Subscribe to our Newsletter | To Post On IoT Central, Click here


Platforms (161)

In recent years I have listened till the satiety about the importance of ecosystems to make the promises of the IoT come true and in some way for not to leave in bad position the analysts who have flooded us with their optimistic predictions.

All, or at least most of those who read my articles know that there is no company in the world, no matter how great it is, it can do everything in IoT. So, ecosystems are the key to successfully in this business.

The ecosystem allows to achieve a multiplier effect and a trusted environment.

Creating an IoT ecosystem either horizontal (technology) or vertical (industry) requires a lot of talent alliance managers able to maintain win-win transactions over the time.

Select an IoT ecosystem is not an easy task. In the IoT ecosystems there are fights between equals, also abuses usually produced from the big ones over the little ones. There are conflicts with companies that are in several ecosystems sometimes with contradictory interests. It is very usual how partners collide with the objectives of the ecosystem and you can imagine betrayals and back stabs.

For instance after IBM acquisition of Red Hat, will the IoT open source architecture designed by the ecosystem Red Hat , Eurotech and Cloudera be a good decision?

In my post “The value of partnership in Industrial Internet of Things”  and subsequent comments I presented several successful cases of collaboration among members of these ecosystems. But let's be honest, there are few references and examples after 4 years.

The fragility of Alliances in IoT is a challenge to accelerate adoption of IoT Ecosystem solutions.

IoT Ecosystems

In Harbor Research article “ Has Anyone Seen A Real Internet of Things Ecosystem?” ,dated November 2013, the analyst firm wrote that no really significant ecosystem or network of collaborators had emerged in the IoT arena in spite there was early and very interesting efforts being made by several players. We can thing that in 2013, these ecosystems were very emergent alliance developments and have had not attained the scale, scope and momentum we expect will be required to really drive this opportunity to its intended and expected scale.  Most of the attempts thus far to drive an ecosystem advantage have failed to scale and reach critical mass.  This just underscores how challenging building a high velocity network of partners can be.

In this article I will focus my analysis on 4 examples of IoT ecosystems that represent a big portion of the value chain in the multiple IoT submarkets: IoT Connectivity Provider, IoT Cloud Platform Vendor, IoT Professional Services and IoT Solution Aggregator.

Telefonica: IoT Connectivity Ecosystem - https://iot.telefonica.com/partners

One of my first attempts to monetize my IoT services was through the Telefonica IoT Solution Partners program. It was four years ago. At the beginning I received a couple of calls from the Operator to help me create my account and describe my services. We were many partners and although the Partners Search portal left a lot to be desired, I did not see much competition in my services and I thought that we would be the perfect accelerator for the ecosystem. I was wrong. Since I register, I have not received any invitation to participate in any event for partners, nor has anyone contacted me to request my services, nor have I needed the portal for contact any other partner (for that I already have my LinkedIn network).

How the hell are you going to find me as IoT Solution partner if Telefonica IoT web page does not offer a link to the partner search page ? and the use of this non update page is frustrating with duplicates names, closed companies, etc.

Telefonica identifies 3 types of Partners: Operators Alliances, Channel Partners and Solution Partners.

Operators Alliances: Telefonica is partnering with other Tier-1 telecom operators including the IoT World Alliance and other operators like China Unicom, Sunrise and Avea in order to provide IoT customers with the best, seamless services worldwide and lower costs.

Channel Partners: Telefonica enables partners to drive growth and differentiate their business by reselling their Global Managed IoT services. It helps to increase their capabilities, enabling deployment on a global scale, in particular in regions such as Europe and Latin America

Solution Partners: Telefonica Solution Partners ecosystem consists of a global network of IoT providers with functional or industrial expertise: IoT Device Providers, IoT System Integrators and IoT Industrial Experts.

I never liked the idea of Telefonica oriented to quantity (around 1000 partners including duplicate names and not updated list) instead of quality in Partners and I think the results have been and are very poor. Clearly a point to improve if they want the IoT to take off inside the Operator.

Talking with Telefonica IoT you quickly recognize that if you are not Microsoft, AWS, or similar unless you bring business to them you will never get business from them.

Telefonica does not lead any IoT ecosystem, neither geographically, nor industrially nor technologically. It is just one more logo (important of course) in many presentations of IoT vendors.

I can not understand of its win-win strategy and goto market regarding IoT platforms. In addition to its own platform, Telefonica appears as a partner of at least Microsoft Azure, PTC-Thingworx, SAG Cumulocity, AWS IoT, Cisco Jasper, Libelium, etc. Maybe they should select partners around ‘share of outcome’ rather than share of investment if they want to lead some ecosystem. Pecking is good for the birds.

Telefonica need an open-minded company culture to become comfortable with an ecosystem structure.

IoT Cloud Platform Vendor  -  Microsoft IoT Ecosystem

Having worked at Microsoft, I recognize that I have had the temptation to become an IoT partner. But also, because my business model is based on vendor independence my decision was to help other companies to enter in the MSFT IoT ecosystem

This year I was convinced that I needed to change my approach. But, instead of becoming a partner, I decided to convince other 2 Microsoft partners strong in complementary disciplines (Business Intelligence and Cloud) to create a specific area for IoT. I have not succeeded, which makes me think that despite the efforts and investment planned by Microsoft, Partners do not see IoT business clearly yet.

The list of Internet of Things Trusted Partners certified in Microsoft Azure Certified is impress and I recognize the effort of Microsoft building an IoT ecosystem that fuels business transformation. Without going further, the largest partnership with GE Predix and the partnership with PTC  will help industry customers accelerate their digital transformations by adopting IoT.

In this case, finding an partner de Microsoft Azure IoT is easier than in the previous case. The categories of IoT partners for Microsoft are: Devices, Gateways, security, isv, network and telecommunication and system integrators.

By the way, no partner in Spain according with this web. ☹. Maybe is the right time to invest.

 Microsoft is expert identifying, nurturing and managing partners and Azure IoT is a great opportunity to lead some IoT ecosystems.

IoT Professional Services - EY IoT Ecosystem

EY, otherwise known as Ernst and Young, is a leader in the IoT space. Not involved in the construction of devices themselves, EY is instead helping organisations navigate the largely unchartered waters of IoT.

While working in an engagement with EY IoT, I read a report developed by Forrester Research dated Oct/18, 2017 “Vendor Landscape: IoT Professional Services”. This report segments the landscape of IoT Professional Services firms, based on functional capabilities to help enterprises deploy IoT-enabled processes, vertical market focus, and geographic reach. Based on the service offerings, vertical capabilities, and characteristics of a broad array of professional services firms, Forrester has identified eight categories. The major players in the consulting firm segment include Deloitte, EY, KPMG, and PWC because these strategic consulting firms combine strong business strategy capabilities with the ability to execute on digital transformation initiatives. The report clearly showed EY strong IoT capabilities across the globe. EY was also recognized as Internet of Things services leader by HFS Research.

For EY, initiatives like launch a global IoT/OT Security Lab to help clients stay ahead of emerging threats or to launch EY wavespace™, a global network of growth and innovation centers to help clients achieve radical breakthroughs is a way to demonstrate its strategic alliances like SAP, GE Digital, Microsoft, IBM or Cisco how important is to create an ecosystem with the firm. These technology vendors rely on EY to implement IoT solutions in large customers with a business-driven approach.

Do not expect EY or any of the consulting firms to lead any IoT ecosystem. Their role is to leverage their business strengths and client relationship to empower the ecosystems to which they belong

IoT Solution Aggregator - Tech Data IoT Ecosystem

Perhaps the most complex task I have done regarding advising of IoT ecosystems was with one of the largest IT distributors in the world, Tech Data. The challenge of balancing players like Microsoft, Dell, Cisco, IBM, Schneider or Vodafone with innovative startups in several industry verticals and different use cases without anyone feeling careless was very exciting.

To find a right place for Tech Data in the IoT value proposition schema, , was another challenge. It was great helping the company defining its role as an IoT Solution Aggregator and define which partners should be included for Tech Data IoT repeatable solutions.

Tech Data has been able to demonstrate how to become useful for IT and OT vendors and how provide value to existing and new channel of IIOT system Integrators worldwide.

I always have believed this approach could make easy for their small and medium end clients to adopt IoT solutions quickly.

