Subscribe to our Newsletter | To Post On IoT Central, Click here


Platforms (169)

The education system used to have two streams. Bright students went to schools of higher learning – universities and colleges, where, among other things, they learned how to design stuff. So-so students were filtered into professional schools, where they became plumbers, carpenters, and factory machinists. In other words, these “average” students became the makers of things. This dual educational stream – creators and makers – has served the society well.

Things changed around the 80s. Professional schools started to change their names into “universities”, readjusting their curriculum, and generally trying to look “higher end” than they really were. This coincided, of course, with the wave of job outsourcing to Asia and the resulting loss of factory jobs. Many traditional jobs fell out of fashion. At the same time, there was a tremendous uptick in people choosing the legal profession, banking, and finance.

The unfortunate outcome was that the number of people who could “hold a screwdriver” has decreased dramatically, while the numbers of “lawyers” skyrocketed. The plumber/lawyer ratio – how about creating an official worldwide index with this name? – has plunged to unhealthy lows, so much so that even in manufacturing countries like Germany even the largest and the most powerful manufacturers, such as Mercedes Benz, have difficulties filling their vacancies.

Fortunately, things are changing. Manufacturing is starting to return home. Making stuff is cool again. The DIY movement, which in many countries consists of people who don’t extract the satisfaction of making things from their day jobs, is flourishing. The education system is finally taking note.

Around the world, governments and educators are proclaiming that they will teach their young to be coders and makers of things. To assist them in this task, companies big and small have come up with innovative, low-cost computing, programming, and building platforms. Raspberry Pi. BeagleBone. LittleBits. Kano. These are the signs of changing times. Some innovative educational solutions focus on just teaching coding skills. Some go further and teach kids how to “work with their hands” and build electronic and mechatronic devices, such as robots.

One significant factor in choosing the right educational equipment or platform is the time limit available for each building exercise. In schools, one class period typically lasts between 40 and 60 minutes. Consider what has to be accomplished within this time frame: A student is supposed to grasp the objective first, assemble the hardware from available “building blocks” next, and maybe even write some code to finish the assignment. Not surprisingly, the quality and the ease of use of the “building blocks” selected by the school will greatly affect the student’s ability to accomplish his or her task or come up with creative ideas. If code writing is in order, the choice of the programming platform and language will greatly affect the student’s efficiency.

One interesting hardware and software platform holding a great education value is Tibbo Project System created by Tibbo Technology. The platform is based on colorful I/O blocks called Tibbits. Around 50 different Tibbits are available presently, and Tibbo is constantly expanding the list. Tibbits plug into a mainboard carrying a CPU and an Ethernet interface. This mainboard is programmable in Tibbo BASIC or Tibbo C – high-level, object-oriented languages that greatly simplify and speed up application development.

One other strong suit of the TPS is built-in TCP/IP networking. TCP/IP stacks are the foundation of modern communications and the Internet of Things (IOT). By creating simple Tibbo BASIC/C applications, some of them no longer than 30-40 lines of code, students are able to observe TCP/IP and other networking protocols in action and learn their inner workings – all within the time constrains of the school period.

No matter what educational platform becomes dominant, it is obvious that education around the world is making a tectonic shift towards training students in matters of programming and electronics. Of course, these efforts may yet prove to be of the “too little, too late” kind. This wouldn’t be the first time our education prepared us for the world of yesterday. It may well turn out that by the time current primary school students enter the adult life the tech landscape will have changed beyond recognition. Even in this case, educating students in tech subjects will give them a big hand in preparing for whatever comes next. Our society cannot survive on the current plumber/lawyer ratio. It’s time to change this number.

Originally posted on Data Science Central

Follow us @IoTCtrl | Join our Community

Read more…

Can we use HTTP for IoT

Irrespective of how people and companies view IoT, everybody agrees that it will dwarf the internet we see today in very near future. Industry estimates that there will around 50 billion connected devices by 2020. With so many connected devices talking among themselves we need very robust protocols which will work in the real world

 

HTTP is the workhorse of the world wide web. Its the common standard according to which all the browsers communicate with all the servers. Can devices use HTTP for communication?

 

Usually HTTP runs on the top of TCP and has a big header

A bare minimum GET request for HTTP 1.1 is

 

GET / HTTP/1.1

Host: www.example.com

 

The above request fetches the resource at ‘/’. Each new line character is 2 bytes long (CRLF) and the last line should be a new line character, so there is an overhead of 25 characters to fetch a single resource

 

The minimal reply is also similarly long, its

 

HTTP/1.1 200 OK

Content-Length: 1

Content-Type: text/plain

 

a

 

thats for replaying with a single character ‘a’. That is an overhead on 64 characters.

