with the technology and it is incorporated into daily life in seamless ways.

You must not forget that by the year 2025 IoT devices installed worldwide would be 75.44 Billion.  That is a whopping number, which will relentlessly soar further, will give a positive impact on our lives and businesses alike.

I expect an exciting year for IoT advancements in 2021. And you?

Read more…

In order to form proper networks to share data, the Internet of Things (IoT) needs reliable communications and connectivity. Because of popular demand, there’s a wide range of connectivity technologies that operators, as well as developers, can opt for.

IoT Connectivity Groups

The IoT connectivity technologies are currently divided into two groups. The first one is cellular-based, and the second one is unlicensed LPWAN. The first group is based around a licensed spectrum, something which offers an infrastructure that is consistent and better. This group supports larger data rates, but it comes with a cost of short battery life and expensive hardware. However, you don’t have to worry about this a lot as its hardware is becoming cheaper.

Cellular-Based IoT

Because of all this, cellular-based IoT is only offered by giant operators. The reason behind this is that acquiring licensed spectrum is expensive. But these big operators have access to this licensed spectrum, as well as expensive hardware. The cellular IoT connectivity also has its own two types. The first one being the narrowband IoT (NB-IoT) and category M1 IoT (Cat-M1).

Although both are based on cellular standards, there is one big difference between the two. That NB-IoT has a smaller bandwidth than Cat-M1, and thus offers a lower transmission power. In fact, its bandwidth is 10x smaller than that of Cat-M1. However, both still have a very long range with NB-IoT offering a range of up to 100 Km.

The cellular standard based IoT connectivity ensure more reliability. Their device operational lifetimes are longer as compared to unlicensed LPWAN. But when it comes to choosing, most operators prefer NB-IoT over Cat-M1. This is because Cat-M1 provides higher data rates that are not usually necessary. In addition to this, the higher costs of it prevent operators from choosing it.

Cat-M1 is mostly chosen by large-scale operators because it provides mobility support. This is something suitable for transportation and traffic control-based network. It can also be useful in emergency response situations as it offers voice data transfer.

The hardware (module) used for cellular IoT is relatively more expensive compared to LPWAN. It can cost around $10, compared to $2 LPWAN. However, this cost has been dropping rapidly recently because of its popular demand. 

Unlicensed LPWAN

As for the unlicensed LPWANs, they are used by those who don’t have the budget to afford cellular-based IoT. They are designed for customized IoT networks and offer lower data rates, but with increased battery life and long transmission range. They can also be deployed easily. At the moment, there are two types of unlicensed LPWANs, LoRa (Long Range) and SigFox.

Both types are amazing as they designed for devices that have a lower price, increased battery life, and long range. Their coverage range can be up to 10 Km, and their connectivity cost is as low as $2 per module. Not only this, but the cost is even lower than this sometimes. Therefore, they are ideal for local areas.

Weightless LPWAN

Although there are many variants of the LPWAN, Weightless is considered to be the most popular one. This is because the Weightless Special Interest Group, or the SIG, currently offers three different protocols. These include the Weightless-N, the Weightless-W, and the Weightless-P. All three work in a different way as they have different modalities.

Weightless-W

First off, we have the Weightless-W open standard model. This one is designed to operate in TV white space (TVWS). TV Whitespace (TVWS) is the inactive or unoccupied space found between channels actively used in UHF and VHF spectrum its frequency spans from 470 MHz – 790 MHz. For those who don’t know, this is similar to what Neul was developing before getting acquired by Huawei. Now, while using TVWS can be great as it uses ultra-high frequency spectrum, it has one downside. In theory, it seems perfect. But in practice, it is difficult because the rules and regulations for utilizing TVWS for IoT vary greatly.

In addition to this, the end nodes of this model don’t work like they are supposed to. They are designed to operate in a small part of the spectrum. As is difficult to design an antenna that can cover a such wide band of spectrum. This is why TVWS can be difficult when it comes to installing it. The Weightless-W is considered a good option in:

  • Smart Oil sector.
  • Gas sector.