I did not have time during my engagement with Tech Data to analyse and support the launch on new business models, but I am sure they will leverage its position to offer new services based on data aggregation.

Education, the latest products, support services, and firm footing in the B2B world put IoT Solution Integrators  at the centre of the Internet of Things craze.

 Key Takeaway

The IoT market is still in its early stage. Enterprises face many different options for IoT partners and suppliers. Choosing the right ecosystem is critical not only for a successful IoT project implementation but for the journey in their Digital Transformation.

IoT ecosystems need to understand that most industries thrive on "coopetition," it’s important to become cognizant and respectful of competitors, as they may also be your potential partners.

Just like with people, when it comes to IoT business, no two ecosystems are alike. We have been helping different type of companies to build or enter in the most suitable ecosystem. I have no doubt only the best ecosystems will survive; the challenge is to rank among so many. It is really a nightmare.

Ecosystems is hardly new but as rapidly evolving and if they are able to leverage the shared data and information from intelligent sensors, machines and assets, radical new modes of value creation will emerge.

Read more…

 

We are fast moving towards a future where cities will feature hundreds and thousands of smart connected objects, talking to each other, exchanging and producing meaningful data and insights, basically reshaping the urban landscape into intelligent and autonomous systems. Internet of Things will be at the heart of this technological transformation, as sensors and digital tags will find their way into various physical city infrastructure, monitoring traffic, weather, crime and even rat infestations! However, it’s not just hardware IoT and sensors that will provide city planners and authorities to gain more visibility into the working and management of a city. Smart connected products or ordinary consumer products tagged with digital ID’s and digital twins can open up new dimensions in how we imagine Smart Cities to function.

For the sake of painting a picture of the role of connected products within Smart Cities, let’s consider a pharmaceutical company supplying critical drugs to a city. Enabling every drug product at batch and serial item level to have a digital twin of its physical self will allow for exchange of product related data to happen between manufacturer, the supply chain, the city authorities, end consumers and the products themselves. Read on to see how the pharmaceutical industry could look like in the not so distant future.

Smart Logistics & Traceability: Digitally tagged consumer products such as medical products will paint a clearer picture of each item’s journey from the manufacturing facility to the hands of a customer, resulting in intelligent movement of products characterized by autonomy. Each time a product moves, whether it’s from the factory to a truck, or from the truck to a warehouse, its location and movement will be logged against its digital twin in real time with the help of a scanner, RFID reader, smartphone or other connected devices.

So, when situations arise where brands or smart city authorities become aware of substandard or defective products in circulation, the process of factoring on the production source for them and a faster and leaner product recall will become easier by tracing back to the relevant point in the product’s journey.

Smarter Production & Distribution Channels: Smart connected products will help in procuring the right amount in the right place at the right time. Complete visibility at all events of the supply chain will allow brands to better predict demand in respective locations in a city. Better predictive ability will help them to create seamless intelligent systems capable of efficiently managing production and distribution channels, ultimately leading to reduction of wastage by preventing accumulation of unused medicines.

In fact, brands will be able to predict demand on a much larger scale than before. They will anticipate when a particular medicine is supposed to run out at the city-level and trigger production cycles for the particular product.

Smarter response to Public Health Crises: With IoT powered smart products, the engagement and the monitoring does not stop at the customer level. Even after the product leaves the shelf, customers can input valuable data through the digital twins which can be mined into to tailor smarter responses to public health emergency situations.

For example, city authorities will be aware of exactly how many medical products are in inventories across the city by keeping track of their movement across every touchpoint in the supply chain. In situations where a contagious disease breaks out, public health officials will be instantly alerted by hospitals that are also hooked onto the network. By keeping track of the quantity and location of stocks of medicines dispersed across city, public health officials will always be prepared to tackle such high priority situations as they can more efficiently assess and redirect required medicines to appropriate locations.

Even smarter, cities of the future could be prepared for seasonal illnesses by predicting their onset based on algorithms derived from a mix of data from weather forecasts, hospital reports and product supply chains.

Smarter Citizens: Digital twins will give rise to smarter citizens, who will be capable of using smartphones to digitally interact with the packaging in order to obtain accurate information pertaining to authenticity, ingredients, color-coded expiry dates, instructions for use (IFU) etc. Not only will digital twins of medical products enforce transparency, but they will help in improving health literacy by weeding out counterfeits and providing easy-to-read and user-friendly formats to dispense IFUs.

Medical products empowered by IoT will also lay the foundations for a multiway communication channel between consumers, manufacturers, and city authorities, especially aiding researchers to collect and analyze feedbacks for clinical trials and development of new cures.

Smarter ways to tackle Counterfeits: Falsified medical products take the top spot in the fraudulent products market, being worth US$163 billion to $217 billion per year. Falsified, substandard and unlicensed medicines and medical devices pose a serious threat to public health. Counterfeit medicines are on the rise and no place remains untouched by them.

However, medical products with digital twins can have vast implications in fighting the war against falsified medical products. The sophisticated digital tags on these products can act as a unique identifier, at the same time providing a user-friendly way to verify their authenticity. Both retailers and consumers just need to authenticate the product using the digital tag which will allow it to confirm the product’s genuineness by running it against an online database.

Going one step further by taking advantage of a highly connected ecosystem, fraudulent products can instantly be reported by consumers directly to manufacturers and city authorities. City authorities can thus keep track of regions in the city reporting counterfeits and crack down on the sources for such illegal operations.

The goal of smart cities is to create intelligent urban spaces and infrastructures to improve the lives of their citizens. But the first step towards this goal is to set up digital twins for products to bring them onto the Internet of Things platform. For these automated and intelligent systems would be impossible without various products generating and transmitting data about themselves. At this point, we have barely scratched the surface with IoT’s potential to create smarter cities, and smart connected products will lead the way in laying the foundation for the cities of the future.

Read more…

Internet of Things is the talk of the town over in construction, manufacturing, healthcare, transportation and home automation. But we are yet to fully tap into the potential of IoT driven solutions to trigger disruption in and deliver value to the consumer retail industry.

Enabling smart attributes and inter-connectivity to store assets can have a plethora of exciting applications: engaging customer experiences, leaner and more efficient store operations, products and services as well as opening up of new streams for revenue generation. According to Zebra Technologies, 7 out of 10 retail brands will be investing in IoT technology by 2021 and a few have already begun rolling out IoT powered smart stores and services. With more and more retailers looking to reimagine every aspect of their supply chain with technology, let us look at some future possibilities for IoT in the retail industry :

1. Creating Experiences with Lighting

Lighting devices are an ubiquitous presence inside any retail store and connected smart lighting can do more than save energy. Emerging technology is exploring avenues to utilize connected and automated smart lighting for retail displays to create superior customer experiences and indoor positioning, expanding the horizon for an experiential store.

Retail giant Carrefour partnered with Philips to install LEDs in one of their hypermarkets in Lille, France. Enabled with Visible Light Communication (VLC) technology, these LEDs emit a code which is readable by any camera on a smartphone, connecting the smartphone to a digital experience provided by the store. Customers can then locate items on their shopping list using the indoor positioning activated by the LEDs, experiencing an in-store navigation system.

2. Smart Packaging and Digital Labeling

Under the constant pressures of demands for more consumer transparency and capricious regulations, brands and retailers are running out of space on the physical packaging of products to put relevant information. IoT will play a major role in the future of the labeling and packaging industry as brands turn to technology to solve challenges related to packaging.

QLIKTAG Software is providing solutions using their IoT platform to enable all products to have a globally unique identifier “QLIKTAG” and hence a digital twin, allowing “dumb” products to have a presence in and participate in the Internet through smart devices. These digital tags, consisting of barcodes, QR codes and Data matrix codes, pave the way for a vast variety of digital interactions like better stock and inventory management throughout the supply chain, product traceability all through its lifecycle, consumer transparency in multiple languages, product authentication, consumer feedback, insight and analytics as well as better consumer engagement experiences. Brands also save on costs incurred in reprinting and repackaging as these digital tags allow real time edits and updates of label content remotely.

3. Smarter Inventory Management Solutions

The future of retail will see increased integration of technology into brick and mortar stores and a more connected ecosystem giving rise to sophisticated experiences for both customers and retailers. IoT will enable the development of smarter inventory management solutions that will be capable of detecting and solving out-of-stock situations on its own.

