Subscribe to our Newsletter | To Post On IoT Central, Click here


Platforms (153)

 

When I ask people what they think the Internet of Things (IoT) is all about, the vast majority will say “smart homes,” probably based on personal experience. If I say that it is also about industries making using of data from sensors, then most people’s immediate reaction is to think of manufacturing. Sensors have been used for a long time in manufacturing, and the concept of using data generated at the edge to monitor and run automated processes is well understood.

This perception, however, is underselling the IoT. In practice, it can be applied anywhere.

Monitoring ‘things’

The use cases for industries with “things” to monitor are easy to identify.

Manufacturing is one of the most obvious. Connected sensors can be used to monitor and manage the health of manufacturing equipment, identify root causes of defects and improve quality.

Health care has equipment that generates digital information about how patients’ bodies are working (e.g., blood pressure) and what they look like (e.g., scans). There are numerous opportunities to monitor people’s health more closely and accurately and catch signs of disease early, or even avoid it altogether.

The insurance industry is using telematics to monitor driving behaviour and assess the risk posed by individual drivers. Telematics also helps with the claims process because information from before a crash can indicate who is at fault, and images of a damaged vehicle can be used to assess whether the car should be written off or repaired.

The IoT also, however, has potential in industries that, on the face of it, do not really have “things,” such as financial services. Banks and other financial providers are extremely interested in the IoT, focusing on “things” which do not belong to the banks themselves, but to customers: mobile phones and payment cards, for example. Banks can improve fraud detection by notifying customers each time their cards are used – in real time – and also checking that the customer is with the card at the time. That, clearly, is a huge service for customers: no more cloning and no more fraudulent transactions.

A change in business model

A fundamental shift in business model is being enabled by IoT analytics: a move from products to services. For example, Rolls-Royce is traditionally considered an engine manufacturer. The company made and sold engines, then sold services to maintain those engines. Now, however, rather than pay for maintenance, airlines can choose to pay an hourly rate for the time that the engine is propelling the aircraft. In other words, it can pay for what it actually wants: the plane in flight at particular times. Increasingly individuals, too, are choosing to pay for a service, rather than goods, such as access to a car-sharing service, rather than owning a car.

This shift, however, has challenges for the service providers. If you are providing a service that includes a physical asset, you do not want to have to spend time and resources inspecting that asset. Instead, you want it to run itself as much as possible. The IoT allows providers to remotely monitor and collect data on all the important aspects of each asset – how it is performing, how it is being used and environmental factors, for example – and therefore automate much of its management.

The data collected from the IoT is only really useful when you can derive useful intelligence from it, and preferably in an automated way. This automation, however, requires intelligence, and that means artificial intelligence (AI).

The importance of AI – and the problem

This is one of the biggest reasons why the IoT is really taking off now: AI algorithms are becoming more usable. There is, however, still a problem. Most AI algorithms need huge amounts of data and computing power. They therefore rely on powerful servers and central data storage.

In computing terms, we humans perform most of our computation and decision making at the edge (in our brain) and in the (pre-)moment, referring to other sources (internet, library, other people) where our own processing power and memory will not suffice. This is more or less the complete opposite of the current AI algorithms, which tend to perform most of their calculations far from the data source, in servers, drawing on stored data.

To enable timely decision making in the world of IoT, you need to be able to deploy some of the cleverness (predictive models and decisioning rules) at the edge, closer to the “things” that you are managing. Some businesses are already doing this, whilst many others are still trying to figure out how to organise and make sense of the deluge of data available to them. Those at the forefront of combining AI and IoT have a huge opportunity to steal a march on their competition.

In my personal view, this is the biggest change in business models since the dot-com boom. And, as in the 1990s, there will be some big winners, and there will also be those who don’t quite get it right, and fall by the wayside.

by Jennifer Major, Head of IoT, SAS

This blog originally appeared as a SAS "Higgen Insights" Blog

Photo by Franki Chamaki on Unsplash

Read more…

Implementing Smart City leveraging IoT and connected technology helps promote economic development, improve infrastructure and environment, enhance transportation systems and optimize costs of managing public assets.

To cope with increasing population, hyper-urbanization, globalization as well as to ensure economic and environmental stability, cities are now focusing on becoming smart cities. The smart city is a concept of utilizing technologies and connected data sensors to enhance and become powerful in terms of infrastructure and city operations. This includes monitoring and managing of public assets, transportation systems, citizens, power plants, water supplies, information systems, civil bodies, and other community services.

Connected technologies and IoT solutions for smart cities play important roles in transforming cities into smart cities. Implementing smart city with IoT and connected technology helps enhance the quality, performance, and interactivity of urban services, optimize resources and reduce costs.

Let’s see the various components of smart city and their impact in the IoT era:

  1. Smart Infrastructure

The global market for smart urban infrastructure in smart cities, include advanced connected streets, smart parking, smart lighting, and other transportation innovations. Here’s how they work:

  • Smart Lighting: With smart lighting, city authorities can keep real-time tracking of lighting to ensure optimized illumination and deliver demand-based lighting in different zones. Smart lighting also helps in daylight harvesting and save energy by dimming out sectors with no occupancies For e.g. parking lots can be dimmed during work hours and when a car is entering, it will be detected and appropriate sectors can be illuminated, while others can be kept at diffused setting.
  • Connected Streets: Connected and smart streets are capable of acquiring data and delivering information and services to and from millions of devices, which includes information about traffic, road blockages, roadworks, etc. This helps in efficient management of resources and people to enhance public transportation and the urban landscape.
  • Smart Parking Management: Smart parking management system can be used to find the vacant location for a vehicle at different public places. Smart Parking’s In-Ground Vehicle Detection Sensors are core technologies, playing a key part in the Smart Parking solution that is revolutionizing how drivers in the malls and city centers can find an available parking space. Wireless sensors are embedded into parking spaces, transmitting data on the timing and duration of the space used via local signal processors into a central parking management application. Smart Parking reduces congestion, decreases vehicle emissions, lowers enforcement costs and cuts driver stress. For effective deployment of smart parking technologies, each device needs to have a reliable connectivity with the cloud servers.
  • Connected Charging Stations: Smart infrastructure also includes implementing charging stations in parking systems, city fleets, shopping malls and buildings, airports, and bus stations across the city. Electronic vehicle (EV) charging platforms can be integrated with IoT to streamline the operations of EV charging and addresses the impact of the power grid.
  1. Smart Buildings & Properties

Smart buildings utilize different systems to ensure safety and security of buildings, maintenance of assets and overall health of the surrounding.