Weightless-N

Second up we have the ultra-narrowband system, the Weightless-N. This model is similar to SigFox as both have a lot in common. The best thing about it is it is made up of different networks instead of being an end-to-end enclosed system. Weightless-N uses differential binary phase shift keying (DBPSK) digital modulation scheme same as of used in SigFox.

The Weightless-N line is operated by Nwave, a popular IoT hardware and software developer. However, while is model is best for sensor-based networks, temperature readings, tank level monitoring, and more, there are some problems with it. For instance, Nwave has a special requirement for TCXO, that is the temperature compensated crystal oscillator.

 In addition to this, it has an unbalanced link budget. The reason behind why this is bad is that there will be much more sensitivity going up to the base station compared to what will be coming down. 

Weightless-P

Finally, we have the Weightless-P. This model is the latest one in the group as it was launched some time after the above two. What people love the most about this one is that it has two-way features. In addition to this, it has a 12.5 kHz channel that is pretty amazing. The Weightless-P doesn’t require a TXCO, something which makes it different from Weightless-N and -W.

The main company behind Weightless-P is Ubiik. The only downside about this model is that it is not ideal for wide-area networks as it offers a range of around 2 Km. However, the Weightless-P is still ideal for:

  • Private Networks
  • Extra sophisticated use cases.
  • Areas where uplink data and downlink control are important.

Capacity

Because of the fact that the Weightless protocols are based on SDR, its base station for narrowband signals is much more complex. This is something that ends up creating thousands of small binary phase-shift keying channels. Although this will let you get more capacity, it will become a burden on your wallet.

In addition to this, since the Weightless-N end nodes require a TXCO, it will be more expensive. The TXCO is used when there is a threat of the frequency becoming unstable when the temperature gets disturbed at the end node.

Range

Talking about the ranges, the Weightless-N and -W has a range of around 5 Km in Urban environments. As for the Weightless-P, it can go up to 2 Km.

Comparison

Weightless and SigFox

If we take the technology into consideration, then the Weightless-N and SigFox are pretty similar. However, they are different when it comes to go-to-market. Since Weightless is a standard, it will require another company to create an IoT based on it. However, this is not the case with SigFox as it is a different type of solution.

Weightless and LoRa

In terms of technology, the Weightless and LoRa. Lorawan are different. However, the functionally of the Weightless-N and LoRaWAN is similar. This is because both are uplink-based systems. Weightless is also sometimes considered as the very good alternative when LoRa is not feasible to the user.

Weightless and Symphony Link

The Symphony Link and Weightless-P standards are more similar to each other. For instance, both focus on private networks. However, Symphony Link has a much more better range performance because it uses LoRa instead of Minimum-shift keying modulation MSK.

Originaly posted here

Read more…

Impact of IoT in Inventory

Internet of Things (IoT) has revolutionized many industries including inventory management. IoT is a concept where devices are interconnected via the internet. It is expected that by 2020, there will be 26 billion devices connected worldwide. These connections are important because it allows data sharing which then can perform actions to make life and business more efficient. Since inventory is a significant portion of a company’s assets, inventory data is vital for an accounting department for the company’s asset management and annual report.

Inventory solutions based on IoT and RFID, individual inventory item receives an RFID tag. Each tag has a unique identification number (ID) that contains information about an inventory item, e.g. a model, a batch number, etc. these tags are scanned by RF reader. Upon scanning, a reader extracts its IDs and transmits them to the cloud for processing. Along with the tag’s ID, the cloud receives location and the time of reading. This data is used for updates about inventory items’, allowing users to monitor the inventory from anywhere, in real-time.

Industrial IoT

The role of IoT in inventory management is to receive data and turn it into meaningful insights about inventory items’ location, status, and giving users a corresponding output. For example, based on the data, and inventory management solution architecture, we can forecast the number of raw materials needed for the upcoming production cycle. The output of the system can also send an alert if any individual inventory item is lost.