 

Each extra byte that needs to be transmitted incurs a cost on the battery life which is a very precious commodity for embedded devices

 

We have to keep in mind that all the data is passed as clear text without any encryption across the channel, HTTPS is used is used to overcome the problem of security but this adds another overhead of the SSL/TLS channel, handshake and certificate examination.

 

In the real world scenario where the communication channels and often unreliable and bandwidths limited, this much overhead is too much of a baggage.

 

Apart from that, HTTP essentially works under request response model, where clients can only push data to a server and there is no way for the server to connect back to the client unless the client also implements the server. This is an excellent way to get data from many and not the best when you want one to many communication moreover it would be impossible for a remote sensor to be aware of the events in real time.

So HTTP clearly cannot be used used and we need a protocol which is more suited for IoT.

 

Constrained Application Protocol (CoAP) is one such protocol which is designed for the constrained devices. The protocol extensively uses bit fields and mappings from strings to integers to reduce the number of bytes, moreover packets are easy to generate and can be parsed easily. It lets the clients get the updates in realtime by extending the HTTP request model and adding the ability to observe a resource.

 

CoRE, the group which designed the protocol has also defined mapping of CoAP with HTTP, this makes it easier to build proxies which will give access to CoAP resources via HTTP.

Read more…

The Online Trust Alliance (OTA) has been at the forefront of helping build consumer confidence in the technology products that have helped remake our day. So, it was no surprise it moved to create a set of guidelines around the products and services that are part of the Internet of Things (IoT).

That framework took another step forward this month when the OTA released its Trust Framework of 30 recommendations for consumer-facing IoT companies seeking to build out this network of connected devices.

At first blush, the list of recommendations seems complete, but a longer look suggest is may be both too long and not long enough.

Too long because any list of 30 “must-haves” becomes more a barrier to entry than a glide path to market share. Too short because the biggest danger to consumer privacy, security and trust is a product no longer supported by a company that has moved on or shut down.

Too long? Rather than seek to create a granular set of prescriptive recommendations, it would be better to focus on a shorter and more effective set of requirements. I count five: encryption, authentication, fault tolerance, security and user control to review, change or delete. The ability to easily integrate and interoperate might be a sixth, but the market for consumer IoT is not so mature as to make that necessary – just yet. 

Too short? The biggest dangers to consumers are IoT products no longer supported, either because it didn’t gain traction or the company has ceased to operate. It does not take long for a technology product to develop security holes if upgrades are not made. These holes are the source of the greatest vulnerability for the growth of the IoT market.

The OTA framework doesn’t answer all the questions raised by the expansion of the IoT, but it ought to be a real conversation starter – both for consumers and industry.

Read more…

TSN: The time is now

The Evolving Time Sensitive Networking Standard for the Industrial IoT

As awareness surrounding IoT standardization continues to grow, more eyes are being drawn to interoperability and network infrastructure solutions, including Time Sensitive Networking (TSN). A standard from the IEEE 802 committee, TSN looks to solve the need to process raw data in a time critical fashion in addition to reducing latency and increasing robustness. To support new capabilities of IoT-enabled infrastructure, designers, engineers, and end-users need to rely on time synchronized and reliable networking.

Formerly known as Audio Video Bridging (AVB), TSN soon shifted its name as industrial companies realized the advantages for time sensitive applications in their space. Standard Ethernet continues to expand its range, functionality and applications with the evolution of the AVB standard into TSN. The new capabilities of TSN provide the Industrial community with the ability to use standard Ethernet to support highly reliable and precise synchronized networking appropriate for industrial control. 

The AVnu Alliance, an industry consortium driving open, standards-based deterministic networking, in addition to advancements made to TSN, are working with member companies like Cisco, General Electric, National Instruments and more to drive this next-generation standard and create an interoperable ecosystem through certification. Members are working within the Alliance to develop the foundational elements needed for industrial applications, based on the common elements of AVB/TSN.

“TSN promises through standard silicon to converge the previously disparate technologies needed for standard Ethernet communication, for deterministic high speed data transfer, and for high accuracy time synchronization. These developments will create a common foundation that will impact numerous applications and markets ranging from machine control and asset monitoring to test cells and vehicle control.  Key technology and equipment providers to the industrial market are supporting the effort. National Instruments is happy to collaborate within the solid ecosystem that AVnu Alliance is building,” said Mike Santori, Vice President, Product Marketing, National Instruments.

