Subscribe to our Newsletter | To Post On IoT Central, Click here


Featured Posts (592)

Blockchain and IoT: are they a perfect match?

As IoT becomes more prevalent, more CIOs are asked to take the reins of IoT projects. Gartner recently found that just under a third of responding organizations expected their CIO would lead their IoT efforts, and that by 2020, more than 10% of IoT projects in traditional industries would be headed by the CIO.

This prompted Jenny Beresford, research director, to caution: ‘The IoT will expand rapidly and extensively, continually surfacing novel and unforeseen opportunities and threats.’

Among those threats — which will definitely be CIOs’ responsibility — is the woeful security of traditional IoT and IIoT networks, as well as the privacy, connectivity and transaction speed issues that frequently plague IoT implementation.

To be maximally effective such a network must somehow be both highly connected and highly secure, and currently only one technology — blockchain — can achieve this.

However, obstacles remain, including the lack of an IoT-friendly blockchain consensus protocol.

Network Security and Data Exchange

IoT and IIoT networks typically lack physical security, host-based defences, and software updates and patches. These networks typically also use less-secure wifi protocols, web apps and APIs, combining larger-than-usual attack surface with weaker-than-usual security while retaining single points of control and failure.

In IoT, hackers see a new prize: gigantic botnets which can be used to spread malware, as with the Mirai botnet. And in IIoT, the rewards of network penetration can be industrial sabotage, espionage or large-scale blackmail, like Florida’s Riviera Beach.

Yet, companies cannot afford to hold off indefinitely on deploying IoT technology, since doing so exposes the organization to risk of being outmanoeuvred by competitors. Blockchain offers CIOs a way to deliver their IoT projects with the inherent security issues of large, distributed networks essentially solved.

Blockchain for IoT inherently eliminates single points of control and failure while simultaneously offering modular encryption and auditable transaction logs, so security issues are isolated, easy to identify and cannot spread through the network. Even if they do, they can’t gain control of it.

Transaction Processing

Machine-to-machine (M2M) communications generate gigantic amounts of data in transit — and the number of connected devices is growing rapidly:

3636380048?profile=RESIZE_710x

With centralized control, much of the processing power of these devices is lost to idling, while trust issues keep transaction costs high. CIOs find themselves in the position of paying for computational capacity they can’t use, and for traditional data centers that represent a ‘honeypot’ for attackers and a bottleneck for their networks.

Peer-to-peer communication across connected devices would enable dynamic transaction load balancing, enabling spare computing power to be identified and employed and potentially eliminating centralized data storage.

To do this successfully, IoT will need to become trustless as well as peer-to-peer. Blockchain offers a trustless peer-to-peer communication and transaction medium with secure, unforgeable and auditable transaction logs; smart contracts can be used to set policies, control and monitor access rights and execute actions autonomously based on pre-defined conditions.

Privacy and Autonomy

IoT systems built on traditional networks cannot prevent access by governments, service providers or criminal actors. With weak security and single points of control, trust on these networks is impossible to guarantee.

IoT and IIoT both require connectivity and modular security. The current solution, ‘security through obscurity,’ must be replaced by a systemic shift to open-source systems that achieve ‘security through transparency’ and are far less vulnerable to sophisticated, persistent institutional attacks.

Without this shift, both consumer and industrial networks will be increasingly vulnerable, and as the number of connected devices grows, radically lower-cost privacy and autonomy will be necessary to save the IoT.

IoT Connectivity Costs

In the current iteration of the IoT, costs are prohibitively high while revenues fail to meet expectations. Many existing IoT solutions are expensive because of the high infrastructure and maintenance costs associated with centralized cloud delivery and large server farms.

IoT devices violate the traditional pricing and revenue model of the IT industry too: device costs and incomes don’t line up, and maintenance costs consume substantial amounts of revenue. Inherent technical reasons make this unavoidable using the current model, but CEOs still don’t like hearing it from their CIOs.

Cost reduction

Blockchain technology allows reliable data to be pooled and shared without trust, directly among stakeholders. This allows for a significant cost reduction, eliminating intermediaries and allowing for automatic transactions and payments across devices using smart contracts.