  • Safety & Security Systems: These include implementing remote monitoring, biometrics, IP surveillance cameras, and wireless alarms to reduce unauthorized access to buildings and chances of thefts. It also includes utilizing Perimeter Access Control to stop access to restricted areas of the property and detect people in non-authorized areas.
  • Smart Garden & Sprinkler System: Smart sprinkler system synced with connected technologies and cloud can be used to water plants with the assurance that plants get the right amount of water. Smart garden devices can also perform tasks such as measuring soil moisture and levels of fertilizer, helping the city authorities to save on water bill (smart sprinkler devices use weather reports and automatically adjust their schedule to stay off when it rains), and keep the grass from overgrowing in the convenient way (robot lawnmowers).
  • Smart Heating & Ventilation: Smart heating and ventilation systems monitor various parameters such as temperature, pressure, vibration, humidity of the buildings and properties such as movie theatres, and historical monuments. Wireless sensor network deployment is the key to ensuring appropriate heating and ventilation. These sensors also collect data to optimize the HVAC systems, improving their efficiency and performance in the buildings.
  1. Smart Industrial Environment

Industrial environments present unique opportunities for developing applications associated with the Internet of things and connected technologies which can be utilized in the following areas:

  • Forest Fire Detection: Helps in monitoring of combustion gases and preemptive fire conditions to define alert zones.
  • Air/Noise Pollution: Helps in controlling of CO2 emissions of factories, pollution emitted by cars and toxic gases generated on farms.
  • Snow Level Monitoring: Helps in identifying the real-time condition of ski tracks, allowing security corporations for avalanche prevention.
  • Landslide and Avalanche Avoidance: Helps in monitoring of soil moisture, earth density, as well as vibrations to identify dangerous patterns in land conditions.
  • Earthquake Early Detection: Helps in detecting the chances of tremors by utilizing distributed controls at specific places of tremors.
  • Liquid Presence: Helps in detecting the presence of liquid in data centers, building grounds, and warehouses to prevent breakdowns and corrosion
  • Radiation Levels: Helps in distributed measurement of radiation levels in nuclear power stations surroundings to generate leakage alerts
  • Explosive and Hazardous Gases: Helps in detecting gas levels and leakages in chemical factories, industrial environments, and inside mines
  1. Smart City Services

Smart city services include services for public safety and emergencies.  Below are the key areas where IoT and connected technologies can help:

  • Smart Kiosk: Smart kiosks play an important role in providing different city services to the public such as Wi-Fi services, 24×7 IP surveillance cameras and analytics, Digital signage for advertisement and public announcements. In some cases, free video calling and free mobile charging station, as well as environmental sensor integration can also be implemented. Smart kiosks also provide information about restaurants, retail stores, and events in the immediate area. It can also provide mapping for visitors and can sync with smartphones to give additional data as needed.
  • Monitoring of Risky Areas: Sensors (cameras, street lights) and actuators for real-time monitoring can be implemented in risky areas or areas prone to accidents. Upon detecting any crime, or mishap, these sensors can alert the citizens to avoid such areas temporarily.
  • Public Security: IoT sensors can be installed at public organizations and houses to protect citizens and provide real-time information to fire and police departments when it detects a theft.
  • Fire/Explosion Management: Smart fire sensors can detect and automatically take actions based on the level of severity, such as detecting false alarms, informing firefighters and ambulance, blocking off nearby streets/buildings on the requirement, helping people to evacuate, and coordinating rescue drones and robots.
  • Automatic Health-Care Dispatch: Smart healthcare devices can be implemented at public places to provide 24/7 health care for patients like dispensing medicines and drugs to patients. These devices can also be used to call an ambulance to pick up the patients in cases of emergencies.
  1. Smart Energy Management

Here’s how cities can implement smart energy management:

  • Smart Grid: Smart grids are digitally monitored, self-healing energy systems that deliver electricity or gas from generation sources. Smart grid solutions can be across industrial, residential as well as in transmission and distribution projects. Various IoT solutions like gateways can be used to achieve energy conservation at both the transmission level and consumer level. For e.g., gateways can provide a broader view of energy distribution patterns to utility companies with high connectivity and real-time analytics. Also, it develops a Demand-Response mechanism for the utility providers to optimize energy distribution based on the consumption patterns.
  • Smart Meters: Smart meters can be used in residential and industrial metering sectors for electricity and gas meters where there is a need to identify the real-time information on energy usage. Consumers and utilities with smart meters can monitor their energy consumption. Moreover, energy analytics, reports, and public dashboards can be also accessed over the internet using mobile applications integrated with these smart meters.
  1. Smart Water Management

IoT and connected devices enable smart water management in the following ways:

  • Potable Water Monitoring: Monitors the quality of tap water in the cities.
  • Chemical Leakage: Identifies leakages and wastes of factories in rivers.
  • Swimming Pool Remote Measurement: Controls the swimming pool conditions remotely.
  • Pollution Levels in the Sea: Controls the occurrence of leakages and wastes in the sea.
  • Water Outflows: Detects of liquid presence outside tanks and pressure variations along pipes.
  • River Floods: Monitors water level variations in rivers, dams, and reservoirs.
  1. Smart Waste Management

Smart solutions for tracking wastes help municipalities and waste service managers the ability to optimize wastes, reduce operational costs, and better address the environmental issues associated with an inefficient waste collection.

Implementation of a smart city comes with enormous opportunities to transform the lives of people and improve the overall city infrastructure and operations. Smart sensor networks, Internet of Things (IoT) and connected technologies are the key solutions for smart city implementation.

 

 Photo by Arturo Castaneyra on Unsplash

Read more…

Iot and IIoT has made it a long way in the past several years. In fact, according to Forbes, trillions of dollars are at stake as the Industrial Internet of Things rolls out over the next decade. But, has the multi-tillion dollar trend lived up to the hype?

It could be many more years until certain industries reach the levels described in the hype.  Here’s the industries you should keep your eye on when it comes to IIoT technology.

The Internet of Things and the Industrial Internet of Things (IoT and IIoT, respectfully), widely encompasses many concepts, technologies, and products, but can generally be described as:

  • A system that contains wired or wirelessly connected components which relay data that can be analyzed or used to control an output of the system
  • A network that allows for automated information exchange between two devices
  • A vision where any and all systems are connected to gather masses of data that will lead to overall improved performance, insights, and control

As of 2018, we most commonly see IoT being used for location tracking, remote monitoring, and preventative maintenance.  Yet, for IIoT the most common application is preventative maintenance. Many of these IIoT systems report back to a control interface, and are not completely automated control loops that are self-evaluating or self-improving.

 

There are some industries in particular that stand out when looking at the IIoT.  We looked at trends that will progress through the end of 2018 into 2019, and asked the following questions.

  1. What industries will be most affected by IoT solutions?

According to BI Intelligence, the ‘Manufacturing’ and ‘Transportation and Warehousing’ industries have received the highest amount of investment in IoT to date.  These investments, totaling $230B between the two industries over the past few years, will continue to drive impressive progress in the development of IoT solutions. 

  1. Who will be the key players in IIoT Solutions in 2019?

We are currently witnessing a race to capture the IIoT market.  AT&T is collaborating with Honeywell, Verizon offers a machine-to-machine (M2M) management platform called ThingSpace, and startups like Uptake Technologies are raising absurd amounts of capital to compete with existing analytics giants. Uptake alone has raised $218M since 2015, and specializes in analytics of complex data sets. 

Nearly all of the corporate giants you would expect to have a stake in the race are putting serious resources behind their efforts.  GE is offering Predix, and end-to-end Industrial IoT Platform, and has incorporated capabilities like Predix Edge to allow for edge computing within the platform.  Siemens offers their own Industrial IoT platform called MindSphere, and Bosch is also getting in on the action now offering their IoT Suite publicly available on AWS Marketplace. Further, Schneider Electric developed WonderWare and SAP offers Hana.