WiseShelf is converting shelves in retail stores into smart shelves to address the issue of shelf out-of-stock incidents. Equipped with light sensors, the shelves can detect when an item is removed from the shelf and send alerts to the management application through WiFi when it assesses low levels of stock. Apart from leading to more efficient restocking operations and inventory management, these smart shelves are also freeing up employees to engage in more customer interactions. They are also providing key data and analytics on popularity of products, enabling better design of store layout in accordance to foot traffic.

4. Automated Events Of Supply Chain

Plenty of countries are plagued by an ageing population and rising labor costs and retailers as a result are turning to digital solutions to reinvent supply chains. Panasonic in partnership with Trial Company Inc. conducted a demonstration experiment for an automated self-checkout system with RFID tagged shopping baskets and products. The smart shopping baskets are capable of calculating the total cost and the number of items in the basket due to the RFID tags, generating your bill when you place it on the checkout counter. Not only does it allow automated billing, but on being placed on the self checkout counters, the bottom of the basket can open up releasing all contents into a bag, which the customer can collect and leave.

5. Facilitating Omni-channel Retailing

In order to consolidate online shopping practices with in-store ones, retailers are looking to ingrain technology into physical stores for a seamless customer experience. Ralph Lauren launched interactive fitting rooms in its flagship store in Manhattan, furnished with RFID tagged interactive mirrors. Powered by retail technology platform Oak Labs, the mirrors automatically detect and display the clothing items brought into the room along with available sizes, colors and recommendations for a complete look. Enriching the entire digital experience, customers also have the option to call an associate on the floor to the fitting room, to bring more items to try out for example.

6. Reducing Food Wastage and Spoilage

IoT could have vast implications in reducing global food wastage and spoilage, especially at the retail level. Wasteless, a startup from Israel, has successfully implemented IoT enabled digital pricing labels in an international Spanish retail store in an effort to reduce food waste. Using data regarding expiry dates encoded into the barcodes or RFID tags on labels, Wasteless’s platform enables a dynamic pricing system with the cost of the product dependent on its freshness, becoming cheaper as it nears its expiry date. The platform has led to reduction of waste by 33%, better inventory management and monitoring of products in terms of their expiry dates to reduce out-of-stock incidents as well as improved sales by allowing customers a more dynamic pricing range to shop from.

7. Food Traceability and Quality Control

The entire food supply chain will see a transformation as IoT enabled sensors and smart devices will become more common to track and optimize each supply chain event. With more demands for fresher food products and sustainable sourcing, these sensors will be able to collect and transmit relevant information like location, temperature etc to all supply chain stakeholders in real time. Consumers buying at retail stores can scan digital tags like QR codes, Data matrix codes or RFID tags on packaging to get assurance about the quality and provenance of the food product.

Zest Labs is working to improve real time visibility for farm to shelf at all levels of the supply chain. Their unique ZIPR code (Zest Intelligent Pallet Routing) enables real time tracking and monitoring of the actual freshness of each pallet of food product, using a combination of wireless IoT sensors and cloud based predictive analytics and machine learning. The result is in supply chain managers being able to make better decisions about sending a particular pallet across a certain distance based on its freshness, thus preventing food spoilage in-transit.

Read more…

What's IoT Trends 2019

The fourth edition of the Internet of Things Solutions World Congress (IoTSWC), which took place in Barcelona earlier this month, signaled an increasing interest in the technology, with the number of attendees jumping by 25 percent year over year, to 16,250. The range of topics discussed shows that IoT is being embraced by companies in every sector, and that the technology has now passed from the development phase to the implementation of practical solutions whose results are increasingly evident.

The 200 speeches and panels were divided into thematic areas (manufacturing, healthcare, connected transport, energy and utilities, buildings and infrastructures and open industry). Along with two related events, AI & Cognitive Systems Forum and Blockchain Solutions World, these included -- at the insistence of Richard Soley, Executive Director of the Industrial IoT Consortium -- presentations of concrete use cases. The Industrial IoT Consortium was co-organizer of the event together with Fira Barcelona.

Bringing order to the Babel of protocols

Although natural selection -- perhaps facilitated by the future evolution of 5G networks -- is likely to reduce the number, too many standards and communication protocols for the Internet of Things will continue for a long time. The "translation" of the signals and their integration into information flows will therefore continue to represent an opportunity for system integrators and companies operating in this sector. Although frameworks and platforms are emerging to manage and standardize the different peripheral systems (the Foundation's open source EdgeX Foundry proposal deserves attention), they do not exist yet and there will be no "plug and play" solutions for  IoT for a while.

Artificial intelligence to give value to data

Artificial intelligence is the fundamental ingredient needed to make sense of the vast amount of data collected these days, and increase its value for business. The easiest way to implement it is to resort to the API services of cloud operators such as  Amazon, Google, Microsoft and IBM. The risk of using standard solutions accessible to all is that they reduce the competitive advantage of the enterprises that use them, since they can be easily implemented by competitors. Creating a proprietary IA platform, however, will not be possible for  everyone.

Edge computing to overcome the limits of the cloud

The cloud, meanwhile, is showing its limits: Fast and constant connectivity is not always possible, especially in the case of connected vehicles or installations in remote areas; latency between sending data, processing and response is not always compatible with certain applications; and storage costs are are high even for data that is not necessarily indispensable.

There is therefore a growing tendency to relocate part of the storage and processing of data to the periphery of the network, close to sensors and connected objects. This so-called "edge computing" will be increasingly important and increasingly intelligent, thanks to chips optimized for machine learning and solutions able to bring "on premises" the AI algorithms of the "usual suspects", such as Amazon Greengrass, Google Cloud IoT Edge (still in alpha version) or Microsoft Azure IoT Edge.

Digital twins pass from objects to production flows

The creation of a digital twin, which thanks to data collected by sensors can provide a realistic virtual representation of products and systems, will be increasingly applied to entire production processes, allowing not only the monitoring of entire plants, but also predicting what will happen when a new model is out into production, or some variables change. This, according to proponents of the technology, will lead to greater efficiency, faster time-to-market and fewer glitches and non-compliance issues.

 

 

Read more…

Given my Telco background, it was logical that back in 2014, I published some of my first articles in my  IoT Blog about the topic “IoT Connectivity . I described how the optimist predictions of analysts and companies like Cisco or Ericsson, made the Machine to Machine (M2M) an attractive market to invest.

The fact that “Tata Communications have acquired mobility and Internet of Things specialist Teleena is a clear indication of the phenomenal growth rate in the global IoT connectivity market. “By 2021, enterprises’ spending on mobility alone is set to surpass USD 1.7 trillion,” said Anthony Bartolo, Chief Product Officer, Tata Communications.  I hope to see Tata Communications/Teleena in the next Gartner´s Magic Quadrant for M2M Managed Services Worldwide.

There are still people who doubt that connectivity is a key component in the M2M/IoT Value Chain. Please remember without connectivity simply there is not IoT.

Obviously during these years many of my projects have been associated with IoT connectivity. From the analysis of M2M/IoT Service Providers to the conceptual design of end-to-end solutions where connectivity selection was a key component. One of the most interesting projects was the analysis that I made for the Telefonica project "IoT in a box". Without forget projects to compare LPWAN technologies, End to End Security, Identification of Uses cases for 5G. Sometimes also I had to sell IoT connectivity.

In the last years in the IoT connectivity market I have seen:

  • Consolidation of the market like “KORE buys Wyless” or “Sierra Wireless, Inc. Completes Acquisition of Numerex Corp.
  • The appearance of companies like 1NCE, the first dedicated Tier 1, Narrowband IoT MVNO providing fast, secure and reliable network connectivity for low data B2B applications offering a set of optimized product features – such as an IoT flat rate and the first of its kind 'BUY ONCE'​ lifetime fee
  • The still not bloody battle between LPWAN operators (SigFox, LoRA network operators, NB-IOT, LTE-M)
  • Telco Vendors, Operators and Analysts talking about the promise of 5G
  • New Wifi and Lifi IoT use cases
  • IoT Security breaches
  • Operators focus on key industries and use cases
  • The partnership M2M/IOT Service Providers ecosystem evolution
  • Agreements among M2M, MNO and Satellite operators.
  • The lack of standards in the Smart Home connectivity
  • The expectation for solve the real time connectivity challenges in Industry 4.0 and Edge Computing –
  • Time Sensitive Networking Industry 4.0 use cases and test bed by IIC members
  • ….