Blockchain-IoT Integration Challenges: Lack of an IoT-centric consensus protocol

The current consensus protocols available for blockchains — PoW, PoS, PoET, and IOTA — are all designed for permissionless blockchains focusing on financial value transfer. PoS and PoET can also be used in permissioned blockchains, but their consensus is probabilistic and does not end in a permanently-committed block, resulting in an unacceptably high ‘hard fork’ rate.

PoET requires specialist hardware and the enclave allocating wait time is a trusted entity; it has also proven vulnerable to node compromise.

What’s needed is a consensus that can keep the benefits of the distributed, auditable, trustless environment blockchain provides, but deliver it in real time and at scale — without mining or excessing transaction costs, and without multiple hard forks.

Read more…
Embedded systems are maybe the most complex part of an integrated IoT solution. Looking at my company's experience I can say that most programmers that come to build IoT systems have to have additional experience if they want to work with hardware. Customers that want to hire IoT developers also need to have a basic understanding of what skills his future contractors must have.
Read more…

How PKI & Embedded Security Can Help Stop Aircraft Cyberattacks

 by August 27, 2019 by Alan Grau, VP of IoT, Embedded Systems, Sectigo

 

On July 30th, the U.S. Department of Homeland Security Cybersecurity and Infrastructure Agency (CISA) issued a security alert warning small aircraft owners about vulnerabilities that can be exploited to alter airplane telemetry. At risk to cyberattack, the aircraft’s Controller Area Network (CAN bus) connects the various avionics systems–control, navigation, sensing, monitoring, communication, and entertainment systems–that enable modern-day aircraft to safely operate. This includes the aircraft’s engine telemetry readings, compass and attitude data, airspeeds, and angle of attack; all of which could be hacked to provide false readings to pilots and automated computer systems that help fly the plane.

The CISA warning isn’t hypothetical, and the consequences of inaction could prove deadly. Airplane systems have already been compromised. In September 2016, a U.S. government official revealed that he and his team of IT experts had successfully remotely hacked into a Boeing 757 passenger plane as it sat on a New Jersey runway, and were able to take control of its flight functions. The year before, a hacker reportedly used vulnerabilities with the IFE (In Flight Entertainment) system to reportedly take control of flight functions, causing the airplane engines to climb.

InFlightLIStockImage.png
The Boeing 757 attack was performed using the In-Flight Entertainment Wi-Fi network.
 

A researcher with security analytics and automation provider Rapid7 wrote about the security of CAN Bus avionics systems in a recent blog and discussed the challenge at this year’s DEFCON security conference. He explained, "I think part of the reason [the avionics sector is lagging in network security when it comes to CAN bus] is its heavy reliance on the physical security of airplanes . . . Just as football helmets may actually raise the risk of brain injuries, the increased perceived physical security of aircraft may be paradoxically making them more vulnerable to cyberattack, not less."

A False Sense of [Physical Access] Security

The DHS CISA warning stated, "An attacker with physical access to the aircraft could attach a device to an avionics CAN bus that could be used to inject false data, resulting in incorrect readings in avionic equipment.” CISA fears that, if exploited, these vulnerabilities could provide false readings to pilots, and lead to crashes or other air incidents involving small aircraft. Attackers with CAN bus access could alter engine telemetry readings, compass and attitude data, altitude, and airspeeds. Serious stuff.

Not all of these attacks required physical access.

These risks should serve as a wake-up call to everyone in manufacturing. Any device, system, or organization that controls operation of a system is at risk, and the threats can originate from internal or external sources. It’s critical for OEMs, their supply chains, and enterprises to include security and identity management at the device level and continually fortify their security capabilities to close vulnerabilities.

Security Solutions for Avionics Devices

Today’s airplanes have dozens of connected subsystems transmitting critical telemetry and control data to each other. Currently, tier-one suppliers and OEMs in aviation have failed to broadly implement security technologies such as secure boot, secure communication and embedded firewalls on their devices, leaving them vulnerable to hacking. While OEMs have begun to address these issues, there is much more to be done.

Sectigo offers solutions so that OEMs, their supply chains, and enterprises can take full advantage of PKI and embedded security technology for connected devices. Our industry-first end-to-end IoT Platform, made possible through the acquisition of Icon Labs, a provider of security solutions for embedded OEMs and IoT device manufacturers, can be used to issue and renew certificates using a single trust model that’s interoperable with any issuance model and across all supported devices, operating systems (OS), protocols, and chipsets.