We expect that through 2019 we will see more partnerships develop, offering cross compatibility between the many platforms which are available today.

  1. What further developments in IIoT can we expect in the near future?

Security will continue to be a major focus for all providers and users of the IIoT.   In a recent publication Steve Watson, CEO of VTO Labs, explains “security and specifically the ability to detect compromised nodes, together with collecting and preserving evidences of an attack or malicious activities emerge as a priority in successful deployment of IoT networks.” This ability to detect and preserve evidence of a cyber-attack will not only need to occur through edge computing, but it will also need to be maintain its integrity with interoperability of different systems that are linked together.

Given the amount of investment we are seeing in the ‘Manufacturing’ and ‘Transportation and Warehousing’ industries we expect to see many breakthroughs in both cyber security for the IIoT and interoperability between the many IIoT platforms. Looking into 2019 we can expect to see more partnerships between major sensor providers and network providers, such as the AT&T Honeywell collaboration we saw in 2018. With more interoperability and collaboration, 2019 may be the year that we see the major breakthroughs in IIoT we’ve been expecting.

Read more…

Until recently, we knew unicorns were mythical creatures which made an appearance only in Greek literature, the Bible, and Marco Polo’s travels. While not a single unicorn was ever discovered in the real world, these days, we seem to be dealing with a whole bunch of them, especially when it comes to business.

Technology has played a crucial role in small and medium businesses, made startups fashionable. Today we have many unicorns trotting about the business landscape.

The unicorns are celebrated for their successes and business acumen. Essentially, a unicorn is a start-up that is valued over $1 billion. When you think of them, think about, AirBnB, Uber, Xiaomi or even Flipkart. These are the new set of businesses that have disrupted the market in their respected sphere. But companies rise and fall all the time, so one may be tempted to ask what is so magical about these creatures?

The term Unicorn was coined in a TechCrunch article by Aileen Lee of Cowboy Ventures.

Part of the charm lies in reinventing the business model. They find a better way to do business. It may be a new idea or an improvement over the existing one. They offer a vision; a glimpse of what the future may hold and have an intense desire to grow.

Fuelling these dreams through constant innovation and the ability to adapt quickly. Precisely where some of the giant falter. Large businesses are bogged by internal processes and complexities resulting in delayed decision-making, allowing a start-up to swoop in.

 According to a study by CB Insights, there are around 175 unicorn companies globally.

The Unicorns and the Internet of Things

Many entrepreneurs have realized that IoT/IIOT technologies can level the playing field if they intend to dislodge industry giants. IoT Start-ups are looking to attract consumers or SMBs or large enterprises by increasingly relying on innovation on cloud and edge computing, IoT platforms, Artificial intelligence, IoT networks, IoT security or IoT devices.  Advanced technology is a key differentiator but not the only one- A new business model to attract customers could also become the initiator of a new unicorn.

After five years of exploring the fragmented but rich universe of IoT startups, no new unicorn has yet appeared. The most promising startups have seen their light turned off behind the Tech and Industry Giants check books. Those who are still pursuing their dreams of being unicorns see that the market does not accompany and no longer rely on analysts' predictions.

With all this, we may not see any unicorn of IoT. However, if I had to bet on some startups then these are my suggestions. 

The IoT Application Unicorn

My vote for the startup to become a unicorn in IoT Application category goes to: Uptake

Founded in 2014 by the CEO, Brad Keywell, that was also Co-Founder of Groupon, the company counts with a good number of investors. The company is stealing execs away from GE. (Uptake hiring several General Electric top digital executives) and have raised around $260 million since launching in 2014. Uptake was last valued at more than $2 billion, in fact, this startup is probably the first IoT unicorn. Uptake's revenue run-rate exceeds more than $100 million a year and future rounds of financing are expected.

LinkedIn profile: “Uptake helps industrial companies digitally transform with open, purpose-built software that delivers outcomes that matter. Built on a foundation of data science and machine learning, our vision is to create a world that always works — one where the machines and equipment we depend on daily don’t break, and industrial companies are once again the creators of economic growth and opportunity.”

WHY MY VOTE: Predictive analytics software is hot. The company sells to the mining, rail, energy, aviation, retail and construction industries and hopes to leverage data to improve safety, efficiency and productivity for their clients' operations. In spite his CEO has not accepted my LinkedIn invitation, no surprise to be honest, only 54% approve of CEO in glassdoor, the aggressive campaign against GE could launch the company this year. I like that his employees are sent directly to the field to observe fast hand the needs of its client base so they can really build software that solve real business problems.

ALSO FOLLOWING: FogHorn Systems a developer of “edge intelligence” software for industrial and commercial IoT applications..

The Hardware and Sensor Data platform Unicorn

My vote for the startup to become a unicorn in IoT hardware category goes to: Samsara

Samsara sells hardware and end-to-end solutions for fleet and industrial applications.

Samsara was founded in 2015 by CEO Sanjit Biswas and CTO John Bicket, who previously founded and led Meraki – a successful cloud networking company that was acquired by Cisco in 2012 for $1.2 billion. Samsara is based in San Francisco and was funded by Andreessen Horowitz (Raising $25M in funding). In May 2017, the startup announced that it had secured $40 million in a Series C funding round.

Sanjit Biswas, recognized that “They were definitely not the first to notice the technology trend behind the Internet of Things movement, but they realized no one was building products the way we did at Meraki, by combining hardware, software and cloud into an easy-to-use system”.

LinkedIn profile: “Samsara’s mission is to bring the benefits of sensor data to the organizations that drive our economy—from transportation and logistics to construction, food production, energy, and manufacturing—and to improve the safety, efficiency, and quality of their operations.”

WHY MY VOTE: Although not on this occasion his CEO accepted my invitation to LinkedIn, I like that Samsara disrupts the traditional sensor model with an integrated, software-centric solution. The products combine plug-and-play sensors, wireless connectivity, and rich cloud-hosted software, all tightly-integrated for simple deployment. Samsara is used by customers in a wide variety of industries, from transportation and logistics to energy and manufacturing. The company offers various solutions including fleet, ELD compliance, trailer, industrial, temperature, and power.

By focusing Samsara system for ease of use and streamlining deployments in the field, the teams were able to make several design choices that help them deliver a 10 times overall improvement over traditional solution. Samsara was in the list of “The 20 Fastest Growing IoT Companies” and is demonstrating is able to capture customers  in the fleet management and logistics industry against Verizon. The challenge is growth globally not only in US.

ALSO FOLLOWINGGeotab

The IoT Connectivity Unicorn

My vote for the startup to become unicorn in IoT connectivity category goes to: SigFox

LinkedIn profile: Founded in 2010 by Ludovic Le Moan and Christophe Fourtet, the company is headquartered in Labège near Toulouse, France’s “IoT Valley”. Sigfox provides connectivity for the Internet of Things (IoT). The company has built a global network to connect billions of devices to the Internet while consuming as little energy as possible, as simply as possible.

WHY MY VOTE: There are drastic limitations in the Sigfox global network. I could say that this will be the network of the stupid devices, but if they improve the network, ensure scalability, quality and security and allow interoperability with their competitors that will connect the most intelligent devices, then this startup will continue empowering companies to create new innovations on the IoT.