But in my opinion, enterprises still are confused and delaying their decisions to adopt IoT / IIOT because they need good advice about the right IoT connectivity not just the cheapest prices but easy integration or better customer support.

I want to remember again that I can help you in the selection of the right M2M /IoT Service Provider for your enterprise business requirements as a strategic decision.

IoT Connectivity - the ugly Duckling of IoT Network Operators

Telecoms operators’ more focused approach to bolstering their IoT businesses appears rooted in refining the technology inherent in their connectivity networks. And no wonder, The powerful GSMA has been helping Mobile Operators to define their role in IoT. At first sight, the best way for large telecoms operators generate value from the IoT might appear to be by providing connectivity via their networks. Additionally, they could leverage their vast experience in customer engagement, customer premise equipment (CPE) support and their robust, proven back-office systems by offering their OSS and BSS platforms externally to IoT users, using their OSS to provide users with a turnkey platform to manage their equipment proactively in real time, and their BSS to support the related billing requirements. In fact Global telcos set sights on IoT for growth in 2018.

Nevertheless, Analysys Mason, highlighted “Telcos have been working with the broader ecosystem, including developers, cloud players and hardware vendors this past year – all of which “should set the market up for an active 2018”.

Although many people think that IoT connectivity  is or will become a commodity with little value for customers and along with the hardware will form the ugly ducklings of the value chain, IoT Network Operators should strive to demonstrate that IoT connectivity is vital for the global adoption of the IoT and seek to increase the income derived from its connectivity services with aspect like security and the contextual data value that their networks transport.

IoT Data is the new Oil also for IoT Network Operators

If connectivity seems doomed to play the role of ugly duckling, the data on the other hand see how its value increases and increases with each new technology.

How many times have we seen a presentation with the title "Data is the new Oil”? Even taught by me

Many Telcos are in process of Digital Transformation. The want to compete with the Google, Apple, Facebook, and Amazon (GAFA) and avoid same situation lived with these Over the Top (OTT) vendors.  IoT is giving them an opportunity to monetize the IoT data and convert their networks in pipelines of value.

IoT data is a new source of revenue without forget that will also produce incremental profit through operational productivity and efficiency.

The new stream of data coming from the physical world and the billions connected things are mostly transported by the IoT Network Operator´s networks and once these data is captured, the IoT Network Operators can monitor everything and feed their AI systems. Is then, when finally, IoT Network Operators can make a lot of money of IoT contextual data and aggregated data.

Can you imagine the opportunities leveraged by the connection of millions of devices and intelligent things over your IoT network? A vast amount of useful data generated by smart containers, smart home appliances, smart cities, connected cars, smart healthcare devices, or wearables, which for many businesses is an extremely valuable commercial tool. IoT Network Operators possess the capability of performing real-time data analytics on readily available data to determine product performance, improve customer experience and forecast network capacity, all of all which IoT-ready businesses could benefit from.

Key Takeaway

IoT connectivity is still at the core of all IoT Network Operators / M2M Service Providers. But some of them are implementing different strategies to capture more business of the IoT value chain. The idea of IoT connectivity will become a commodity with not added value is influencing the decision to invest in new IoT enabled networks (5G, LTE-M, NB-IoT).

It’s clear that there are some strong opportunities for IoT Network Operators / M2M Service Providers looking to capture the full potential of IoT, and it’s time that they open up their services to support companies from all sectors who are looking to employ IoT connectivity but also machine data intelligence as part of their business models in this IoT driven digital transformation.

Telcos offering IoT connectivity should look to monetise data and offer businesses unique insights that could potentially open doors to new revenue streams or even improve operational efficiencies. 

If IoT business is about data and assets, Telcos need to shift from technology and connectivity to business value and creation of valued services.

 

Thanks in advance for your Likes and your Shares.

Read more…

 

When I ask people what they think the Internet of Things (IoT) is all about, the vast majority will say “smart homes,” probably based on personal experience. If I say that it is also about industries making using of data from sensors, then most people’s immediate reaction is to think of manufacturing. Sensors have been used for a long time in manufacturing, and the concept of using data generated at the edge to monitor and run automated processes is well understood.

This perception, however, is underselling the IoT. In practice, it can be applied anywhere.

Monitoring ‘things’

The use cases for industries with “things” to monitor are easy to identify.

Manufacturing is one of the most obvious. Connected sensors can be used to monitor and manage the health of manufacturing equipment, identify root causes of defects and improve quality.

Health care has equipment that generates digital information about how patients’ bodies are working (e.g., blood pressure) and what they look like (e.g., scans). There are numerous opportunities to monitor people’s health more closely and accurately and catch signs of disease early, or even avoid it altogether.

The insurance industry is using telematics to monitor driving behaviour and assess the risk posed by individual drivers. Telematics also helps with the claims process because information from before a crash can indicate who is at fault, and images of a damaged vehicle can be used to assess whether the car should be written off or repaired.

The IoT also, however, has potential in industries that, on the face of it, do not really have “things,” such as financial services. Banks and other financial providers are extremely interested in the IoT, focusing on “things” which do not belong to the banks themselves, but to customers: mobile phones and payment cards, for example. Banks can improve fraud detection by notifying customers each time their cards are used – in real time – and also checking that the customer is with the card at the time. That, clearly, is a huge service for customers: no more cloning and no more fraudulent transactions.

A change in business model

A fundamental shift in business model is being enabled by IoT analytics: a move from products to services. For example, Rolls-Royce is traditionally considered an engine manufacturer. The company made and sold engines, then sold services to maintain those engines. Now, however, rather than pay for maintenance, airlines can choose to pay an hourly rate for the time that the engine is propelling the aircraft. In other words, it can pay for what it actually wants: the plane in flight at particular times. Increasingly individuals, too, are choosing to pay for a service, rather than goods, such as access to a car-sharing service, rather than owning a car.

This shift, however, has challenges for the service providers. If you are providing a service that includes a physical asset, you do not want to have to spend time and resources inspecting that asset. Instead, you want it to run itself as much as possible. The IoT allows providers to remotely monitor and collect data on all the important aspects of each asset – how it is performing, how it is being used and environmental factors, for example – and therefore automate much of its management.

The data collected from the IoT is only really useful when you can derive useful intelligence from it, and preferably in an automated way. This automation, however, requires intelligence, and that means artificial intelligence (AI).

The importance of AI – and the problem

This is one of the biggest reasons why the IoT is really taking off now: AI algorithms are becoming more usable. There is, however, still a problem. Most AI algorithms need huge amounts of data and computing power. They therefore rely on powerful servers and central data storage.

In computing terms, we humans perform most of our computation and decision making at the edge (in our brain) and in the (pre-)moment, referring to other sources (internet, library, other people) where our own processing power and memory will not suffice. This is more or less the complete opposite of the current AI algorithms, which tend to perform most of their calculations far from the data source, in servers, drawing on stored data.

To enable timely decision making in the world of IoT, you need to be able to deploy some of the cleverness (predictive models and decisioning rules) at the edge, closer to the “things” that you are managing. Some businesses are already doing this, whilst many others are still trying to figure out how to organise and make sense of the deluge of data available to them. Those at the forefront of combining AI and IoT have a huge opportunity to steal a march on their competition.

In my personal view, this is the biggest change in business models since the dot-com boom. And, as in the 1990s, there will be some big winners, and there will also be those who don’t quite get it right, and fall by the wayside.

by Jennifer Major, Head of IoT, SAS

This blog originally appeared as a SAS "Higgen Insights" Blog

Photo by Franki Chamaki on Unsplash

Read more…

Implementing Smart City leveraging IoT and connected technology helps promote economic development, improve infrastructure and environment, enhance transportation systems and optimize costs of managing public assets.

To cope with increasing population, hyper-urbanization, globalization as well as to ensure economic and environmental stability, cities are now focusing on becoming smart cities. The smart city is a concept of utilizing technologies and connected data sensors to enhance and become powerful in terms of infrastructure and city operations. This includes monitoring and managing of public assets, transportation systems, citizens, power plants, water supplies, information systems, civil bodies, and other community services.

Connected technologies and IoT solutions for smart cities play important roles in transforming cities into smart cities. Implementing smart city with IoT and connected technology helps enhance the quality, performance, and interactivity of urban services, optimize resources and reduce costs.