Much like the automotive industry, the aviation sector has a very complex supply chain, and implementing private PKI and embedded security introduces interoperability challenges. With leading avionics manufacturers introducing hundreds of SKUs per year, maintaining hundreds of different secure boots within a single aircraft is complex, cumbersome, and ultimately untenable. Using a single homogenous secure boot implementation greatly simplifies the model.

Purpose-built PKI for IoT, such as the Sectigo IoT Manager, enables strong authentication and secure communication between devices within the airframe. Using PKI-based authentication prevents communication from unauthorized components or devices and will eliminate a broad set of attacks.

Embedded firewall technology provides an additional, critical security layer for these systems. This is particularly relevant for attacks such as the Boeing 757 attack via the airline Infotainment Wi-Fi Network. An embedded firewall provides support for filtering rules to prevent access from the Wi-Fi network to the control network.

Icon Labs embedded firewall has been has deployed in airline and automotive systems to address attacks such as these. In both instances, our embedded firewall sits on a gateway device in the vehicle or airplane to prevent unauthorized access from external networks or devices into the control network, or from the Infotainment network to the control network. We continue to see interest in this area, indicating manufacturers are beginning to act.

From Cockpits to Control Towers

Securing connected devices in aviation is not limited to airplanes. The industry requires secure communication between everything on the tarmac, from cockpits and control towers to provisioning vehicles and safety personnel. For that reason, Sectigo provides an award-winning co-root of the AeroMACS consortium, which addresses all broadband communication at airports across the world and calls for security using PKI certificates to be deployed into airplanes, catering trucks, and everything else on the tarmac.

Future Proofing with Crypto Agility

It’s worth noting that aviation is also uniquely challenged by the tenure of its components. Unlike devices that are designed to last for months or years, airplanes are designed to last for decades. Advances in quantum computing, which many experts believe is just around the corner, threaten to make today’s cryptographic standards obsolete. Aeronautical suppliers need to be prepared for this coming “crypto-apocalypse” and to update the security on their devices in the field while the devices are in operation. Sectigo’s over-the-air update abilities provide the cryptographic agility to guard against this upcoming crypto-apocalypse (listen to the related Root Causes podcast).

The ecosystem has fast work to do. Manufacturers must secure the CAN buses in their existing, and future fleets – whether those planes idle on fenced tarmacs, or in airplane hangars. In the meantime, CISA counsels that aircraft owners restrict access to planes avionics' components "to the best of their abilities,” leaving passengers to hope security soon extends beyond their TSA experiences.

Read this blog online at https://sectigo.com/blog/how-pki-and-embedded-security-can-help-stop-aircraft-cyberattacks

Read more…

Having a smart home is all well and good until you become a victim of data leakage. 

This is not a discouragement against IoT implementation into your home, however. The Internet of Things market has been on the rise, and thanks to that, even our homes have become smarter. We don’t have to worry about doing our laundry, or making coffee manually anymore. With just a command we can do these things without having to move away from that comfy couch. 

Parks-Associates--Consumer-Trust-Smart-Home-Product-Purchase-Channels-645px.gif

But over the last couple of years, some incidents have shown that the matter of smart homes might not be all it’s hyped up to be. Just like everything, IoT implementation in smart homes has a bright and a dark side, but it seems the dark side is more sinister than the bright one. 

Incident one:

The combined research conducted by Northeastern University and Imperial College of London has shown how consumer devices are not to be trusted when dealing with client data. The researchers conducted 34,586 controlled experiments on 81 different IoT devices, 46 of which are from the US and 35 are from the UK, and this is what they found out-

  • 72 out of these 81 devices are connecting to services that are not the first party. Which means they are connecting domains and addresses that have no business connecting to the device. 
  • The research showed that 56% of the US devices and 83.8% of the UK devices were connecting to domains that were not in their region. 
  • The safety of the data on an online connection depends on the level of encryption, but here’s the kicker- according to the research, all the tested devices have at least one plain-text flow, which means at least one data flow from all the devices is non-encrypted. Not to mention, any cyber-evesdroppers can analyze device traffic, encrypted or not, and figure out the user and device behavior. 