The TSN standard bids several benefits over today’s commonly used Ethernet protocols. For example, Ethernet derivatives used for industrial control today limit themselves to 100 MB of bandwidth and half-duplex communication while TSN offers much higher bandwidth options including 1 GB or 10 GM with a potential 400 GB in the future. As for security, TSN protects critical control traffic while simultaneously incorporating high-level IT security necessities. In addition to a more secure network, TSN also ensures reliable delivery of time-critical traffic and seamlessly integrates with existing applications as well as standard IT traffic to strengthen interoperability.

The Future Will Arrive on Time

The IEEE 802.1 Time-Sensitive Networking Task Group and the AVnu™ Alliance are hard at work to finalize the standards. Portions of the standard and working references from vendors will begin to appear in 2016. You can learn more about the details of this work at: http://www.ieee802.org and www.avnu.org.

As IIoT adoption continues, increased amounts of data and widely distributed networks will require new standards for sharing and transferring critical information. Just as an ambulance or fire engine receives priority among other traffic during an emergency, the TSN standard ensures that critical, time-sensitive data is delivered on time over standard network infrastructure. Welcome to life in the fast lane with the IIoT.

Read more…

IoT Central Company Spotlight - ThingWorx

What’s exciting about any new tech trend is that there is often a groundswell of start-ups out to create new products and services. Combine that with established companies also making investments and you have a dynamic new industry that is full of booms, busts and opportunity.

To help sort this out, we’re starting something new at IoT Central - the company spotlight. Up first is ThingWorx, a company that I keep coming across. The owners of ThingWorx is a PTC, a publicly listed company that employs nearly 6,000 people worldwide, serving more than 28,000 businesses and has approximately $1.3 billion in annual revenue. PTC has its roots in product lifecycle management and has recently taken on the IoT mantra.

Jim Heppelmann, CEO of PTC, said recently, "IoT gives us connectivity during the product's longest life cycle. First, things are products, which we could call the Internet of Products (IoP). Secondly, we want to serve these products better, and we can only do that by knowing what is going on. Lastly, we want to engineer products better. IoT really is PLM, putting the product at the centre of PLM. We are reinventing PLM."

Enter ThingWorx, which PTC acquired in December 2013. According to the company, ThingWorx is an IoT platform designed to build and run IoT applications, and enable customers to transform their products and services, innovate and unlock new business models. The idea behind the platform is to reduce the time, cost, and risk required to connect, manage, and develop applications for smart, connected products such as predictive maintenance, system monitoring, and usage-based product design requirements.

ThingWorx solutions include tools from Axeda, another PTC acquisition that allows developers to securely connect machines and sensors to the cloud.

So What Thing Works?

About ThingWorx

ThingWorx offers three products:

  • ThingWorx IoT Platform - provides a complete application design, runtime, and intelligence environment.

  • ThingWorx Machine Learning - brings advanced and predictive analytics capabilities for ThingWorx developers.

  • ThingWorx Marketplace - brings together hardware and software vendors with IoT app developers and solution providers within an online exchange.

ThingWorx IoT Platform is the flagship product and is composed of:

  • ThingWorx Composer:  An end-to-end application modeling environment for building applications. Allows you to model the things, business logic, visualization, data storage, collaboration, and security required for an IoT application.
  • Codeless Mashup Builder: A “drag and drop” solution to rapidly create rich, interactive IoT applications, real-time dashboards, collaborative workspaces and mobile interfaces without the need for coding.
  • Event-Driven Execution and 3D Storage Engine: To make business sense of the massive amounts of data from people, systems and connected “things.”
  • Search-Based Intelligence: This so-called SQUEAL (Search, Query, and Analysis) brings search to the world of connected devices and distributed data.
  • Dynamic Collaboration: This sounds like Slack for PLM and IoT. It’s a module that virtually brings together people, systems, and connected equipment and utilizes live collaboration sessions.
  • Business Process Management: Enables automation and orchestration of events, processes and communication across physical things, business systems and people.
  • Thing Management: A portfolio of standard and advanced capabilities to monitor, interact with and update connected things.
  • Digital-Physical Integration Hub: Provides an integration framework for both physical and digital information.  
  • Administration: A console for role based access for business and system administrators and developers.

If you have any experience with ThingWorx, feel free to leave a comment. Also, if you have any suggestions for future spotlights, please comment and I’ll add it to my queue. We’d love to hear from you. 

Read more…

The Internet of Things encompasses a wide range of connected services, technologies, and hardware devices. Yet, for consumers, it is the growing number of portable and wearable devices that will be their main interface with IOT tech. The wearable device market is rapidly evolving, especially when it comes to smart watches and fitness monitoring devices.

As opportunities grow, the wearables dominating the market are also changing. What does this mean for those involved in the development, marketing, and sales of these IOT connected devices?