Sources announced that Sigfox is in peril as Senior Execs exit. The company has reacted but the pressure to growth in revenues and network deployment is high. Compete with the Telco Incumbents and the mighty powerful GSMA is a Hercules' own task. Some help from the French government and the EU will be appreciated, so the company can not be acquired. The Board and investors should guarantee the money the company need to comply with the high expectations of the market. In my opinion the window of opportunity is 2020. They have 2 years to demonstrate they can become the IoT-Connectivity unicorn.

ALSO FOLLOWINGActility, Link Labs, and of course the LORA alliance and M2M Service Providers.

The IoT -AI Platform Unicorn

My vote for the startup to become a unicorn in IoT/AI platform category goes to: C3IoT

I have written a lot about IoT platforms and I think that most startups will disappear in 3-5 years or they will never become a digi-unicorn. But there is a special case that can reach the end of the road. Mainly for who is behind, my old CEO Thomas Siebel.

LinkedIn profile: C3 IoT is an AI and IoT software platform provider for digital transformation. C3 IoT delivers a comprehensive and proven platform as a service (PaaS) for rapidly developing, deploying, and operating large-scale AI, predictive analytics, and IoT applications at scale for any enterprise value chain in any industry. At the core of the C3 IoT offering is the revolutionary C3 Type System—an extensible, model-driven AI architecture that dramatically enhances data scientist and application developer productivity. C3 IoT also offers configurable, high-value SaaS products for predictive maintenance, fraud detection, sensor network health, supply chain optimization, energy management, and customer engagement.

WHY MY VOTE: In January 17, 2018, the company announced a new round ($100 Million) of financing by existing investors TPG Growth, Breyer Capital, Sutter Hill, Pat House, and Thomas M. Siebel.

After the sale to Oracle of its CRM business, Tom, could with this new adventure, return to be relevant in the industry and I think he will not allow his new baby to be acquired. Not at least until he makes C3 IOT a unicorn.

ALSO FOLLOWING: The competition in the AI-powered industrial IoT sector is brutal, but the opportunity is big enough that the 10 startups highlighted here still have room to maneuver and time to scale up. I also keep an eye on them because one or more could well be the next unicorn in this hot market.

Key Takeaway:

Not being a IoT unicorn is not a tragedy. Many companies that started in the M2M business or that have been born in the heat of the IoT are doing well. Their employees are happy and satisfied customers guarantee a long life.

In my post “Is it possible to democratize the Internet of Things? How to avoid that a handful of companies can dominate the IoT”, I pointed out the opinion of Ryan Lester (Director of IoT Strategy, Xively by LogMeIn company acquired by Google). Ryan alerted that IoT feels only achievable to those companies with unlimited resources to make it happen. Looks like, the facts have given him the reason.

Yes, I admit, I would like to see unicorns in IoT. I would also like startups not to be obsessed with this issue and not throw in the towel too soon. If they are acquired, their legacy is very likely to be lost soon and in exchange for money they will have lost the opportunity to contribute to changing the world with their unique innovation in IoT.

Thanks in advance for your Likes and your Shares.

References:

http://www.moneycontrol.com/india-business-live-ibl/growth-for-sme/article/unicorns-in-our-midst-7501221.html

Read more…

One year ago, I wrote the first part of this article: “Who need an IoT Analyst?. In those first part, I classified the different types of analysts who are involved in one way or another in the Internet of things (IoT).

In this second part, I will address the special case of analysts specializing in IoT Platforms. For them, I have created 4 categories of IoT Platform Analysts (The Powerful, the Specialists, The Opportunist and the Intruders) and then I ranked them following two high level criteria: Technical Experience criteria and Business Experience criteria.  The level of influence is a subjective value based on my own research and perception.  Likewise, the position in terms of technical and business criteria is also subjective. As usual in these graphics some will feel comfortable and I will receive critics from others. Nothing new under the Sun.

Let us start for the Powerful category:

The IoT Platforms Powerful Analysts' Firms

We will never remove at 100% the shadow of doubt flying over the reports and recommendations that prestigious and powerful firms like McKinsey, Gartner, IDC or Forrester continue to publish. But it also true that these multinational companies count with great analysts and they have the contacts with the right people in the Big IoT platform vendors, so they can get not only marketing info but strategic info from these vendors that is nearly impossible to get for others.

Not all the Powerful always agree, just read the Forrester reports of Q4/2016 and Q4/2018 and compare with Gartner report 2018 or IDC report 2017 to see the differences and the reasonable doubts for customers that only read these reports.

In Forrester reports from 2016 and 2018 we see some leaders maintaining their positions while other companies are losing moment, or they are not anymore in the picture.

Surprise even more if you see the Gartner graphic below with no leaders and most companies in the Niche players segment.

Finally, in the IDC Marketspace IoT Platforms picture dated in 2017 we see that Microsoft, PTC and IBM repeat as Leaders but new companies are included. No Contenders neither participants are interested for the guys of IDC.

Recommendation –  In terms of methodology and scope the reports of these Powerful analyst is not so bad, but they lack the in deep analysis firms required for a customer to take a final decision. These reports are valuable to shortlist candidates in RFIs/RFPs and of course the report is an excellent sales tool for companies that appear in the picture. My recommendation is used it for a first filter.

The IoT Platforms Specialist Analysts' Firms

Some of them started with the M2M market and have evolved to the IoT in a gradual way, without losing its essence like ABI Research, Berg Insight, Beecham Research, Harbor Research. Others like MatchManation or IoT Analytics, however, focused from the beginning in the IoT platform market analysis.

The populated market of IoT platform vendors and the need of these startups for brand recognition with low cost marketing, have made it bloom IoT platform specialist analyst firms offering their services.  Their suspense sales strategy can be annoying. Go discovering who is who is not easy and put all the tracks together is expensive. Some examples below. Nevertheless, I want to thanks to some vendors included in the report that allow download partial reports.

Recommendation - The reports of IoT Platform specialists will help us discover some jewels that the Powerful have overlooked or have not wanted to pay to appear in their famous reports. I do not like how these companies use a game-strategy offering partial pictures or partial reports through their most valuated clients or generic pictures with no names. I believe they need to be courageous and present graphics will all companies’ logos. Otherwise they will be continuing in a niche market that soon will be owned for the Big Players.

The Opportunistic Firms

These analyst firms want to take advantage of the IoT platform moment. Companies such as Navigant, IHS market, 451 Research or Constellation Research have published reports on this topic.

Recommendation - I find their IoT reports useful from a vertical or an individual vendor analysis.

The Intruders Firms

There are other firms (The Intruders) that in my opinion are aggregators of content. Companies like Markets and Markets or Data Bridge deliver big reports with excellent pictures, tables and infographics.

Recommendation - Sometimes they provide for free a Table of Contents with dozens of tables, and a list of dozens of IoT platforms info but I am afraid that in 1 page per platform the info sounds irrelevant for take a decision. They facilitate the multi search in Google to identify IoT platform vendors.

Note: I have not included in this article Universities that produce very interesting to read reports including more granular technical criteria than most of the powerful or specialist analyst firms. 