But in any case, this is just research. What happens when a smart home management platform leaves a server with important user data exposed on the internet without any password or protection?

Incident Two:

Around mid-June, the security team at vpnMentor, lead by security researchers Noam Rotem and Ran Locar, spotted a completely exposed server containing the customer details of 2 million users, including their usernames, passwords, and password reset codes. 

The server in question belongs to a Chinese smart home management platform Orvibo. Their smart home management Smartmate helps users control every aspect of their smart home, from security to closing the curtains. 

Not only a smart-home management system, but Orvibo also deals in self-manufactured smart home products such as smart light bulbs, HVAC systems, home entertainment systems, security cameras, smart power plugs, and many more. 

The open server containing user information poses a huge threat to everyone who’s data has been exposed. Since the data breach being exposed, Orvibo has taken steps to secure the server. Even then, the data breach can have serious repercussions for the users. What are these repercussions though? Let’s find out what can happen to your data if it is leaked by your smart home device. 

What will happen if your data is breached?

When hearing about IoT and data breach, the user can have two kinds of reactions.

One group would panic, and probably stop using all kinds of smart devices. 

Another group would ask so what if their data is being breached? And this point is to answer the question for the latter group. 

There is a reason why smart home security is something to be concerned about. The personal and sensitive data, the users enter in order to run the devices, can be manipulated in various ways, and each one would only harm the users. 

So what are the ways hackers can manipulate the IoT devices and data that make your home smart?

1. Manipulating The Devices

The first thing you might do after getting a smart device for your home is to configure its username and password. 

However, this is not a widespread practice. Most people often end up using the same default username and password the device came with, which means that it’s going to be super easy for the hackers to get your data and gain access to your device. And from there on, it’s an open sandbox for them to play with. They can do whatever they want with your device, but there’s one guarantee- whatever they do is not going to do you any good. 

2. Holding Your Data And Device For Ransom

The ransomware attack is the most familiar in the IoT industry. Through this, what the hacker usually does is that they would gain access to an IoT device, and cut off the legitimate user’s access. Then they would ask for a ransom for restoring the user’s access to that device. 

While this may not seem to be as dangerous, it is a serious threat. Once the hackers have gained access to your data, they can use it for many malicious ends, things you don’t even have any idea about. And not to mention, there is no guarantee that they would give you back the access to your data once you pay them. And that’s why implementing some serious security protocols in place is needed to prevent your device and data from ransomware attacks. 

3. Doing Serious Damage To Your Home

This one might seem a little petty, but here we go anyways. 

Imagine having a smart thermostat, which you can control using online access. Now imagine going out on a vacation with your family, making sure that everything around the house is shut down, even the thermostat. However, when you get back, you see that the thermostat turned up to its highest setting on its own, melting every plastic thing in your house. 

But did it happen on its own? How are you going to find out whether it just happened or someone purposefully hacked into your smart home system and used the thermostat to seriously damage your home? Stealing the authorization details, hackers can do this for multiple reasons, ranging from personal vendetta to trivial entertainment because they were bored. Either way, it is your home that will be damaged. 

4. Actively Robbing Your Home

When details such as passwords and user IDs, along with device IDs are being sent to an unknown third-party domain without any encryption, the data can be used in many ways, and one of them can be to rob your home. 

Think about how a hacker-robber group can hack into the security system of your home, disable it and then walk into your home to steal everything from you. This is a bold use of smart home data breaches, and it can be quite fatal in case someone is home when they decided to hit the house. In this case, the loss of data security can result in serious loss of physical property as well. 

5. Launching A Botnet Attack

Last but not least, gaining access to your IoT smart home devices, the hackers can turn these devices into zombie devices and launch a botnet attack. A botnet is a number of internet-connected devices. Each of these devices is running one or more bots, which can be used to perform distributed denial-of-service attacks. 

Through this, the hackers can also steal important data, send spam emails, getting the attacker access to the device, this is not only going to create a problem for you but others as well. 

With a DDoS attack, the botnets can connect to a website, generating so much traffic that the website crashes, leaving them vulnerable for many data exploitations. Using your IoT device, the hackers can launch a similar botnet attack to that of the Mirai Botnet attack of 2016. The Mirai botnet attack brought down a french host OVH. and that’s how your smart home devices can be turned into a weapon to bring down popular websites around the world. 