 How Big is the Wearable Market in 2015?

International Data Corporation (IDC) has predicted that wearable device shipments in 2015 will rise to 173% of the total sales achieved in the previous financial year. This translates to over 72 million devices, including smartwatches and health trackers. This growth has been largely driven by high profile releases such as the Apple Watch in April of 2015, and also by widely publicized financial opportunities, Fitbit’s recent IPO being a prime example.

With the potential to move over 72 million units across the market, it is no surprise that leading technology companies like LG, Samsung, Sony, Microsoft, Apple, and Motorola are starting to increase their focus on wearable technology.

When we look closer at the marketplace, we see a strong mix of upstart companies and traditional players, with Fitbit, Garmin, and Xiaomi all new entrants. This blend of "old" technology giants and very new companies is promising - the marketplace is growing rapidly, and opportunity actually exists.

Future growth will be an incentive for further investment. IDC figures suggest that by 2019, global sales of wearables could exceed 150 million units. The market is open completely, with any company able to take a device to market open to growth.

Do these figures mean success for all involved in the wearable market? Not entirely.

Challenges for Businesses to Adapt

Although the overall market has grown, recent trends show that wearable fitness devices are losing out to increased smartwatch sales. Gartner’s latest research suggests that the dip could largely be associated with the increasing crossover in functionality between fitness devices and the latest smartwatches. 50 percent of those seeking a fitness wearable will end up choosing a smartwatch instead, and brands do not necessarily know why this shift is happening.

I think that one feature overlap is contributing to this. Fitness devices chiefly collect information relating to distance covered, physical location, and heath, including heart rate. Nearly every smartwatch on the market today can do all of this, and more. For a savvy consumer, combining a Samsung Galaxy Gear smartwatch with a high-end Galaxy Note 4 or Galaxy S6 would provide GPS tracking, information on calories burnt, heart rate monitoring, and even blood oxygen levels. The technology is advancing year on year, and it is clear that the innovation gap is already closing.

There are two consequences I see with this lack of clear differentiation. The first is that fitness-focused products need to innovate or die. With the market contracting by supporting multi-feature devices over purpose-built tools, the new goal should be for innovation to differentiate. Put simply, the fitness trackers of the world need to do something that smartwatches cannot.

The second consequence is that companies like Fitbit and Nike, which are focused on fitness tracking, will need to lower prices to compete with integrated smartwatches. When a consumer is faced with a $120 fitness tracker and a $200 smartwatch with phone connectivity, alerts, and apps, the choice becomes very one-sided. Yet, the bottom of the market, and the sector more likely to actually increase sales of purpose-built trackers, is relatively unsaturated. 

Fitbit, Jawbone, and Nike make up 97% of the wearable fitness device market. In smartwatch territory, it is Samsung and Apple that lead the market. Looking at one of the least expensive fitness trackers, Fitbit's Zip, we see a $60 base price point. Even at this level, the casual user has to pause and think - their phone already does much or all of what the Zip does, and a waterproof fitness case is cheaper. Fitbit, in this case, needs either to more fundamentally differentiate or drop its pricepoint.

Where is the Money in Wearables?

Even with staggering sales numbers, wearables are not in themselves a key revenue stream. Instead, it is the associated value that provides the biggest benefit to manufacturers.

Smartwatches, in particular, are seen as accessories. They are paired to smartphones and in turn can help to drive sales. They are also showpiece items. Even if Samsung, Apple, Sony etc. only manage to sell wearable technology to 10% of their smartphone customers (a speculative number), they will generate brand marketability, and logically would experience knock-on sales.

When it comes to companies like Nike, Fitbit, and Jawbone, the profit can come from connected services. Examples include subscription based exercise plans, analytics software, and in the case of Nike, a wearable can lead to increased apparel sales.

Still, there is an incredible gap for new entrants to the market. Apple and Samsung can rely on a massive pool of existing customers, and directly integrate their offerings into that group. Fitbit cannot, with no "hub" devices on the market. Even subscription-based models cannot make up for the gap. This makes the marketplace incredibly hard to predict going forward - nothing prevents a company like Samsung from releasing another mid-range watch and completely dividing the market. 

As with all IOT technology, the wearable device is only one part of the experience, and therefore only one part of the business model. It is the way in which data is collected, analyzed, and presented that provides the true value of any smart device. Smartwatches already have an advantage because they are highly integrated into their respective smartphone operating systems. Wearable fitness device companies have the opportunity to provide fitness tracking as a service, and must find new ways to monetize the service to generate direct revenue on top of initial hardware sales.