Key Takeaway:

Recommending a client an IoT platform is a very delicate matter. The IoT platform will play a key role in the execution of its IoT strategy. Giving good advice on the choice of these platforms requires a lot of time and dedication with the client to understand their objectives, identify their use cases, know their organization and their IT / OT systems.

The reports of the analysts of IoT platforms, both those of the Powerful and those of specialists help to make a first filter and to select 3 or 4 vendors that best adapt to their needs. Thereafter, these finalists need to be analyzed in greater depth. That is why I decided to create our IoT Platforms services, which have been so successful and well received by our customers.

We value positively that this combination of IoT Platform vendors and IoT platform analysts exists. The Powerful ones help them as always and the small ones help them in their efforts to be noticed in a technological world as little democratic as the present one.

Thanks in advance for your Likes and your Shares.

 

Read more…

Those who regularly read my articles know that I like movies and TV series. Just remember my article "About IoT Platforms, Super Powers Methodology, Superheroes and Supervillains".

This time my article is dedicated to the two trilogies: Jurassic Park and Jurassic World (the latter still pending the third movie).

 

Have not passed millions of years since the appearance of the first telemetry species and their evolved cousins of Machine to Machine (M2M.) But the tempo in technology is measured differently. The unit of time here has to do with Gartner Hype Cycle. For Gartner the technologies pass quickly from Innovation Trigger to Productivity. Companies that want to appear in Gartner´s  Magic Quadrants have to adopt successfully these technologies or are condemned to  disappear.

 

Large companies that have been in the IT world for more than 15 years seem like dinosaurs and they themselves are afraid of disappearing because of a meteorite (IoT metaphorically).

 

In this article I present some technology companies that we could consider as dinosaurs and that are undergoing a cloning (transformation) to adapt to the new world of the Internet of Things (IoT), Artificial Intelligence(AI) or Blockchain.

 

As usual in this type of articles, the included companies and the classification is subjective. Therefore, not all dinosaurs are represented (47 species of cloned animals have been portrayed in the novels and films) nor all companies can feel be represented by the dinosaur that I have chosen for them.

 

Welcome to my Jurassic World of IoT.

The threats to these cloned dinosaurs are constant. Despite its size and strength many predators lurk to take down these giants (Uptake digital safe package over GE Digital).

Some species go in packs (Google and Ayla Networks or Microsoft and Electric Imp) to survive and others seek alliances with other cousins giants (Rockwell to take $1 billion stake in software maker PTC) the best way to reign in its territory.

 

There are also dinosaurs in the WestWorld of the Telcos and in the world of Industrial companies that are adapting or cloning, but that is another story.

 

Your comments and suggestions can vary my Jurassic World table of the IoT.

Read more…

With literally hundreds of IoT platforms on the market, how do you know which ones to add to your short list? As a rule of thumb, an IoT platform should connect to Things, manage their identity + security, collect data, store, manage, analyze and visualize that data, integrate with enterprise systems and take action on insights. 

In this podcast, Rob Tiffany walks you through these minimum requirements to help you make an informed choice.

http://theinternetofthings.io/iot-podcast-8-what-to-look-for-in-an-iot-platform/ 

Read more…

Despite the great promise of IoT to improve business and society, many think it’s being held back due to complexity and the associated lack of required skills to make it a success. Is it possible that the antidote to this complexity and skill shortage problem lies in the existing open standards and technologies that comprise the World Wide Web? In this podcast, Rob Tiffany makes the case for using existing W3C standards to power the Internet of Things.

Check it out at https://theinternetofthings.io/iot-podcast-can-the-web-save-the-internet-of-things/ 

-Rob

Read more…

IoT Hardware: All you need to know

 

Back in the early 2000 era, the idea of connecting various devices and granting them access to other authorization apps was quite rare. However, in today’s time, this thought is omnipresent in all sorts of industries. Hardware components decide the cost, abilities, experience, and application of an IoT product. Unfortunately, only 20% of IoT professionals can deal with this part as the skills required are quite different from those dealing with the software portion. Hence, building products using this technology is not as easy as it seems. Since the innovation of Internet-enabled appliances is comparatively new,  security is also a big threat while dealing with the hardware circuitry of these products.

 

Hardware components of IOT

Irrespective of the device being designed, the building blocks of almost every IoT device is likewise. The three most prominent hardware components used in this technology are:

  • Sensors: They collect data from the surroundings and constrain the waves before they get transmitted to the next building block.
  • Microcontrollers: The waves from the sensor are received by the microcontroller for signal processing after which, they regulate the consumption of power while managing the storage. This device also decides the correct responses to different types of signals received.
  • Medium: Communication is aided by the transfer of information between the various transmission blocks and thereby to the cloud. The micro-components making this possible are some radio chips, network protocols, and wireless modules.

These components provide different experiences depending upon the use they have been put up for. But their physical topology always consists of these three elements.

For instance, it is really cumbersome to take real-time recordings of the sensor in a thermostat while regulating the other parameters at constant intervals. The sensor takes time to register the change as the factors like room temperature cannot be altered rapidly.

Also, in an automated industry or office, the conveyor belts need to be regulated frequently. If not, the motor might start to make inarticulate sounds subjecting to a change in the applied load. If some rapid adjustments aren’t made pertaining to the change in load, it might even heat up causing a smoldering smoke to emit.

 

The aforementioned examples suggest how it is important and quite mandatory to have a clear knowledge of the design being implemented, so as to select the correct components for the required task. The predominant jobs of sensors, microcontrollers or the communication mechanism do not change with respect to the IoT application. In the first case, the sensor will record different temperature readings of the HVAC (Heating, Ventilation, Air Conditioning) system and similarly in the second instance, it records the conveyor belt frequencies generated by the motor driver. This output is further fed to a signal conditioning circuit which enhances and adjusts the readings to make them readable by the next building block. Next, the microcontroller handles the sensor output to act upon the temperature of the room or the speed of the conveyor belt. The controller of the motor is also adjusted. Lastly, the medium or the communication circuitry has an established connection with the resources of cloud computing that helps scrutinize the information given by the conveyor belt sensor or updates the owners about their changed room temperature.

 

Issues faced

  • Cost to customize linked devices: At some point or the other, every device connected to a distant one needs to be personalized that is, it needs to possess some unique keys. This increases the cost for the end user. The complexity in assorting the peripherals of a system to the central unit weakens the security of the network.
  • End-to-end network security: Having just WPA-secured Wi-Fi connectivity to a router doesn’t help in privately browsing to some remote server. This is because the local keys are not renewed regularly. For instance, nowadays no one really alters their wifi passkey thinking it to be a hassle.
  • Authenticity: Most websites or marketplaces no longer sell genuine components even after taking a lump sum of money. There is no way to check if a component is perfectly working while buying it. Many fraud sites have been leveraging through this.