Let’s see the various components of smart city and their impact in the IoT era:

  1. Smart Infrastructure

The global market for smart urban infrastructure in smart cities, include advanced connected streets, smart parking, smart lighting, and other transportation innovations. Here’s how they work:

  • Smart Lighting: With smart lighting, city authorities can keep real-time tracking of lighting to ensure optimized illumination and deliver demand-based lighting in different zones. Smart lighting also helps in daylight harvesting and save energy by dimming out sectors with no occupancies For e.g. parking lots can be dimmed during work hours and when a car is entering, it will be detected and appropriate sectors can be illuminated, while others can be kept at diffused setting.
  • Connected Streets: Connected and smart streets are capable of acquiring data and delivering information and services to and from millions of devices, which includes information about traffic, road blockages, roadworks, etc. This helps in efficient management of resources and people to enhance public transportation and the urban landscape.
  • Smart Parking Management: Smart parking management system can be used to find the vacant location for a vehicle at different public places. Smart Parking’s In-Ground Vehicle Detection Sensors are core technologies, playing a key part in the Smart Parking solution that is revolutionizing how drivers in the malls and city centers can find an available parking space. Wireless sensors are embedded into parking spaces, transmitting data on the timing and duration of the space used via local signal processors into a central parking management application. Smart Parking reduces congestion, decreases vehicle emissions, lowers enforcement costs and cuts driver stress. For effective deployment of smart parking technologies, each device needs to have a reliable connectivity with the cloud servers.
  • Connected Charging Stations: Smart infrastructure also includes implementing charging stations in parking systems, city fleets, shopping malls and buildings, airports, and bus stations across the city. Electronic vehicle (EV) charging platforms can be integrated with IoT to streamline the operations of EV charging and addresses the impact of the power grid.
  1. Smart Buildings & Properties

Smart buildings utilize different systems to ensure safety and security of buildings, maintenance of assets and overall health of the surrounding.

  • Safety & Security Systems: These include implementing remote monitoring, biometrics, IP surveillance cameras, and wireless alarms to reduce unauthorized access to buildings and chances of thefts. It also includes utilizing Perimeter Access Control to stop access to restricted areas of the property and detect people in non-authorized areas.
  • Smart Garden & Sprinkler System: Smart sprinkler system synced with connected technologies and cloud can be used to water plants with the assurance that plants get the right amount of water. Smart garden devices can also perform tasks such as measuring soil moisture and levels of fertilizer, helping the city authorities to save on water bill (smart sprinkler devices use weather reports and automatically adjust their schedule to stay off when it rains), and keep the grass from overgrowing in the convenient way (robot lawnmowers).
  • Smart Heating & Ventilation: Smart heating and ventilation systems monitor various parameters such as temperature, pressure, vibration, humidity of the buildings and properties such as movie theatres, and historical monuments. Wireless sensor network deployment is the key to ensuring appropriate heating and ventilation. These sensors also collect data to optimize the HVAC systems, improving their efficiency and performance in the buildings.
  1. Smart Industrial Environment

Industrial environments present unique opportunities for developing applications associated with the Internet of things and connected technologies which can be utilized in the following areas:

  • Forest Fire Detection: Helps in monitoring of combustion gases and preemptive fire conditions to define alert zones.
  • Air/Noise Pollution: Helps in controlling of CO2 emissions of factories, pollution emitted by cars and toxic gases generated on farms.
  • Snow Level Monitoring: Helps in identifying the real-time condition of ski tracks, allowing security corporations for avalanche prevention.
  • Landslide and Avalanche Avoidance: Helps in monitoring of soil moisture, earth density, as well as vibrations to identify dangerous patterns in land conditions.
  • Earthquake Early Detection: Helps in detecting the chances of tremors by utilizing distributed controls at specific places of tremors.
  • Liquid Presence: Helps in detecting the presence of liquid in data centers, building grounds, and warehouses to prevent breakdowns and corrosion
  • Radiation Levels: Helps in distributed measurement of radiation levels in nuclear power stations surroundings to generate leakage alerts
  • Explosive and Hazardous Gases: Helps in detecting gas levels and leakages in chemical factories, industrial environments, and inside mines
  1. Smart City Services

Smart city services include services for public safety and emergencies.  Below are the key areas where IoT and connected technologies can help:

  • Smart Kiosk: Smart kiosks play an important role in providing different city services to the public such as Wi-Fi services, 24×7 IP surveillance cameras and analytics, Digital signage for advertisement and public announcements. In some cases, free video calling and free mobile charging station, as well as environmental sensor integration can also be implemented. Smart kiosks also provide information about restaurants, retail stores, and events in the immediate area. It can also provide mapping for visitors and can sync with smartphones to give additional data as needed.
  • Monitoring of Risky Areas: Sensors (cameras, street lights) and actuators for real-time monitoring can be implemented in risky areas or areas prone to accidents. Upon detecting any crime, or mishap, these sensors can alert the citizens to avoid such areas temporarily.
  • Public Security: IoT sensors can be installed at public organizations and houses to protect citizens and provide real-time information to fire and police departments when it detects a theft.
  • Fire/Explosion Management: Smart fire sensors can detect and automatically take actions based on the level of severity, such as detecting false alarms, informing firefighters and ambulance, blocking off nearby streets/buildings on the requirement, helping people to evacuate, and coordinating rescue drones and robots.
  • Automatic Health-Care Dispatch: Smart healthcare devices can be implemented at public places to provide 24/7 health care for patients like dispensing medicines and drugs to patients. These devices can also be used to call an ambulance to pick up the patients in cases of emergencies.
  1. Smart Energy Management

Here’s how cities can implement smart energy management:

  • Smart Grid: Smart grids are digitally monitored, self-healing energy systems that deliver electricity or gas from generation sources. Smart grid solutions can be across industrial, residential as well as in transmission and distribution projects. Various IoT solutions like gateways can be used to achieve energy conservation at both the transmission level and consumer level. For e.g., gateways can provide a broader view of energy distribution patterns to utility companies with high connectivity and real-time analytics. Also, it develops a Demand-Response mechanism for the utility providers to optimize energy distribution based on the consumption patterns.
  • Smart Meters: Smart meters can be used in residential and industrial metering sectors for electricity and gas meters where there is a need to identify the real-time information on energy usage. Consumers and utilities with smart meters can monitor their energy consumption. Moreover, energy analytics, reports, and public dashboards can be also accessed over the internet using mobile applications integrated with these smart meters.
  1. Smart Water Management

IoT and connected devices enable smart water management in the following ways:

  • Potable Water Monitoring: Monitors the quality of tap water in the cities.
  • Chemical Leakage: Identifies leakages and wastes of factories in rivers.
  • Swimming Pool Remote Measurement: Controls the swimming pool conditions remotely.
  • Pollution Levels in the Sea: Controls the occurrence of leakages and wastes in the sea.
  • Water Outflows: Detects of liquid presence outside tanks and pressure variations along pipes.
  • River Floods: Monitors water level variations in rivers, dams, and reservoirs.
  1. Smart Waste Management

Smart solutions for tracking wastes help municipalities and waste service managers the ability to optimize wastes, reduce operational costs, and better address the environmental issues associated with an inefficient waste collection.

Implementation of a smart city comes with enormous opportunities to transform the lives of people and improve the overall city infrastructure and operations. Smart sensor networks, Internet of Things (IoT) and connected technologies are the key solutions for smart city implementation.

 

 Photo by Arturo Castaneyra on Unsplash

Read more…

Iot and IIoT has made it a long way in the past several years. In fact, according to Forbes, trillions of dollars are at stake as the Industrial Internet of Things rolls out over the next decade. But, has the multi-tillion dollar trend lived up to the hype?

It could be many more years until certain industries reach the levels described in the hype.  Here’s the industries you should keep your eye on when it comes to IIoT technology.

The Internet of Things and the Industrial Internet of Things (IoT and IIoT, respectfully), widely encompasses many concepts, technologies, and products, but can generally be described as:

  • A system that contains wired or wirelessly connected components which relay data that can be analyzed or used to control an output of the system
  • A network that allows for automated information exchange between two devices
  • A vision where any and all systems are connected to gather masses of data that will lead to overall improved performance, insights, and control

As of 2018, we most commonly see IoT being used for location tracking, remote monitoring, and preventative maintenance.  Yet, for IIoT the most common application is preventative maintenance. Many of these IIoT systems report back to a control interface, and are not completely automated control loops that are self-evaluating or self-improving.