What does the Future Hold For Wearable Technology?

Over a billion smartphones were sold around the world in 2014. Global wearable sales make up less than 10% of that number. The challenge for manufacturers is to develop wearables that easily integrate with daily life that also are something that consumers want to use on a daily basis.

While wearables are high in consumer mindshare, they are relatively low in actual penetration. Smartwatches are now able to integrate a fitness device with a smart device in a way that is both compelling and practical, but is it enough? Those in the industry will need the best ideas, the best strategies, and the best talent to ensure that in-demand products are developed in line with business goals, and that they result in strong financial growth.

 

When considering how to hire leadership for the emerging Internet of Things market, keeping these consideration in mind is critical.I can help guide your choices, find the best candidates, and bring IoT experience to your company. Contact me today for a consultation.

Read more…

Do You Believe the Hype?

I’m guilty of hype.

As a communications consultant toiling away at public relations, media relations and corporate communications, I’ve had my fair share of businesses and products that I’ve helped get more attention than it probably deserved. Indeed, when it comes to over-hyping anything, it’s guys like me and my friends in the media who often take it too far.

Recently though, I came across an unlikely source of hype - the McKinsey Global Institute.

In a June 2015 report that I’m now reading, McKinsey states, “The Internet of Things—digitizing the physical world—has received enormous attention. In this research, the McKinsey Global Institute set to look beyond the hype to understand exactly how IoT technology can create real economic value. Our central finding is that the hype may actually understate the full potential of the Internet of Things…” (emphasis is mine).

If McKinsey is hyping something, should we believe it?

Their report, “The Internet of Things: Mapping the Value Beyond the Hype”, does point out that “capturing the maximum benefits will require an understanding of where real value can be created and successfully addressing a set of systems issues, including interoperability.”

I think this is where the race is today - finding the platforms for interoperability, compiling data sources, building security into the system and developing the apps that deliver true value. We have a long way to go, but investment and innovation is only growing.

If done right the hype just may be understated. McKinsey finds that IoT has a total potential economic impact of $3.9 trillion to $11.1 trillion a year by 2025. They state with consumer surplus, this would be equivalent to about 11 percent of the world economy!

Do you believe the hype?

 

Read more…

List of IoT Platforms

IoT platforms make the developer’s life easier by offering some independent functionality which can be used by the applications they write to achieve their objective. Saving them from the task of reinventing the wheel. Given here is a list of useful IoT platforms.

 

Kaa

Kaa is a flexible open source platform licenced under Apache 2.0 for building, managing, and integrating connected software in IoT. Kaa’s “data schema” definition language provides a universal level of abstraction to achieve cross-vendor product interoperability. Kaa supports multiple client platforms by offering endpoint SDKs in various programming languages. In addition, Kaa’s powerful back-end functionality greatly speeds up product development, allowing vendors to concentrate on maximizing their product’s unique value to the consumer.

 

Axeda

The Axeda Platform is a complete M2M and IoT data integration and application development platform with infrastructure delivered as a cloud-based service.

 

Arrayent

The Arrayent Connect Platform is an IoT platform that helps to connect products to smartphones and web applications. It comes with an an agent which helps the embedded devices to connect to cloud, A cloud based IoT operating system, A mobile framework and a business intelligence reporting system

 

Carriots

Carriots is a Platform as a Service (PaaS) designed for Internet of Things (IoT) and Machine to Machine (M2M) projects. It provides tools to Collect & store data from devices, SDK to build powerful applications, deploy and scale from tiny prototypes to thousands of devices

 

Xively

Xively offers an enterprise IoT platform which helps in connecting products and users, manage the information and an interface to for product deployment and health check

 

ThingSpeak

ThingSpeak is an open source Internet of Things application and API to store and retrieve data from things using the HTTP protocol over the Internet or via a Local Area Network. ThingSpeak enables the creation of sensor logging applications, location tracking applications, and a social network of things with status updates

 

The Intel® IoT Platform

The Intel® IoT Platform is an end-to-end reference model and family of products from Intel, that works with third party solutions to provide a foundation for seamlessly and securely connecting devices, delivering trusted data to the cloud, and delivering value through analytics.

A votable & rankable list of these platform can be found at Vozag

 
Read more…
RSS
Email me when there are new items in this category –

IoT Open Discussion Forums

Upcoming IoT Events

More IoT News

How wearables can improve healthcare | TECH(talk)

Wearable tech can help users track their fitness goals, but these devices can also give wearers ownership of their electronic health records. TECH(talk)'s Juliet Beauchamp and Computerworld's Lucas Mearian take a look at how wearable health tech can… Continue

IoT Career Opportunities