Moreover, IoT based inventory management solutions can be integrated with other systems, i.e. ERP and share data with other departments.

RFID in Industrial IoT

RFID consist of three main components tag, antenna, and a reader

Tags: An RFID tag carries information about a specific object. It can be attached to any surface, including raw materials, finished goods, packages, etc.

RFID antennas: An RFID antenna receives signals to supply power and data for tags’ operation

RFID readers: An RFID reader, uses radio signals to read and write to the tags. The reader receives data stored in the tag and transmits it to the cloud.

Benefits of IoT in inventory management

The benefits of IoT on the supply chain are the most exciting physical manifestations we can observe. IoT in the supply chain creates unparalleled transparency that increases efficiencies.

Inventory tracking

The major benefit of inventory management is asset tracking, instead of using barcodes to scan and record data, items have RFID tags which can be registered wirelessly. It is possible to accurately obtain data and track items from any point in the supply chain.

With RFID and IoT, managers don’t have to spend time on manual tracking and reporting on spreadsheets. Each item is tracked and the data about it is recorded automatically. Automated asset tracking and reporting save time and reduce the probability of human error.

Inventory optimization

Real-time data about the quantity and the location of the inventory, manufacturers can reduce the amount of inventory on hand while meeting the needs of the customers at the end of the supply chain.

The data about the amount of available inventory and machine learning can forecast the required inventory which allows manufacturers to reduce the lead time.

Remote tracking

Remote product tracking makes it easy to have an eye on production and business. Knowing production and transit times, allows you to better tweak orders to suit lead times and in response to fluctuating demand. It shows which suppliers are meeting production and shipping criteria and which needs monitoring for the required outcome.

It gives visibility into the flow of raw materials, work-in-progress and finished goods by providing updates about the status and location of the items so that inventory managers see when an individual item enters or leaves a specific location.

Bottlenecks in the operations

With the real-time data about the location and the quantity, manufacturers can reveal bottlenecks in the process and pinpoint the machine with lower utilization rates. For instance, if part of the inventory tends to pile up in front of a machine, a manufacturer assumes that the machine is underutilized and needs to be seen to.

The Outcomes

The data collected by inventory management is more accurate and up-to-date. By reducing these time delays, the manufacturing process can enhance accuracy and reduce wastage. An IoT-based inventory management solution offers complete visibility on inventory by providing real-time information fetched by RFID tags. It helps to track the exact location of raw materials, work-in-progress and finished goods. As a result, manufacturers can balance the amount of on-hand inventory, increase the utilization of machines, reduce lead time, and thus, avoid costs bound to the less effective methods. This is all about optimizing inventory and ensuring anything ordered can be sold through whatever channel necessary.

Originally posted here

Read more…

After so many years evangelizing the Internet of Things (IoT) or developing IoT products or selling IoT services or using IoT technologies, it is hard to believe that today there are as many defenders as detractors of these technologies. Why does the doubt still assail us: "Believe or Not Believe in the IoT"? What's the reason we keep saying every year that the time for IoT is finally now?

It does not seem strange to you that if we have already experienced the power of change that involves having connected devices in ourselves (wearables), in our homes, in cities, in transportation, in business, we continue with so many non-believers. Maybe, because the expectations in 2013 were so great that now in 2020 we need more tangible and realistic data and facts to continue believing.

In recent months I have had more time to review my articles and some white papers and I think I have found some reasons to continue believing, but also reasons not to believe.

Here below there are some of these reasons for you to decide where to position yourself.

