Subscribe to our Newsletter | To Post On IoT Central, Click here


Industrial automation and the launch of Industry 4.0

Industrial automation and the launch of Industry 4.0

The automation of industry is steadily advancing into a new era – the fourth industrial revolution (4IR or Industry 4.0), where all things from machines and devices to people and systems will be digitally connected. Industry 4.0 technologies such as the internet of things (IoT), 5G, artificial intelligence (AI) and machine learning will enable industries to better manage their processes, improve efficiencies and boost their productivity. For many, the objectives for implementing 4IR technologies include greater control and predictability of production quality, improved safety and lower costs. Industry 4.0 also adds flexibility to an organization’s operations, enabling them to rapidly respond to shifts in consumer demand. To achieve these objectives cost-efficiently, however, requires taking a platform approach to digital transformation that is as much organizational as technological.

Industries that have been digitalized for decades, such as finance and online retail, treat IT and its infrastructure strategically — as crucial to their competitiveness. Amazon and Alibaba, the world’s two largest online retailers, for example, have invested hugely in their digital technology platforms. Ironically, Amazon’s AWS cloud business is currently its most profitable business, although it was originally only a platform for enabling its retail side. And these are not isolated examples of the importance of technology platforms in the digital era.

In industries where physical assets lie at the heart of operations, digitalization has been a slower and more complicated process. In these industries, Operational Technology (OT) organizations typically manage a wide range of production and logistics equipment — from manufacturing and assembly equipment to quality control and monitoring systems, to various hand-held devices/tools and material handling systems.

Legacy communications technologies and control protocols still prevail for these physical assets — with each supplier implementing their own customized versions of industry standards. That is why digital adoption has been slow; there are multiple layers of communication technologies and control protocols that create data siloes where exchanging of information between them is limited. This makes it difficult for operations to obtain a complete and accurate view of their production facilities.

As manufacturing and other industries are moving toward Industry 4.0, it’s becoming more apparent that this legacy communications architecture must change. Unfortunately, according to 451 Research, only 34% of industrial companies have a formal strategy to actively digitalize their business processes and assets — 10 percentage points less than non-industrial organizations. In order to fully move into an Industry 4.0 era, industrial-focused organizations are beginning to link OT with IT, embrace emerging technologies and build out digital platforms that can securely support new applications and use cases as they develop.

The building blocks of an Industry 4.0 platform include industrial IoT (IIoT), cloud, edge computing (MEC), AI and machine learning, digital twins and wireless communications — LTE/4G today, and 5G tomorrow.

IIoT systems connect all the physical assets with the digital platform. IIoT produces digital data that can be collected, integrated and analyzed across operations. Cloud computing enables organizations to quickly scale out resources for storing and processing the new, large volumes of data generated by IIoT. Edge computing, or edge clouds, distribute those parts of the processing that need to be closer to IIoT sensors and machinery for more rapid and precise response to sensor input; which is critical for automation. And as data security becomes an increasingly important part of operations, edge computing will enable critical processing data to remain within the facility premises, thereby protecting its integrity.

The sheer volume and complexity of IIoT data would be overwhelming without AI and machine learning (ML), which filter and process the data to look for actionable patterns. As a result, AI and ML create digital twins; essentially, digital models of the “virtual state” of a physical device, process or system. Leveraging the immense computing power of the cloud, digital twin technology enables these virtual representations to be used to provide predictive maintenance, conduct product or process simulations in order to optimize industrial processes before they are deployed, and in worker training to speed up competency. As a result, digital twins are the foundation component of Industry 4.0.

Given the key role that data plays in industrial automation, it’s clear why the communications network is vital as well. Unfortunately, however, the disparate communications technologies currently in use in many industries cannot provide the digital platform unification that’s required. This is where OT is learning from IT.

Because the platform has to be based on the current digital communications standard — IP — multiservice IP/MPLS networks are helping to accommodate the older communications technology use cases. Cabled networks, such as Ethernet, will still play a role, but linking hundreds of IIoT sensors, as well as mobile robots and vehicles, requires industrial-strength, next-generation wireless. And office wireless technologies, such as Wi-Fi, are not up to manufacturing performance requirements in terms of coverage, capacity, latency or security. As a result, digitally transforming organizations moving toward Industry 4.0 are leveraging IP-based LTE/4G to cover the vast majority of today’s requirements. Moving forward, 5G, with its improved performance beyond LTE, will be able to support many new use cases and applications as Industry 4.0 adoption accelerates.

For those organizations that are already investing in IIoT and cloud platforms, the importance of their communications network to enable industrial automation and the digital transformation of their facilities can’t overlook or under-estimated. To ensure that no site, employee, or system is left behind, organizations in industrial-focused fields must also think strategically about their communications platform.

Over the last few decades, productivity growth for some industrial sectors has lagged behind others where digital technologies have been widely adopted. One of the key lessons that asset-intensive industries can learn from these more progressive “digital” businesses is in the power of digital platforms to remain competitive in a fast-changing world.

 

E-mail me when people leave their comments –

David E. Nowoswiat is a Sr. Product and Solutions Marketing Manager with over 25 years of telecom industry experience in both wireless and wireline technologies. He is currently in Nokia’s IP and Optical Business Group supporting cloud and 5G next generation packet core Marketing. He holds a Bachelor in Industrial Engineering degree from the Georgia Institute of Technology and a Masters in Business Administration from Northeastern University. His interests include: sports, physical fitness (marathons) and craft beer.

You need to be a member of IoT Central to add comments!

Join IoT Central

Upcoming IoT Events

More IoT News

How wireless charging works

Wireless charging technology has been around for over 100 years, but it has only recently found mainstream practical use for powering electronic devices like smartphones. Learn how this technology works and what advancements we may see in the future.

IoT Career Opportunities