 

There are some industries in particular that stand out when looking at the IIoT.  We looked at trends that will progress through the end of 2018 into 2019, and asked the following questions.

  1. What industries will be most affected by IoT solutions?

According to BI Intelligence, the ‘Manufacturing’ and ‘Transportation and Warehousing’ industries have received the highest amount of investment in IoT to date.  These investments, totaling $230B between the two industries over the past few years, will continue to drive impressive progress in the development of IoT solutions. 

  1. Who will be the key players in IIoT Solutions in 2019?

We are currently witnessing a race to capture the IIoT market.  AT&T is collaborating with Honeywell, Verizon offers a machine-to-machine (M2M) management platform called ThingSpace, and startups like Uptake Technologies are raising absurd amounts of capital to compete with existing analytics giants. Uptake alone has raised $218M since 2015, and specializes in analytics of complex data sets. 

Nearly all of the corporate giants you would expect to have a stake in the race are putting serious resources behind their efforts.  GE is offering Predix, and end-to-end Industrial IoT Platform, and has incorporated capabilities like Predix Edge to allow for edge computing within the platform.  Siemens offers their own Industrial IoT platform called MindSphere, and Bosch is also getting in on the action now offering their IoT Suite publicly available on AWS Marketplace. Further, Schneider Electric developed WonderWare and SAP offers Hana.

We expect that through 2019 we will see more partnerships develop, offering cross compatibility between the many platforms which are available today.

  1. What further developments in IIoT can we expect in the near future?

Security will continue to be a major focus for all providers and users of the IIoT.   In a recent publication Steve Watson, CEO of VTO Labs, explains “security and specifically the ability to detect compromised nodes, together with collecting and preserving evidences of an attack or malicious activities emerge as a priority in successful deployment of IoT networks.” This ability to detect and preserve evidence of a cyber-attack will not only need to occur through edge computing, but it will also need to be maintain its integrity with interoperability of different systems that are linked together.

Given the amount of investment we are seeing in the ‘Manufacturing’ and ‘Transportation and Warehousing’ industries we expect to see many breakthroughs in both cyber security for the IIoT and interoperability between the many IIoT platforms. Looking into 2019 we can expect to see more partnerships between major sensor providers and network providers, such as the AT&T Honeywell collaboration we saw in 2018. With more interoperability and collaboration, 2019 may be the year that we see the major breakthroughs in IIoT we’ve been expecting.

Read more…

Until recently, we knew unicorns were mythical creatures which made an appearance only in Greek literature, the Bible, and Marco Polo’s travels. While not a single unicorn was ever discovered in the real world, these days, we seem to be dealing with a whole bunch of them, especially when it comes to business.

Technology has played a crucial role in small and medium businesses, made startups fashionable. Today we have many unicorns trotting about the business landscape.

The unicorns are celebrated for their successes and business acumen. Essentially, a unicorn is a start-up that is valued over $1 billion. When you think of them, think about, AirBnB, Uber, Xiaomi or even Flipkart. These are the new set of businesses that have disrupted the market in their respected sphere. But companies rise and fall all the time, so one may be tempted to ask what is so magical about these creatures?

The term Unicorn was coined in a TechCrunch article by Aileen Lee of Cowboy Ventures.

Part of the charm lies in reinventing the business model. They find a better way to do business. It may be a new idea or an improvement over the existing one. They offer a vision; a glimpse of what the future may hold and have an intense desire to grow.

Fuelling these dreams through constant innovation and the ability to adapt quickly. Precisely where some of the giant falter. Large businesses are bogged by internal processes and complexities resulting in delayed decision-making, allowing a start-up to swoop in.

 According to a study by CB Insights, there are around 175 unicorn companies globally.

The Unicorns and the Internet of Things

Many entrepreneurs have realized that IoT/IIOT technologies can level the playing field if they intend to dislodge industry giants. IoT Start-ups are looking to attract consumers or SMBs or large enterprises by increasingly relying on innovation on cloud and edge computing, IoT platforms, Artificial intelligence, IoT networks, IoT security or IoT devices.  Advanced technology is a key differentiator but not the only one- A new business model to attract customers could also become the initiator of a new unicorn.

After five years of exploring the fragmented but rich universe of IoT startups, no new unicorn has yet appeared. The most promising startups have seen their light turned off behind the Tech and Industry Giants check books. Those who are still pursuing their dreams of being unicorns see that the market does not accompany and no longer rely on analysts' predictions.

With all this, we may not see any unicorn of IoT. However, if I had to bet on some startups then these are my suggestions. 

The IoT Application Unicorn

My vote for the startup to become a unicorn in IoT Application category goes to: Uptake

Founded in 2014 by the CEO, Brad Keywell, that was also Co-Founder of Groupon, the company counts with a good number of investors. The company is stealing execs away from GE. (Uptake hiring several General Electric top digital executives) and have raised around $260 million since launching in 2014. Uptake was last valued at more than $2 billion, in fact, this startup is probably the first IoT unicorn. Uptake's revenue run-rate exceeds more than $100 million a year and future rounds of financing are expected.

LinkedIn profile: “Uptake helps industrial companies digitally transform with open, purpose-built software that delivers outcomes that matter. Built on a foundation of data science and machine learning, our vision is to create a world that always works — one where the machines and equipment we depend on daily don’t break, and industrial companies are once again the creators of economic growth and opportunity.”

WHY MY VOTE: Predictive analytics software is hot. The company sells to the mining, rail, energy, aviation, retail and construction industries and hopes to leverage data to improve safety, efficiency and productivity for their clients' operations. In spite his CEO has not accepted my LinkedIn invitation, no surprise to be honest, only 54% approve of CEO in glassdoor, the aggressive campaign against GE could launch the company this year. I like that his employees are sent directly to the field to observe fast hand the needs of its client base so they can really build software that solve real business problems.

ALSO FOLLOWING: FogHorn Systems a developer of “edge intelligence” software for industrial and commercial IoT applications..

The Hardware and Sensor Data platform Unicorn

My vote for the startup to become a unicorn in IoT hardware category goes to: Samsara

Samsara sells hardware and end-to-end solutions for fleet and industrial applications.

Samsara was founded in 2015 by CEO Sanjit Biswas and CTO John Bicket, who previously founded and led Meraki – a successful cloud networking company that was acquired by Cisco in 2012 for $1.2 billion. Samsara is based in San Francisco and was funded by Andreessen Horowitz (Raising $25M in funding). In May 2017, the startup announced that it had secured $40 million in a Series C funding round.

Sanjit Biswas, recognized that “They were definitely not the first to notice the technology trend behind the Internet of Things movement, but they realized no one was building products the way we did at Meraki, by combining hardware, software and cloud into an easy-to-use system”.

LinkedIn profile: “Samsara’s mission is to bring the benefits of sensor data to the organizations that drive our economy—from transportation and logistics to construction, food production, energy, and manufacturing—and to improve the safety, efficiency, and quality of their operations.”

WHY MY VOTE: Although not on this occasion his CEO accepted my invitation to LinkedIn, I like that Samsara disrupts the traditional sensor model with an integrated, software-centric solution. The products combine plug-and-play sensors, wireless connectivity, and rich cloud-hosted software, all tightly-integrated for simple deployment. Samsara is used by customers in a wide variety of industries, from transportation and logistics to energy and manufacturing. The company offers various solutions including fleet, ELD compliance, trailer, industrial, temperature, and power.

By focusing Samsara system for ease of use and streamlining deployments in the field, the teams were able to make several design choices that help them deliver a 10 times overall improvement over traditional solution. Samsara was in the list of “The 20 Fastest Growing IoT Companies” and is demonstrating is able to capture customers  in the fleet management and logistics industry against Verizon. The challenge is growth globally not only in US.

ALSO FOLLOWINGGeotab

The IoT Connectivity Unicorn

My vote for the startup to become unicorn in IoT connectivity category goes to: SigFox

LinkedIn profile: Founded in 2010 by Ludovic Le Moan and Christophe Fourtet, the company is headquartered in Labège near Toulouse, France’s “IoT Valley”. Sigfox provides connectivity for the Internet of Things (IoT). The company has built a global network to connect billions of devices to the Internet while consuming as little energy as possible, as simply as possible.