Chandramouli Srinivasan - Founder and CEO of Hurify

However, problems are never stopping signs but guidelines. Commenting on the reason why Hurify, an online IoT hardware store, was founded, its CEO Chandramouli Srinivasan says We launched our marketplace in April to address the complexity around fulfilling hardware needs of an IoT project. Easy access to hardware products coupled with a global shipment commitment simplifies management of IoT hardware acquisition for a project owner. Additionally, the marketplace creates real utility for the HUR token – the only medium of exchange on our platform. We view this as foundational to our goal of being a one-stop solution for IoT development. To overcome the eminent problems being faced by the world in designing IoT products, Hurify has created a unique marketplace for IoT’s hardware components but also developed HUR tokens as their only medium of exchange. This enhanced the transparency as well as the reliability of the components being bought. Also, every kind of component is in the same place hence loitering about on websites to find the perfect hardware is no more required. This startup is thus surely bringing the IoT journey to life.

 

The Way Out

While being carried over the internet protocol, the data can be tunneled from the sensors to the applications in order to encrypt it end-to-end thereby enhancing its network security. The other factors which need to be enlightened upon are the validation between a device and server, the integrity of the information and its confidentiality alongside the creation of a safe session key. In the year 1995, Netscape had released the first public SSL (Secure Socket Layer). The purpose behind the same was to allow online clients to exchange information in the safest possible manner. They used applicative distant servers to deliver any form of media or data irrespective of their OS. Client authentication was completely based upon secure and private end-to-end transmission, not disclosing passwords to any third party website and; by keeping the hackers at bay. This authentication was achieved by using the same unique key on both the transmitter and receiver sides of the channel. Now, to distribute this unique key without its exposure, the technique of asymmetric cryptography was brought to light where a unique key was secretly shared between the entities even on a public medium without the need for the key to being exposed.

 

The Bottom Line

The purpose of this article was to introduce the basics of IoT from a device point of view. To be precise, everyone needs to be equally aware of the type of hardware to be dealt with alongside having the knowledge of the software aspects of the technology. There’s still a wild west out there regarding IoT hardware. Even the product managers need to have a proper understanding of the prominent components required rather than holding an expertise in all the areas of this technology. This will also clarify their knowledge of how the end-to-end IoT solutions are put together.

Read more…
The internet of things is huge right now. Where is it headed? What is the future of IoT? Take a look at our infographic to understand what exactly the internet of things is and some intriguing statistics on where it is headed.
Read more…

 

Security systems installed in a typical facility consists of cameras, access control, intrusion sensors and fire alarms. Typically, these devices are places behind a firewall on a dedicated network. Building control systems are installed on a secondary network can contains lighting, HVAC, fire protection, elevators/lifts, chillers and air/moisture sensors. These systems serve their purpose and will continue to be adapted and make facility systems design more complicated. This complexity can be controlled using common development tools and platforms. Not only will this approach make the process of creating smarter, safer, more energy efficient systems but will also reduce the number accidental deaths and injuries that occur every year.

 

The redundant network design approach is not a very efficient nor cost effective way of operating a facility. This is starting to change as savvy building managers are making the decision to integrate security and building control systems and map them onto a single network. This can entail integrating multiple disparate systems, sensors, NVR devices and video management software. The concept of integrating a camera or access control system to an HVAC system, or a visitor/facility management system or edge recording device to a lighting or fire protection system may seem unusual to some. Yet, this is where many security systems integrators and manufactures are missing out on untapped applications and services opportunities. Modern integrated security and building systems can give facility managers and security directors the tools to improve, simplify operations and reduce the efforts of the operations staff and points of control teams.

 

In the past, the security industry has relied on it’s own approach to integrated systems know as physical security information management (PSIM). PSIM attempts to provide an open architecture to integrate multiple security system products into a single operating platform. This approach has been very hit-or-miss and has left a bad taste in the mouths of systems integrators and end-users. On the flip side of the coin, facility managers have their own integration platform known as a building automation system (BAS). As it relates to physical security, BAS systems are intended to integrate with PSIMs and control individual security systems. However, BAS systems come in many different flavors; many of them are not viewed in a glowing light by building operation end users. Past integrations are not all filled with doom-and-gloom. There are some successful integrations attempted by the collaborative efforts of building controls and physical security organizations. The question is why is this design practice not more common where the benefits and economics make sense?

 

In order to facilitate the adoption and implementation of an integrated system the use of open standard protocols is an absolute must. The building automation industry created BACnet and LONworks which allow for real-time remote connectivity between sensors, actuators, controller devices and software. In the case of LONworks, hardware manufactures have the ability to include a chipset with built-in building control system support. It took some time, but finally the security industry created the protocols ONVIF and PSIA. These open architectures allows the end-user to choose vendors selecting either security or BAS equipment based on features and price. The end-user can also decide to install partial system upgrades without the risk of making costly investments in obsolete legacy systems. With that said, The security industry is curious about implementing the building controls protocols but needs an easier way to integrate them into their hardware and software products in an ad-hoc applications based manner.

 

There are security directors that are not completely sold on the idea of integrating with building control systems. On the other hand, facility managers may question the benefits of sharing a network with security systems especially when functions do not overlap with life-safety systems. However, system integration between building controls, physical and now cybersecurity offers more than just staffing convenience and operational efficiency. Here are a few results from a truly integrated security system.

Faster Response to Incidents – With the use of a robust mobile software solution and integration approaches such camera-to-access control-to-lighting or HVAC staff members can be freed from a console which makes them readily available to respond to incidents or equipment failure.

Provide more accurate compliance reports – Data provided by building controls and security edge devices can be paired with artificial intelligence technologies such as neural networks and genetic algorithms. This helps facilities to comply with government regulations with regards to security.

Reduce accidents and save money – Integrated systems provide better control of building and security systems. For example, if some accidentally stumbles into a restricted area or manages to make it to overly heated or chilled area the access control system, Variable air volume (VAV), or other HVAC system components can send alerts and create historical trend reports. Also a single network architecture can make managing system components easier.

 

Integrated building control and security systems are gaining some traction. However, it is still not a mainstream approach among many manufactures and systems integrators. One proposed solution is to utilize a common platform that is utilizes the industry protocol standards as application and system component building blocks.

Read more…

The dream of making money with IoT, AI and Blockchain

Have you ever think about how could you make money with the Internet of Things (IoT) or Artificial Intelligence (AI) and of course with Blockchain?  What would happen if you could use the three of them in a new business model?.  Apparently, Success, Success and Success.

In the next sections I provide information of some business models implemented with these three technologies.

IoT Business Models

As IoT moves past its infancy, certain trends and economic realities are becoming clear. Perhaps the most significant of those is the realisation that traditional hardware business models just don’t work in IoT. Take a look at “The top 5 most successful IoT business models” that have emerged as particularly effective applications for IoT.

If any of you is building an IoT product, this article ” IoT Business Models For Monetizing Your IoT Product”  show how to make money with IoT.

Zack Supalla, the founder and CEO of Particle, an Internet of Things (IoT) startup, suggest “6 ways to make money in IoT”.

Finally, in “How IoT is Spawning Better Business Models” we can read three ways companies like Rolls Royce, Peloton, MTailor or STYR Lab  was rethinking their business model and have created revolution in the marketplace. 

Blockchain Business Models 

It sounds repetitive, but yes "Blockchain technology may disrupt the existing business models”. The authors´ s findings concerning the implications of blockchain technology for business models are summarised in the following picture.