What Is Going To Be The Solutions?

Every problem has a solution, and so does this one. 

There have been plenty of solutions suggested for the data security of IoT devices. But so far only two of these solutions stand out. One is the use of machine learning, another being Blockchain. 

The Machine Learning Solution For Smart Homes

Rather than looking for a security solution for each device, AI and machine learning can create a shield of security for all the IoT devices for your home network. Deep learning and machine learning can not only monitor each and every device connected to the network, but they can also detect and prevent any unwanted and unknown device trying to connect with the home network. 

The use of AI comes in handy when analyzing the network traffic. This way the AI can keep up with the general traffic flow of each of the devices and detect any anomalies in the normal flow of traffic. Which means fewer chances of any hackers getting inside your home network. You can check out these top 10 highly performing smart home apps making it big.

Along with these benefits, the use of Machine learning and deep learning can also detect botnet activity, manage device authentication and access management. This way they can manage to give your smart home network 360-degree security without worrying you. 

The Blockchain Solution To All Things Smart-homes

The main problem with the smart home network is the centralization of data, which could be easily hacked into. And that’s why Blockchain can provide a decentralized solution to this problem. 

Once the smart home IoT systems start utilizing the blockchain system for data communication, the security will increase tenfold, because it is close to impossible to hack into a blockchain network and change the data. To do so, the hacker would have to have control of 51% of the devices connected, and when the number of connected devices spans millions, it can be a little tough. 

Not to mention, blockchain in IoT will end the trend of data monopolization. Your data won’t be a subject of daily business deals with large conglomerates. Blockchain can bring affordability and security for smart homes that people have been asking for a long time.

Conclusion 

So does it mean you should not be using smart home technology?

The answer is no, absolutely not. It is undeniable that smart home technology has its own benefits and you should be able to take advantage of that. But only after you have made sure of your data security. Once you have made sure that all the devices you are using are secure. You can make use of IoT devices for your home as much as you want. Always remember that the security measures for your home IoT devices are not a matter of joke.

Read more…

More often than not, the budget and cost of ownership with a build-versus-buy aspect has been a key consideration in the decision-making process. Once after that, one goes out to seek the flexibility of the platform, vendor lock-ins, and scalability, which are definitely equally important, if not more.

The field, Internet of Things IoT, is one such domain which is driven by volume, velocity and variety. This makes you picky about the choices you make. Technologies continue to emerge and enable a myriad of IoT use cases. 

If you are thinking about selecting a platform partner for your IoT based project, there are a few criteria you need to consider before solid decision-making. 

Regulation of IoT devices

Today, in the present time, there are more devices connected to the internet than humans. This clearly shows the upward trend. Data says that, more than 75 billion internet based devices will be connected by the end of 2025. IoT has been adopted within multiple applications and is being used across industries or IIoT, enterprises--smart cities and waste management, healthcare, etc.

The overall adoption of IoT is providing companies the much-required agility, efficiency, and scalability. All combined together are providing a competitive advantage to businesses. Things are going North for IoT and vendors who provide a versatile IoT platform to help these companies get on the IoT bandwagon.

Taking the build vs buy decision

There are chances that things might get a little overwhelming if you fail to define your expected outcomes before choosing the right platform partner. Some of the pointers you should jot down are: What kind of data are you processing, which systems need to be integrated, and what kind of insights do you wish to generate? 

Asking the right questions can help you arrive at the right place, which is: whether to build or to buy? Think on critically evaluating various components separately, including device type, communication, cloud services, applications, and cross-layer security.

There can be some components which you may have to build from scratch and for others, it can be managed with the IoT solutions provider company. It depends entirely on the cost of ownership. Cost of ownership is the upfront fee to procure the platform, service fee, customization charges, and the cost of upgrades to adapt to dynamic business ecosystem. 

Is the platform scalable enough

The IoT vendor that you choose should be flexible when it comes to aligning its technologies with your legacy architecture. Make sure there are no limitations and that their technology should be easier to deploy without causing any delays. 

Many vendors will speak about flexibility but not all of them are equipped enough to offer it. The number of devices is increasing, due to that, you will definitely require a lot of customization and personalization. 