Top reasons to believe

  • Mackinsey continue presenting us new opportunities with IoT
    • If in 2015 “Internet of Things: Mapping the value beyond the hype” the company estimated a potential economic impact as much as 11,1 US trillions per year in 2025 for IoT applications in 9 settings.
    • In 2019 “Growing opportunities in the Internet of Things” they said that “The number of businesses that use the IoT technologies has increased from 13 percent in 2014 to about 25 percent today. And the worldwide number of IoT connected devices is projected to increase to 43 billion by 2023, an almost threefold increase from 2018.”
  • Gartner in 2019 predicted that by 2021, there will be over 25 Billion live IoT endpoints that will allow unlimited number of IoT use cases.
  • Harbor Research considers that the market opportunity for industrial internet of things (IIoT) and industry 4.0 is still emergent.
    • Solutions are not completely new but are evolving from the convergence of existing technologies; creative combinations of these technologies will drive many new growth opportunities;
    • As integration and interoperability across the industrial technology “stack” relies on classic IT principles like open architectures, many leading IT players are entering the industrial arena;
  • IoT regulation is coming - The lack of regulation is one of the biggest issues associated with IoT devices, but things are starting to change in that regard as well. The U.S. government was among the first to take the threat posed by unsecured IoT devices seriously, introducing several IoT-related bills in Congress over the last couple of years. It all began with the IoT Cybersecurity Improvement Act of 2017, which set minimum security standards for connected devices obtained by the government. This legislation was followed by the SMART IoT Act, which tasked the Department of Commerce with conducting a study of the current IoT industry in the United States.
  • Synergy of IoT and AI - IoT supported by artificial intelligence enhances considerably the success in a large repertory of every-day applications with dominant one’s enterprise, transportation, robotics, industrial, and automation systems applications.
  • Believe in superpowers again, thanks to IoT - Today, IoT sensors are everywhere – in your car, in electronic appliances, in traffic lights, even probably on the pigeon outside your window (it’s true, it happened in London!). IoT sensors will help cities map air quality, identify high-pollution pockets, trigger alerts if pollution levels rise dangerously, while tracking changes over time and taking preventive measures to correct the situation. thanks to IoT, connected cars will now communicate seamlessly with IoT sensors and find empty parking spots easily. Sensors in your car will also communicate with your GPS and the manufacturer’s system, making maintenance and driving a breeze!. City sensors will identify high-traffic areas and regulate traffic flows by updating your GPS with alternate routes. These IoT sensors can also identify and repair broken street lamps. IoT will be our knight in shining, super-strong metallic armor and prevent accidents like floods, fires and even road accidents, by simply monitoring fatigue levels of truck drivers!. Washing machines, refrigerators, air-conditioners will now self-monitor their usage, performance, servicing requirements, while triggering alerts before potential breakdowns and optimizing performance with automatic software updates. IoT sensors will now help medical professional monitor pulse rates, blood pressure and other vitals more efficiently, while triggering alerts in case of emergencies. Soon, Nano sensors in smart pills will make healthcare super-personalized and 10x more efficient!

Top reasons not to believe

  1. Three fourths of IoT projects failing globally. Government and enterprises across the globe are rolling out Internet of Things (IoT) projects but almost three-fourths of them fail, impacted by factors like culture and leadership, according to US tech giant Cisco (2017). Businesses are spending $745 billion worldwide on IoT hardware and software in 2019 alone. Yet, three out of every four IoT implementations are failing.
  2. Few IoT projects survive proof-of-concept stage - About 60% of IoT initiatives get stalled at the Proof of Concept (PoC) stage. If the right steps aren’t taken in the beginning, say you don’t think far enough beyond the IT infrastructure, you end up in limbo: caught between the dream of what IoT could do for your business and the reality of today’s ROI. That spot is called proof-of-concept (POC) purgatory.
  3. IoT Security still a big concern - The 2019 annual report of SonicWall Caoture Labs threat researchers analyzing data from over 200,000 malicious events indicated that 217.5 percent increase in IoT attacks in 2018.
  4. There are several obstacles companies face both in calculating and realizing ROI from IoT. Very few companies can quantify the current, pre-IoT costs. The instinct is often to stop after calculating the cost impact on the layer of operations immediately adjacent to the potential IoT project.  For example, when quantifying the baseline cost of reactive (versus predictive or prescriptive) maintenance, too many companies would only include down time for unexpected outages, but may not consider reduced life of the machine, maintenance overtime, lost sales due to long lead times, supply chain volatility risk for spare parts, and the list goes on.
  5. Privacy, And No, That’s Not the Same as Security. The Big Corporations don’t expect to make a big profit on the devices themselves. the Big Money in IoT is in Big Data. And enterprises and consumers do not want to expose everything sensors are learning about your company or you.
  6. No Killer Application – I suggest to read my article “Worth it waste your time searching the Killer IoT Application?"
  7. No Interoperable Technology ecosystems - We have a plethora of IoT vendors, both large and small, jumping into the fray and trying to establish a foothold, in hopes of either creating their own ecosystem (for the startups) or extending their existing one (for the behemoths).
  8. Digital Fatigue – It is not enough for us to try to explain IoT, that now more technologies such as Artificial Intelligence, Blockchain, 5G, AR / VR are joining the party and of course companies say enough.