 

Do you think that blockchain will likely to cut into big-players’ revenues? Then, this article: “New Blockchain-Based Business Models Set to Disrupt Facebook and Others”, is for you.

If you are ambitious and you are planning to build a viable business on blockchain, then read “Building an International Business Model on Blockchain”.

I am also an advocate of the coming era of decentralization (at least in my most optimistic version) and Blockchain is a step more to create value when the End of All Corporate Business Models will arrive.

AI Business Models 

Companies from all industries, of all shapes and sizes are thus faced with an important set of questions: Which AI business models and applications can I use ? And what technologies and infrastructures are required?.

It seems that we all are convinced that artificial intelligence is now the most important general-purpose technology in the world that can drive changes at existing business models. Not surprised then, that  AI is Revolutionizing Business Models.  The “data trap” strategy, that in venture capitalist Matt Turck’s words consists of offering (often for free) products that can initialize a data network effect. In addition, the user experience and the design are becoming tangibly relevant for AI, and this creates friction in early stage companies with limited resources to be allocated between engineers, business, and design.

This article introduces  some good examples of AI business models :

New Business models with the intersection of IoT, AI and Blockchain

With IoT we are connecting the Digital to the Physical world. Connected objects offers a host of new opportunities for companies, especially in terms of creating new services. The amount of data generated by the billions of connected objects will be the perfect complementary feed to many AI applications. Finally, blockchain technology could be used to secure the ‘internet of things’ and create smart contracts in a decentralized infrastructure that boost the democratization of technology and creation of sustainable communities.

You must remember that new business models that include IoT, AI and blockchain need among other characteristics: Volume and Scalability. Volume of devices, Volume of data, Volume of customers, volume of developers and powerful ecosystems to escalate. 

Good luck in your search and implementation of your new business model.

Thanks for your Likes, Comments and Shares

Read more…

Too much time waiting for the IoT year

After years of waiting for my wishes to finally come true that it was finally the year of IoT, I give up. There will be no IoT year. Other technologies are usurping the dubious privilege of leading the technology bubble. Blockchain and Artificial Intelligence are now much cooler.

As has happened on many previous occasions, the IoT will be replaced by other acronyms that will make you forget bad experiences and failed expectations. And with the new acronyms the illusions of those of us who continue to trust in the beneficial implications that the "new IoT" will bring to society will appear again.

Event Organizers were the first to notice the decline of IoT

The first to realize this situation were the organizers of IoT events. If a couple of years ago the weight of the new secondary on stage (Blockchain and AI) did not seem worrying to detract from the main actor (#internetofthings). Now they are the stars and the IoT is marginalized and surrounded by other technologies, badly hurt and melancholy.

Quo Vadis IoT events ?

Will IoT events disappear? Sure. Doesn’t matter if is in 2 or 3 years, but IoT only events will not make sense. In the last 3 months I attended several IoT events in London, Amsterdam, Madrid, Bilbao. I see a slow decline and transformation of #IoT events. Most of them do not satisfy my expectation. I am tired and saturated of see the same tired case studies parroted over and over again.

As my friend Rick Bullotta, I'd like to see some more innovative stories, some failure stories/lessons learned, some HARD FACTS about how long it looks to build, what it cost to build, return on investment.

Of course, we will continue seeing IoT companies, products and services in the Big Events like CES in Las Vega, MWC in Barcelona or Cebit and Hanover Messe in Germany or in industry specific events or company specific events like PTC LiveWorx or Bosch ConnectedWorld .  But the same way that we do not see today Internet events we will not see Internet of Things events beyond 2020. It will be a good sign because the Hype will have disappeared and the reality and the market will have been imposed.

                                                 Thanks for your Likes, Comments and Shares                  

Read more…

Top IoT Startups to Invest in 2018-19

With the IoT surfacing as the next great destination for investment, many industry titans are scrambling and fiercely competing to seize their share of the revenues in the IoT market. Currently, IoT is at the core stage of industries like energy management, healthcare, logistics, manufacturing, and transportation. In convergence with various technologies like blockchain, AI, and edge, IoT has the potential to disrupt all the aforementioned verticals. Companies like IBM, Intel and Cisco are swiftly investing in the IoT technologies to take a lead in next era of technology. The adoption of IoT in all industries is becoming so vital that tech giant, Microsoft has announced to invest $5 billion in IoT over next four years globally.

 

A report from IDC states that the worldwide Internet of Things market will grow from $656 billion in 2014 to $1.7 trillion in 2020 with a compound annual growth rate (CAGR) of 16.9%. As per the report, connectivity, devices and IT services will be responsible for the majority of the IoT market in 2020. IDC estimates that all the three services will account for over two-thirds of the worldwide IoT market in 2020, with devices (modules/sensors) alone representing 31.8% of the total. With the increase in market size, the investments in IoT globally shall rise from over $800 billion in 2017 to nearly $1.4 trillion in 2021 indicating a worthy investment with quick ROI. Current investment in IoT holds a promising return as the adoption of IoT increases with market size and spendings. As investment is worth in IoT, it is now important for investors to know which startup having innovative technology would be ideal for them to invest in. The number of startups in the IoT rose rapidly from just 13 in 2013 to 189 in 2014. Following is the list of top startup companies using innovative technologies like blockchain, AI and edge which will aid an investor in selecting an ideal company.

 

Discovery IoT

Discovery IoT is a revolutionary solution that enables brands to track their products through their supply chains, accurately on a real-time basis. They are developing a tag, Cliot, which will hold the ability to track products with embedded sensors and is built at the cost of $0.10. With IoT in convergence, Discovery is using the latest technologies like blockchain, AI and edge computing (mesh network) to solve current problems including stock-outs/empty shelves, product obsolescence/expiry etc., faced by the supply chain industry. Participation in Discovery’s sale will be the next best destination for investors as their solution will soon be adopted by a massive audience. The pre-sale of DIS tokens will be made available for a limited period starting from June 15, 2018 and ICO will be made available for 6 weeks starting from August 1, 2018. They will abate bonuses as per rounds, to attract more investors, keeping in mind that the early investor gains handsome return. Discovery has a strong team lead by Selvam VMS, Co-Founder & CEO, a veteran in the field of supply chain management with more than 10 years in the domain. He is accompanied by Kumar T, Co-Founder & CTO, a techie with more than 15 years of knowledge and experience in the areas of IoT and AI. Also, they are supported by various professionals, experts and senior advisors like Aly Madhavji and Nandakumar Balanujan with 36+ years of experience in supply chain; and incubated by the Blockchain Founders Fund.

 

IOTium

 

IoTium is a startup based in California with an aim to advance secure network infrastructure for the industrial Internet of Things. Their Network as a Service (NaaS) solution is designed for the building automation, industrial automation, oil and gas, manufacturing, transportation and smart city industries, empowering them to securely connect legacy onsite systems to cloud-based applications to leverage new analytics, machine learning, and predictive analytics applications. Till date, IoTium has secured $8.4 million in Series A funding and is backed by investors including GE Ventures, March Capital, and Juniper Networks, as well as Pankaj Patel, former Executive Vice President and Chief Development Officer at Cisco. The funds have been used to expand its trail in the oil and gas, transportation and smart city industries with the launch of the IoTium NaaS. This investment has helped them in a recent distribution partnership with The Panel Shoppe and a building automation firm, Relevant Solutions.