WHY MY VOTE: There are drastic limitations in the Sigfox global network. I could say that this will be the network of the stupid devices, but if they improve the network, ensure scalability, quality and security and allow interoperability with their competitors that will connect the most intelligent devices, then this startup will continue empowering companies to create new innovations on the IoT.

Sources announced that Sigfox is in peril as Senior Execs exit. The company has reacted but the pressure to growth in revenues and network deployment is high. Compete with the Telco Incumbents and the mighty powerful GSMA is a Hercules' own task. Some help from the French government and the EU will be appreciated, so the company can not be acquired. The Board and investors should guarantee the money the company need to comply with the high expectations of the market. In my opinion the window of opportunity is 2020. They have 2 years to demonstrate they can become the IoT-Connectivity unicorn.

ALSO FOLLOWINGActility, Link Labs, and of course the LORA alliance and M2M Service Providers.

The IoT -AI Platform Unicorn

My vote for the startup to become a unicorn in IoT/AI platform category goes to: C3IoT

I have written a lot about IoT platforms and I think that most startups will disappear in 3-5 years or they will never become a digi-unicorn. But there is a special case that can reach the end of the road. Mainly for who is behind, my old CEO Thomas Siebel.

LinkedIn profile: C3 IoT is an AI and IoT software platform provider for digital transformation. C3 IoT delivers a comprehensive and proven platform as a service (PaaS) for rapidly developing, deploying, and operating large-scale AI, predictive analytics, and IoT applications at scale for any enterprise value chain in any industry. At the core of the C3 IoT offering is the revolutionary C3 Type System—an extensible, model-driven AI architecture that dramatically enhances data scientist and application developer productivity. C3 IoT also offers configurable, high-value SaaS products for predictive maintenance, fraud detection, sensor network health, supply chain optimization, energy management, and customer engagement.

WHY MY VOTE: In January 17, 2018, the company announced a new round ($100 Million) of financing by existing investors TPG Growth, Breyer Capital, Sutter Hill, Pat House, and Thomas M. Siebel.

After the sale to Oracle of its CRM business, Tom, could with this new adventure, return to be relevant in the industry and I think he will not allow his new baby to be acquired. Not at least until he makes C3 IOT a unicorn.

ALSO FOLLOWING: The competition in the AI-powered industrial IoT sector is brutal, but the opportunity is big enough that the 10 startups highlighted here still have room to maneuver and time to scale up. I also keep an eye on them because one or more could well be the next unicorn in this hot market.

Key Takeaway:

Not being a IoT unicorn is not a tragedy. Many companies that started in the M2M business or that have been born in the heat of the IoT are doing well. Their employees are happy and satisfied customers guarantee a long life.

In my post “Is it possible to democratize the Internet of Things? How to avoid that a handful of companies can dominate the IoT”, I pointed out the opinion of Ryan Lester (Director of IoT Strategy, Xively by LogMeIn company acquired by Google). Ryan alerted that IoT feels only achievable to those companies with unlimited resources to make it happen. Looks like, the facts have given him the reason.

Yes, I admit, I would like to see unicorns in IoT. I would also like startups not to be obsessed with this issue and not throw in the towel too soon. If they are acquired, their legacy is very likely to be lost soon and in exchange for money they will have lost the opportunity to contribute to changing the world with their unique innovation in IoT.

Thanks in advance for your Likes and your Shares.

References:

http://www.moneycontrol.com/india-business-live-ibl/growth-for-sme/article/unicorns-in-our-midst-7501221.html

Read more…

One year ago, I wrote the first part of this article: "Who need an IoT Analyst?". In this first part, I classified the different types of analysts who are involved in one way or another in the Internet of things (IoT).

In this second part, I will address the special case of analysts specializing in IoT Platforms. For them, I have created 4 categories of IoT Platform Analysts (The Powerful, the Specialists, The Opportunist and the Intruders) and then I ranked them following two high level criteria: Technical Experience criteria and Business Experience criteria.  The level of influence is a subjective value based on my own research and perception.  Likewise, the position in terms of technical and business criteria is also subjective. As usual in these graphics some will feel comfortable and I will receive critics from others. Nothing new under the Sun.

Let us start for the Powerful category:

The IoT Platforms Powerful Analysts' Firms

We will never remove at 100% the shadow of doubt flying over the reports and recommendations that prestigious and powerful firms like McKinsey, Gartner, IDC or Forrester continue to publish. But it also true that these multinational companies count with great analysts and they have the contacts with the right people in the Big IoT platform vendors, so they can get not only marketing info but strategic info from these vendors that is nearly impossible to get for others.

Not all the Powerful always agree, just read the Forrester reports of Q4/2016 and Q4/2018 and compare with Gartner report 2018 or IDC report 2017 to see the differences and the reasonable doubts for customers that only read these reports.

In Forrester reports from 2016 and 2018 we see some leaders maintaining their positions while other companies are losing moment, or they are not anymore in the picture.

Surprise even more if you see the Gartner graphic below with no leaders and most companies in the Niche players segment.

Finally, in the IDC Marketspace IoT Platforms picture dated in 2017 we see that Microsoft, PTC and IBM repeat as Leaders but new companies are included. No Contenders neither participants are interested for the guys of IDC.

Recommendation –  In terms of methodology and scope the reports of these Powerful analyst is not so bad, but they lack the in deep analysis firms required for a customer to take a final decision. These reports are valuable to shortlist candidates in RFIs/RFPs and of course the report is an excellent sales tool for companies that appear in the picture. My recommendation is used it for a first filter.

The IoT Platforms Specialist Analysts' Firms

Some of them started with the M2M market and have evolved to the IoT in a gradual way, without losing its essence like ABI Research, Berg Insight, Beecham Research, Harbor Research. Others like MatchManation or IoT Analytics, however, focused from the beginning in the IoT platform market analysis.

The populated market of IoT platform vendors and the need of these startups for brand recognition with low cost marketing, have made it bloom IoT platform specialist analyst firms offering their services.  Their suspense sales strategy can be annoying. Go discovering who is who is not easy and put all the tracks together is expensive. Some examples below. Nevertheless, I want to thanks to some vendors included in the report that allow download partial reports.

Recommendation - The reports of IoT Platform specialists will help us discover some jewels that the Powerful have overlooked or have not wanted to pay to appear in their famous reports. I do not like how these companies use a game-strategy offering partial pictures or partial reports through their most valuated clients or generic pictures with no names. I believe they need to be courageous and present graphics will all companies’ logos. Otherwise they will be continuing in a niche market that soon will be owned for the Big Players.

The Opportunistic Firms

These analyst firms want to take advantage of the IoT platform moment. Companies such as Navigant, IHS market, 451 Research or Constellation Research have published reports on this topic.

Recommendation - I find their IoT reports useful from a vertical or an individual vendor analysis.

The Intruders Firms

There are other firms (The Intruders) that in my opinion are aggregators of content. Companies like Markets and Markets or Data Bridge deliver big reports with excellent pictures, tables and infographics.

Recommendation - Sometimes they provide for free a Table of Contents with dozens of tables, and a list of dozens of IoT platforms info but I am afraid that in 1 page per platform the info sounds irrelevant for take a decision. They facilitate the multi search in Google to identify IoT platform vendors.

Note: I have not included in this article Universities that produce very interesting to read reports including more granular technical criteria than most of the powerful or specialist analyst firms. 

Key Takeaway:

Recommending a client an IoT platform is a very delicate matter. The IoT platform will play a key role in the execution of its IoT strategy. Giving good advice on the choice of these platforms requires a lot of time and dedication with the client to understand their objectives, identify their use cases, know their organization and their IT / OT systems.

The reports of the analysts of IoT platforms, both those of the Powerful and those of specialists help to make a first filter and to select 3 or 4 vendors that best adapt to their needs. Thereafter, these finalists need to be analyzed in greater depth. That is why I decided to create our IoT Platforms services, which have been so successful and well received by our customers.

We value positively that this combination of IoT Platform vendors and IoT platform analysts exists. The Powerful ones help them as always and the small ones help them in their efforts to be noticed in a technological world as little democratic as the present one.