You have the last word

We can go on forever looking for reasons to believe or not believe in IoT but we cannot continue to deny the evidence that the millions of connected devices already out there and the millions that will soon be waiting for us to exploit their full potential.

I still believe. But you have the last word.

Thanks in advance for your Likes and Shares

Read more…

Can AI Replace Firmware?

Scott Rosenthal and I go back about a thousand years; we've worked together, helped midwife the embedded field into being, had some amazing sailing adventures, and recently took a jaunt to the Azores just for the heck of it. Our sons are both big data people; their physics PhDs were perfect entrees into that field, and both now work in the field of artificial intelligence.

At lunch recently we were talking about embedded systems and AI, and Scott posed a thought that has been rattling around in my head since. Could AI replace firmware?

Firmware is a huge problem for our industry. It's hideously expensive. Only highly-skilled people can create it, and there are too few of us.

What if an AI engine of some sort could be dumped into a microcontroller and the "software" then created by training that AI? If that were possible - and that's a big "if" - then it might be possible to achieve what was hoped for when COBOL was invented: programmers would no longer be needed as domain experts could do the work. That didn't pan out for COBOL; the industry learned that accountants couldn't code. Though the language was much more friendly than the assembly it replaced, it still required serious development skills.

But with AI, could a domain expert train an inference engine?

Consider a robot: a "home economics" major could create scenarios of stacking dishes from a dishwasher. Maybe these would be in the form of videos, which were then fed to the AI engine as it tuned the weighting coefficients to achieve what the home ec expert deems worthy goals.

My first objection to this idea was that these sorts of systems have physical constraints. With firmware I'd write code to sample limit switches so the motors would turn off if at an end-of-motion extreme. During training an AI-based system would try and drive the motors into all kinds of crazy positions, banging destructively into stops. But think how a child learns: a parent encourages experimentation but prevents the youngster from self-harm. Maybe that's the role of the future developer training an AI. Or perhaps the training will be done on a simulator of some sort where nothing can go horribly wrong.

Taking this further, a domain expert could define the desired inputs and outputs, and then a poorly-paid person do the actual training. CEOs will love that. With that model a strange parallel emerges to computation a century ago: before the computer age "computers" were people doing simple math to create tables of logs, trig, ballistics, etc. A room full all labored at a problem. They weren't particularly skilled, didn't make much, but did the rote work under the direction of one master. Maybe AI trainers will be somewhat like that.

Like we outsource clothing manufacturing to Bangladesh, I could see training, basically grunt work, being sent overseas as well.

I'm not wild about this idea as it means we'd have an IoT of idiots: billions of AI-powered machines where no one really knows how they work. They've been well-trained but what happens when there's a corner case?

And most of the AI literature I read suggests that inference successes of 97% or so are the norm. That might be fine for classifying faces, but a 3% failure rate of a safety-critical system is a disaster. And the same rate for less-critical systems like factory controllers would also be completely unacceptable.

