Subscribe to our Newsletter | To Post On IoT Central, Click here


As we move towards widespread deployment of sensor-based technologies, three issues come to the fore: (1) many of the these applications will need machine learning to be localized and personalized, (2) machine learning needs to be simplified and automated, and (3) machine learning needs to be hardware-based. 

Beginning of the era of personalization of machine learning

Imagine a complex plant or machinery being equipped with all kinds of sensors to monitor and control its performance and to predict potential points of failure. Such plants can range from an oil rig out in the ocean to an automated production line. Or such complex plants can be human beings, perhaps millions of them, who are being monitored with a variety of devices in a hospital or at home. Although we can use some standard models to monitor and compare performance of these physical systems, it would make more sense to either rebuild these models from scratch or adjust them to individual situations. This would be similar to what we do in economics. Although we might have some standard models to predict GDP and other economic variables, we would need to adjust each one of them to individual countries or regions to take into account their individual differences. The same principle of adjustment to individual situations would apply to physical systems that are sensor-based. And, similar to adjusting or rebuilding models of various economic phenomena, the millions of sensor-based models of our physical systems would have to be adjusted or rebuilt to account for differences in plant behavior. We are, therefore, entering an era of personalization of machine learning at a scale that we have never imagined before. The scenario is scary because we wouldn’t have the resources to pay attention to these millions of individual models. Cisco projects 50 billion devices to be connected by 2020 and the global IoT market size to be over $14 trillion by 2022 [1, 2].

 

The need for simplification and automation of machine learning technologies 

If this scenario of widespread deployment of personalized machine learning is to play out, we absolutely need automation of machine learning to the extent that requires less expert assistance. Machine learning cannot continue to depend on high levels of professional expertise.  It has to be simplified to be similar to automobiles and spreadsheets where some basic training at a high school can certify one to use these tools. Once we simplify the usage of machine learning tools, it would lead to widespread deployment and usage of sensor-based technologies that also use machine learning and would create plenty of new jobs worldwide. Thus, simplification and automation of machine learning technologies is critical to the economics of deployment and usage of sensor-based systems. It should also open the door to many new kinds of devices and technologies.

 

The need for hardware-based localized machine learning for "anytime, anywhere" deployment and usage 

Although we talk about the Internet of Things, it would simply be too expensive to transmit all of the sensor-based data to a cloud-based platform for analysis and interpretation. It would make sense to process most of the data locally. Many experts predict that, in the future, about 60% of the data would be processed at the local level, in local networks - most of it may simply be discarded after processing and only some stored locally. There is a name for this kind of local processing – it’s called “edge computing” [3].

The main characteristics of data generated by these sensor-based systems are: high-velocity, high volume, high-dimensional and streaming. There are not many machine learning technologies that can learn in such an environment other than hardware-based neural network learning systems. The advantages of neural network systems are: (1) learning involves simple computations, (2) learning can take advantage of massively parallel brain-like computations, (3) they can learn from all of the data instead of samples of data, (4) scalability issues are non-existent, and (4) implementations on massively parallel hardware can provide real-time predictions in micro seconds. Thus, massively parallel neural network hardware can be particularly useful with high velocity streaming data in these sensor-based systems. Researchers at Arizona State University, in particular, are working on such a technology and it is available for licensing [4].

 

Conclusions

Hardware-based localized learning and monitoring will not only reduce the volume of Internet traffic and its cost, it will also reduce (or even eliminate) the dependence on a single control center, such as the cloud, for decision-making and control. Localized learning and monitoring will allow for distributed decision-making and control of machinery and equipment in IoT.

We are gradually moving to an era where machine learning can be deployed on an “anytime, anywhere” basis even when there is no access to a network and/or a cloud facility.

 

References

  1. Gartner (2013). "Forecast: The Internet of Things, Worldwide, 2013."

         https://www.gartner.com/doc/2625419/forecast-internet-things-worldwide-

     2. 10 Predictions for the Future of the Internet of Things

     3. Edge Computing

     4. Neural Networks for Large Scale Machine Learning

 

Email me when people comment –

Asim Roy, Ph.D. is a Professor of Information Systems at Arizona State University. More at www.lifeboat.com/ex/bios.asim.roy

You need to be a member of IoT Central to add comments!

Join IoT Central

Comments

  • Interesting counter-trend, with respect to the expansion of cloud services for big data. Somewhat expected that smart-sensors need to yield some "intelligence" locally rather than clog some far system with tons of  'signals' that need remote processing, before being bounced back where their informative content is needed (cars, factories, large stores maybe).

This reply was deleted.

Upcoming IoT Events

More IoT News

IoT Career Opportunities