Thanks in advance for your Likes and your Shares.

 

Read more…

Those who regularly read my articles know that I like movies and TV series. Just remember my article "About IoT Platforms, Super Powers Methodology, Superheroes and Supervillains".

This time my article is dedicated to the two trilogies: Jurassic Park and Jurassic World (the latter still pending the third movie).

 

Have not passed millions of years since the appearance of the first telemetry species and their evolved cousins of Machine to Machine (M2M.) But the tempo in technology is measured differently. The unit of time here has to do with Gartner Hype Cycle. For Gartner the technologies pass quickly from Innovation Trigger to Productivity. Companies that want to appear in Gartner´s  Magic Quadrants have to adopt successfully these technologies or are condemned to  disappear.

 

Large companies that have been in the IT world for more than 15 years seem like dinosaurs and they themselves are afraid of disappearing because of a meteorite (IoT metaphorically).

 

In this article I present some technology companies that we could consider as dinosaurs and that are undergoing a cloning (transformation) to adapt to the new world of the Internet of Things (IoT), Artificial Intelligence(AI) or Blockchain.

 

As usual in this type of articles, the included companies and the classification is subjective. Therefore, not all dinosaurs are represented (47 species of cloned animals have been portrayed in the novels and films) nor all companies can feel be represented by the dinosaur that I have chosen for them.

 

Welcome to my Jurassic World of IoT.

The threats to these cloned dinosaurs are constant. Despite its size and strength many predators lurk to take down these giants (Uptake digital safe package over GE Digital).

Some species go in packs (Google and Ayla Networks or Microsoft and Electric Imp) to survive and others seek alliances with other cousins giants (Rockwell to take $1 billion stake in software maker PTC) the best way to reign in its territory.

 

There are also dinosaurs in the WestWorld of the Telcos and in the world of Industrial companies that are adapting or cloning, but that is another story.

 

Your comments and suggestions can vary my Jurassic World table of the IoT.

Read more…

With literally hundreds of IoT platforms on the market, how do you know which ones to add to your short list? As a rule of thumb, an IoT platform should connect to Things, manage their identity + security, collect data, store, manage, analyze and visualize that data, integrate with enterprise systems and take action on insights. 

In this podcast, Rob Tiffany walks you through these minimum requirements to help you make an informed choice.

http://theinternetofthings.io/iot-podcast-8-what-to-look-for-in-an-iot-platform/ 

Read more…

Despite the great promise of IoT to improve business and society, many think it’s being held back due to complexity and the associated lack of required skills to make it a success. Is it possible that the antidote to this complexity and skill shortage problem lies in the existing open standards and technologies that comprise the World Wide Web? In this podcast, Rob Tiffany makes the case for using existing W3C standards to power the Internet of Things.

Check it out at https://theinternetofthings.io/iot-podcast-can-the-web-save-the-internet-of-things/ 

-Rob

Read more…

IoT Hardware: All you need to know

 

Back in the early 2000 era, the idea of connecting various devices and granting them access to other authorization apps was quite rare. However, in today’s time, this thought is omnipresent in all sorts of industries. Hardware components decide the cost, abilities, experience, and application of an IoT product. Unfortunately, only 20% of IoT professionals can deal with this part as the skills required are quite different from those dealing with the software portion. Hence, building products using this technology is not as easy as it seems. Since the innovation of Internet-enabled appliances is comparatively new,  security is also a big threat while dealing with the hardware circuitry of these products.

 

Hardware components of IOT

Irrespective of the device being designed, the building blocks of almost every IoT device is likewise. The three most prominent hardware components used in this technology are:

  • Sensors: They collect data from the surroundings and constrain the waves before they get transmitted to the next building block.
  • Microcontrollers: The waves from the sensor are received by the microcontroller for signal processing after which, they regulate the consumption of power while managing the storage. This device also decides the correct responses to different types of signals received.
  • Medium: Communication is aided by the transfer of information between the various transmission blocks and thereby to the cloud. The micro-components making this possible are some radio chips, network protocols, and wireless modules.

These components provide different experiences depending upon the use they have been put up for. But their physical topology always consists of these three elements.

For instance, it is really cumbersome to take real-time recordings of the sensor in a thermostat while regulating the other parameters at constant intervals. The sensor takes time to register the change as the factors like room temperature cannot be altered rapidly.

Also, in an automated industry or office, the conveyor belts need to be regulated frequently. If not, the motor might start to make inarticulate sounds subjecting to a change in the applied load. If some rapid adjustments aren’t made pertaining to the change in load, it might even heat up causing a smoldering smoke to emit.

 

The aforementioned examples suggest how it is important and quite mandatory to have a clear knowledge of the design being implemented, so as to select the correct components for the required task. The predominant jobs of sensors, microcontrollers or the communication mechanism do not change with respect to the IoT application. In the first case, the sensor will record different temperature readings of the HVAC (Heating, Ventilation, Air Conditioning) system and similarly in the second instance, it records the conveyor belt frequencies generated by the motor driver. This output is further fed to a signal conditioning circuit which enhances and adjusts the readings to make them readable by the next building block. Next, the microcontroller handles the sensor output to act upon the temperature of the room or the speed of the conveyor belt. The controller of the motor is also adjusted. Lastly, the medium or the communication circuitry has an established connection with the resources of cloud computing that helps scrutinize the information given by the conveyor belt sensor or updates the owners about their changed room temperature.

 

Issues faced

  • Cost to customize linked devices: At some point or the other, every device connected to a distant one needs to be personalized that is, it needs to possess some unique keys. This increases the cost for the end user. The complexity in assorting the peripherals of a system to the central unit weakens the security of the network.
  • End-to-end network security: Having just WPA-secured Wi-Fi connectivity to a router doesn’t help in privately browsing to some remote server. This is because the local keys are not renewed regularly. For instance, nowadays no one really alters their wifi passkey thinking it to be a hassle.
  • Authenticity: Most websites or marketplaces no longer sell genuine components even after taking a lump sum of money. There is no way to check if a component is perfectly working while buying it. Many fraud sites have been leveraging through this.

Chandramouli Srinivasan - Founder and CEO of Hurify

However, problems are never stopping signs but guidelines. Commenting on the reason why Hurify, an online IoT hardware store, was founded, its CEO Chandramouli Srinivasan says We launched our marketplace in April to address the complexity around fulfilling hardware needs of an IoT project. Easy access to hardware products coupled with a global shipment commitment simplifies management of IoT hardware acquisition for a project owner. Additionally, the marketplace creates real utility for the HUR token – the only medium of exchange on our platform. We view this as foundational to our goal of being a one-stop solution for IoT development. To overcome the eminent problems being faced by the world in designing IoT products, Hurify has created a unique marketplace for IoT’s hardware components but also developed HUR tokens as their only medium of exchange. This enhanced the transparency as well as the reliability of the components being bought. Also, every kind of component is in the same place hence loitering about on websites to find the perfect hardware is no more required. This startup is thus surely bringing the IoT journey to life.

 

The Way Out

While being carried over the internet protocol, the data can be tunneled from the sensors to the applications in order to encrypt it end-to-end thereby enhancing its network security. The other factors which need to be enlightened upon are the validation between a device and server, the integrity of the information and its confidentiality alongside the creation of a safe session key. In the year 1995, Netscape had released the first public SSL (Secure Socket Layer). The purpose behind the same was to allow online clients to exchange information in the safest possible manner. They used applicative distant servers to deliver any form of media or data irrespective of their OS. Client authentication was completely based upon secure and private end-to-end transmission, not disclosing passwords to any third party website and; by keeping the hackers at bay. This authentication was achieved by using the same unique key on both the transmitter and receiver sides of the channel. Now, to distribute this unique key without its exposure, the technique of asymmetric cryptography was brought to light where a unique key was secretly shared between the entities even on a public medium without the need for the key to being exposed.

 

The Bottom Line

The purpose of this article was to introduce the basics of IoT from a device point of view. To be precise, everyone needs to be equally aware of the type of hardware to be dealt with alongside having the knowledge of the software aspects of the technology. There’s still a wild west out there regarding IoT hardware. Even the product managers need to have a proper understanding of the prominent components required rather than holding an expertise in all the areas of this technology. This will also clarify their knowledge of how the end-to-end IoT solutions are put together.

Read more…
RSS
Email me when there are new items in this category –