But the idea is intriguing.

Original post can be viewed here

Feel free to email me with comments.

Back to Jack's blog index page.

Read more…

7811924256?profile=RESIZE_400x

 

CLICK HERE TO DOWNLOAD

This complete guide is a 212-page eBook and is a must read for business leaders, product managers and engineers who want to implement, scale and optimize their business with IoT communications.

Whether you want to attempt initial entry into the IoT-sphere, or expand existing deployments, this book can help with your goals, providing deep understanding into all aspects of IoT.

CLICK HERE TO DOWNLOAD

Read more…

Industrial Prototyping for IoT

I-Pi SMARC.jpg

ADLINK is a global leader in edge computing driving data-to-decision applications across industries. The company recently introduced I-Pi SMARC for Industrial IoT prototyping.

-       AdLInk I-Pi SMARC consists of a simple carrier paired with a SMARC Computer on Module

-       SMARC Modules are available from entry level PX30 Rockchip to top of the line Intel Apollo Lake.

-       SMARC modules are specifically designed for typical industrial embedded applications that require long life, high MTBF and strict revision control.

-       Use popular off the shelve sensors and create prototypes or proof of concepts on short notice.

Additional information can be found here

 

Read more…

By: Kelly McNelis

We have faced unprecedented disruption from the many challenges of COVID-19, and PTC’s LiveWorx was no exception. The definitive digital transformation event went virtual this year, and despite the transition from physical to digital, LiveWorx delivered.

Of the many insightful virtual keynotes, one that caught everyone’s attention was ‘Digital Transformation: The Technology & Support You Need to Succeed,’ presented by PTC’s Executive Vice President (EVP) of Products, Kevin Wrenn, and PTC’s EVP and Chief Customer Officer, Eduarda Camacho.

Their keynote focused on how companies should be prioritizing the use of best-in-class technology that will meet their changing needs during times of disruption and accelerated digital transformation. Wrenn and Camacho highlighted five of our customers through interactive case studies on how they are using PTC technology to capitalize on digital transformation to thrive in an era of disruption.

6907721673?profile=RESIZE_400x

Below is a summary of the five customers and their stories that were highlighted during the keynote.

1. Royal Enfield (Mass Customization)

Royal Enfield is an Indian motorcycle company that has been manufacturing motor bikes since 1901. They have British roots, and their main customer base is located in India and Europe. Riders of Royal Enfield wants their bikes to be particular to their brand, so they worked to better manage the complexities of mass customization and respond to market demands.

Royal Enfield is a long time PTC customer, but they were on old versions of PTC technology. They first upgraded Creo and Windchill to the latest releases so they could leverage the new capabilities. They then moved on to transform their processes for platform and variant designs, introduced simulation much earlier by using Creo Simulation Live, and leveraged generative design by bringing AI into engineering and applying it to engine and chassis complex custom forged components. Finally, they retrained and retooled their engineering staff to fully leverage the power of new processes and technologies.

The entire Royal Enfield team now has digital capabilities that accelerate new product designs, variants, and accessories for personalization; as a result, they are able to deliver a much-shortened design cycle. Royal Enfield is continuing their digital transformation trend, and will invest in new ways to create value while leveraging augmented reality with PTC's Vuforia suite.

2. VCST (Manufacturing Efficiency, Quality, and Innovation)

VCST is part of the BMT Group and are a world-class automotive supplier of precision-machined power train and brake components. Their problem was that they had high costs for their production facility in Belgium. They either needed to improve their cost efficiency in their plant or face the potential of needing to shut down the facility and relocate it to another region. VCST decided to implement ThingWorx so that anyone can have instant visibility to asset status and performance. VCST is also creating the ability to digitize maintenance requests and the ability to acquire about spare parts to improve the overall efficiency in support of their costs reduction goals.