 

 

Evrythng

Evrythng is a startup based in London, New York, and San Francisco which creates IoT and smart solutions to make products more intelligent and interactive. They collect, manage and apply real-time data from smart products and smart packaging to drive IoT applications. The company aims to ensure that connected devices can be managed and enhanced through real-time data and analytics throughout the full product lifecycle. This includes assigning digital identities to devices which allows them to be tracked and thus driving IoT a step further. This provides businesses with insights into their supply chains and consumers with awareness of the counterfeit product. The startup has secured $42.3 million in four funding rounds with lead investors being-  Sway Ventures, Atomico, and BHLP. The company's clients include Coca-Cola, Avery Dennison RBIS, Crown Holdings and West Rock.

 

Notion

Notion, an IoT startup based in Denver, Colorado, provides home security and monitoring through adaptable sensors. The low-cost sensors can be used to monitor unauthorized entry and take temperature readings of a user's home. Notion’s small sensor can be placed near doors and other locations around the house to monitor motion, temperature, water leaks etc. The startup has secured $16 million in funding by following a solid crowdfunding campaign on Kickstarter through six investment rounds and has used the funds to expand the development of home sensor products and to tap into the insurance market. It has attracted audience and investors including Draper Nexus, Translink Capital, Mesh Ventures and XL Innovate.

 

Conclusion

 

Starting from home devices to industrial machines and automobiles, it is widely speculated that the next tech revolution is likely to be spurred by the ability to connect things. Therefore, the tremendous interest generated in IoT evident from the growing number of startups and mounting investments is a testament to IoTs potential to create enormous business opportunities around the globe. As the technology is yet to mature and the market for it is far from being saturated, the time is ripe for investing in IoT based solution providers.

Read more…

IOT

IoT stands for “Internet of Things.” Breaking down the phrase, we get two words Internet and Things. Internet stands for Interconnection of Networks. It was born in the late 1950s and was known as ARPANET. Experts say that the concept of IoT was taken with the ARPANET but, because of the lack of hardware and software support, it was tough to bring Internet of Things to the real world. Between 2006 and 2008 the first European IoT Conference recognized by EU. In this conference, experts talked about commercializing IoT. Finally, in 2009 CISCO was the first one to connect thing around us to the Internet. Later on, in 2009, companies like IBM and Ericsson also developed IoT solutions for the real world.

Smartphones were the first devices that connected people to the Internet even while roaming. This breakthrough came with the launch of the first iPhone. That is the first instance when IoT started impacting our lives. Since, then a wave has begun to flow across the globe to make everything around us, “smart.” The growth of IoT has been exponential since, 2009.

How IoT Affects Our Day-to-day Routine?

Our day starts at home and ends at home. IoT has reached to our homes and is spreading like wine. Households are getting smarter. Starting from the door from where we enter to the bed we sleep, everything is smart.

Smart Home

There are two types of Home Automation, semi-home automation, and complete home automation. Semi-home automation is where devices can do some of the daily tasks for us and have limited access to other gadgets of our home. Total Home Automation is where the gadgets have full access to the house.

Devices like Amazon Echo, Apple home pod, and Google home are capable of playing songs according to our mood, booking a cab, setting reminders, providing weather updates, making a call, controlling lighting, etc. and they do it via voice commands only.

The gadgets that we use daily are getting smarter as well such as IOT enable smart air conditioner, Fans and monitoring devices like gas meter, water meter, electricity meter, etc. IoT is also prevailing in security solutions for homes and offices. IOT enable Smart smoke detectors, motion sensors and intelligent bio-metrics database are already implemented in homes and offices.

Smart Vehicles

The automobile industry has evolved quite a lot when it comes to automation and safety. Automatic Gearing system and electronic parking system have changed the way we drove the car. Some of the examples of how automobile industry is facing change because of IoT are automatic emergency SOS message, automatic service booking, maintenance alerts, automatic fuel sign, Trip analysis, breakdown information, etc. If there is an ideal car having all the specifications mentioned above, then the owner of that car will save a lot of precious time which others cannot.

Environment Friendly

Internet of Things is helping us save the environment by smart gas detectors. These gas detectors are spread across the city which collects data of all kinds of hazardous gases and measures its density in each area of the town. Using this data, we can take the appropriate steps to reduce carbon emission in the city.

Smart gas detectors have the capabilities to detect even a small leakage which could destroy an entire city if not fixed in time. IoT has the skills not to improve our lifestyle but also to save lives and towns.

Smart Infrastructure

More significant the building higher is the maintenance cost. IoT helps to reduce the maintenance cost by suggesting the most effective solutions to maintain a building by measuring its condition time-to-time. IoT can also help reduce the risk of the data security breach at any level. It also protects the structure from fires.

Personal Health

Blood Pressure and Diabetes are some of the most dangerous diseases that kill slowly. The risk of such conditions has reduced to a fantastic level as people started using wearable techs such as smartwatches and fitness trackers connected to their smartphones. According to a GFK survey, one in every three people around the world wears a fitness tracking device. Some of the fitness trackers also track the sleep and send the sleep data to their smartphones. The app creates a detailed report using that data which user can access from anywhere provided the internet connection.

How will it benefit us?

IoT is making everything around us smart as mentioned. As these things will get smarter, it is going to replace humans in performing all the non-productive tasks hence, improving productivity. The tasks which we would have never imagined to do as humans are going to be accomplished by IoT.

Control Homes Remotely

Robots connected to the Internet will clean our homes whenever instructed regardless of our situation. With the help of IoT, monitoring will be extremely easy. We will be able to see and control our home from far away via an app. Although, staying away from home, IoT will make us feel as if we are at home.

Preemptive Vehicle Maintenance

Any vehicle needs maintenance. In our busy lives we might not always get time to provide proper maintenance to it. IoT will help us complete the tedious task. It will send the remainder to car service center for us to send the mechanic and service the car. With the help of GPS we can also track it live on our phones so, no chance of theft. IoT will also benefit at the time of emergencies. The system present in car will automatically detect the type of emergency and ask for the relevant help.

Save Environment

No one can deny the Climate change happening around the world. We cannot reduce the global warming but we can surely stop them with the help of IoT. Smart sensors help us collect and organize pollution data according to Country, state, city and area. We already have the ways to reduce pollution all we needed was “data.” IoT not only improves our lifestyle but also save lives.

Eco Friendly Buildings

The concept of energy efficient building is prevailing around the world. Such buildings are known as “Green buildings.” IoT can help us save energy that is consumed in big corporate offices and public places. That energy can later on be used at the time of crisis.

Healthier Lifestyle

All kind of wearable tech comes with GPS functionality and smart watches comes with Internet as well. Most of them has a panic button functionality through which we can alert our loved ones at the time of emergency. The heart rate sensor present in the fitness tracker tracks our heart rate 24x7 hence, it gives an alert to the nearest hospitals automatically whenever our heart rate deviates from the normal range.

Verdict:

Internet of Things has been impacting our lives since 2009 and is going to impact forever. The only difference will be that the impact will be much more than what it is today.

Read more…
RSS
Email me when there are new items in this category –