Additionally, VCST has a goal to reach zero complaints for their customers and, if any quality problems appear to their customers, they can be required to do a 100% inspection until the problem is solved. Moreover, as cars have gotten quieter with electrification, the noise from the gears has become an issue, and puts pressure on VCST to innovate and reduce gear noise.

VCST has again relied on ThingWorx and Windchill to collect and share data for joint collaborative analysis to innovate and reduce gear noise. VCST also plans to use Vuforia Expert Capture and Vuforia Chalk to train maintenance workers to further improve their efficiency and cost effectiveness. The company is not done with their digital transformation, and they have plans to implement Creo and Windchill to enable end-to-end digital thread connectivity to the factory.

3. BID Group Holdings (Connected Product)

BID Group Holdings operates in the wood processing industry. It is one of the largest integrated suppliers and North American leader in the field. The purpose of BID Group is to deliver a complete range of innovative equipment, digital technologies, turnkey installations, and aftermarket services to their customers. BID Group decided to focus on their areas of expertise, an rely on PTC, Microsoft, and Rockwell Automation’s combined capabilities and scale to deliver SaaS type solutions to their own industry.

Leveraging this combined power, the BID Group developed a digital strategy for service to improve mill efficiency and profitability. The solution is named OPER8 and was built on the ThingWorx platform. This allowed BID Group to provide their customers an out of the box solution with efficient time-to-value and low costs of ownership. BID Group is continuing to work with PTC and Rockwell Automation, to develop additional solutions that will reduce downtime of OPER8 with a predictive analytics module by using ThingWorx Analytics and LogixAI.

4. Hitachi (Service Optimization)

Hitachi operates an extensive service decision that ensures its customers’ data systems remain up and running. Their challenge was not to only meet their customers uptime Service Level Agreements, but to do it without killing their cost structure. Hitachi decided to implement PTC’s Servigistics Service Parts Management software to ensure the right parts are available when and where they are needed for service. With Servigistics, Hitachi was able to accomplish their needs while staying cost effective and delighting their customers.

Hitachi runs on the cloud, which allows them to upgrade to current releases more often, take advantage of new functionality, and avoid unexpected costs.

PTC has driven engagement and support for Hitachi through the PTC Community, and encourages all customers to utilize this platform. The network of collaborative spaces in a gathering place for PTC customers and partners to showcase their work, inspire each other, and share ideas or best practices in order to expand the value of their PTC solutions and services.

5. COVID-19 Response 

COVID-19 has put significant strain on the world’s hospitals and healthcare infrastructure, and hospitalization rates for COVID brought into question the capacity of being able to handle cases. Many countries began thinking of the value field hospitals could bring to safely care for patients and ease the admissions numbers of ‘regular’ hospitals. However, the complication is that field hospitals have essentially no isolation or air filtration capability that is required for treating COVID patients or healthcare workers.

As a result, the US Army Corp of Engineers has put out specifications to create self-contained isolation units, which are fully functioning hospital rooms that can be transported or built onsite. But, the assembly needed to happen fast, and a group of companies (including PTC) led by The Innovation Machine rallied to help design and define the SCIU’s.

With buy-in from numerous companies, a common platform was needed for companies to collaborate. PTC felt compelled to react, and many PTC customers and partners joined in to help create a collaboration platform, with cloud-based Windchill as the foundation. But, PTC didn’t just provide software to this collaboration; PTC also contributed with digital thread and design advice to help the group solve some of the major challenges. This design is a result of the many companies coming together to create deployments across various US state governments, agencies, and FEMA.

Final Thoughts

All of the above customers approached digital transformation as a business imperative. They all had sizeable challenges that needed to be solved and took leadership positions to implement plans that leveraged digital transformation technologies combined with new processes.

PTC will continue to innovate across the digital transformation portfolio and is committed to ensuring that customer success offerings capture value faster and provide the best outcomes.

Original Post Link: https://www.ptc.com/en/product-lifecycle-report/liveworx-digital-transformation–technology-and-support-you-need-to-succeed

Author Bio: Kelly is a corporate communications specialist at PTC. Her responsibilities include drafting and approving content for PTC’s external and social media presence and supporting communications for the Chief Strategy Officer. Kelly has previous experience as a communications specialist working to create and implement materials for the Executive Vice President of the Products Organization and senior management team members.

 

Read more…

Helium Expands to Europe

Helium, the company behind one of the world’s first peer-to-peer wireless networks, is announcing the introduction of Helium Tabs, its first branded IoT tracking device that runs on The People’s Network. In addition, after launching its network in 1,000 cities in North America within one year, the company is expanding to Europe to address growing market demand with Helium Hotspots shipping to the region starting July 2020. 

Since its launch in June 2019, Helium quickly grew its footprint with Hotspots covering more than 700,000 square miles across North America. Helium is now expanding to Europe to allow for seamless use of connected devices across borders. Powered by entrepreneurs looking to own a piece of the people-powered network, Helium’s open-source blockchain technology incentivizes individuals to deploy Hotspots and earn Helium (HNT), a new cryptocurrency, for simultaneously building the network and enabling IoT devices to send data to the Internet. When connected with other nearby Hotspots, this acts as the backbone of the network. 

“We’re excited to launch Helium Tabs at a time where we’ve seen incredible growth of The People’s Network across North America,” said Amir Haleem, Helium’s CEO and co-founder. “We could not have accomplished what we have done, in such a short amount of time, without the support of our partners and our incredible community. We look forward to launching The People’s Network in Europe and eventually bringing Helium Tabs and other third-party IoT devices to consumers there.”  

Introducing Helium Tabs that Run on The People’s Network
Unlike other tracking devices,Tabs uses LongFi technology, which combines the LoRaWAN wireless protocol with the Helium blockchain, and provides network coverage up to 10 miles away from a single Hotspot. This is a game-changer compared to WiFi and Bluetooth enabled tracking devices which only work up to 100 feet from a network source. What’s more, due to Helium’s unique blockchain-based rewards system, Hotspot owners will be rewarded with Helium (HNT) each time a Tab connects to its network. 

In addition to its increased growth with partners and customers, Helium has also seen accelerated expansion of its Helium Patrons program, which was introduced in late 2019. All three combined have helped to strengthen its network. 

Patrons are entrepreneurial customers who purchase 15 or more Hotspots to help blanket their cities with coverage and enable customers, who use the network. In return, they receive discounts, priority shipping, network tools, and Helium support. Currently, the program has more than 70 Patrons throughout North America and is expanding to Europe. 

Key brands that use the Helium Network include: 

  • Nestle, ReadyRefresh, a beverage delivery service company
  • Agulus, an agricultural tech company
  • Conserv, a collections-focused environmental monitoring platform

Helium Tabs will initially be available to existing Hotspot owners for $49. The Helium Hotspot is now available for purchase online in Europe for €450.

Read more…
I have spent many years working with IoT projects. Most of them were typical, there was nothing unusual behind them and they were trying to copy the success of their competitors, however, the deeper I was diving into IoT startups environment more and more I was facing with innovators in this niche who have found how to adapt IoT technologies for their enterprises' specification. In this article, I will not mention my partners' names because of the reasons, however, I will try to push you to the idea of how to implement IoT to your company.
Read more…
RSS
Email me when there are new items in this category –

Charter Sponsors

Upcoming IoT Events

More IoT News

Arcadia makes supporting clean energy easier

Nowadays, it’s easier than ever to power your home with clean energy, and yet, many Americans don’t know how to make the switch. Luckily, you don’t have to install expensive solar panels or switch utility companies…

Continue

Answering your Huawei ban questions

A lot has happened since we uploaded our most recent video about the Huawei ban last month. Another reprieve has been issued, licenses have been granted and the FCC has officially barred Huawei equipment from U.S. networks. Our viewers had some… Continue

IoT Career Opportunities