The vendor that you choose should be transparent about how extensible the platform is and whether there is adequate scope to add new features without hampering the existing system.

Is the platform capable enough to handle huge queries?

There is no doubt that the number of connected devices continues to grow, and will keep on going. This will pose the need for scalability more than ever. In fact, this might even become a prinary concern for most enterprises.. 

This will also mean that the costs that come associated with data management and hardware, will continue to rise with every added device. You need to keep the amount of scalability clear with the vendor. Ask them what is the highest they can offer.

Are they competent enough to handle complexities which more number of devices bring along. The  agility and ability of the vendor are of critical importance.

Do they offer real-time monitoring and data analytics

The ecosystem of data analytics is heavily crowded, and the right vendor at the right time can be all you need to break from the pack. There are four main things when it comes to IoT: things, data, people, and processes. 

With the help of networked connections, vendors are able to understand their relationships better and present insights that can take businesses to the next level. With real-time data and actionable insights, vendors can alert you about the issues that were not even there on your radar and help make more informed, intelligent decisions.

Conclusion

The entire arena of IoT is thriving, and is soon going to become the Internet of Everything. Working seamlessly with these connected smart devices can accelerate the businesses effectively. There are always pointers and directions one can follow, the final decision rests in your hand.

Read more…

We had gone from a time when the video call was deemed stuff of the future to being able to switch on appliances like refrigerators, air conditioners, microwaves, and more remotely, i.e. from wherever you are. The latter is the outcome of this nifty phenomenon called the Internet of Things. Moreover, while a lot of us may have been struggling to wrap their head around the fact that pretty much everything can be connected to everything, IoT has already evolved to give the world with what is now referred to as the Industrial Internet of Things, a.k.a. IIoT.

3473196100?profile=RESIZE_710x

Though, IIoT is fundamentally similar to IoT; the former is differentiated from the latter utilizing the targeted environment. As the name suggests, IIoT is meant for industrial purposes. Under the purview of IIoT, equipment, including all types of machines and sensors, are connected to the internet to communicate with each other. The data generated by the connected equipment is stored and processed to deliver a plethora of benefits to companies, such as improved management of the facility, predictive maintenance, and more. It also helps companies to leverage their EHS data in a substantially better manner. To help you understand the potential of this combination, we have compiled a list of the top benefits it delivers.

  1. Employee safety: With wearable devices, including personal protective equipment, have played a crucial role in transforming how companies ensure the safety of their employees. It is done in a million different ways, such as by detecting human presence far too near equipment, sounding alerts, and switching off the machine in question. It can also be used to identify abnormal levels of specific gases, chemicals, and more via sensors on employees’ person and prevent any untoward incident.
  2. Keep an eye on equipment: Unforeseen downtime for equipment can translate into massive losses for the company. Whereas for employees, it can mean a risk to their safety. In this context, IIoT collects data on all equipment in the facility, makes use of advanced analytics and machine learning to predict faults, if at all. In addition to that, the data thus gathered can also be used to monitor maintenance schedules and even predict if a particular piece of machinery may need an unscheduled service in the future.
  3. Environmental management: Industries make use of a variety of devices that serve to help them with their environmental management-related efforts. Case in point, continuous emissions monitoring systems — they keep an eye on the emission levels of things like particulate matter, dangerous organic compounds, and more to help businesses ensure compliance with emissions-related regulations with absolute ease.

The digital world has long proven that it is a potent sea of advanced technology-based tools that can bring on transformation in the blink of an eye. IIoT is a prime example of technology’s prowess. When combined with workplace health and safety management software, businesses substantially gain access to a robust tool that will assist their endeavors in the context of gathering, tracking, and processing data that will fortify their EHS efforts.

Read more…

IoT and CRM, the buzz words of the 21st century, are now a reality and would soon bring the great industrial revolution across the world. With the advancements in technology and the internet, it’s not only humans who are connected via the internet, but also the devices which are getting connected through this marvel technology.

 IoT(internet of things) as a game-changer is becoming a crucial technology in different industries and integrating innovative ways to bring success to an organization.

As per a report by Gartner, there will be around 20 billion IoT devices by 2020.

IoT and CRM

IoT is the connection of the devices via internet while CRM is the collection of customer’s data through data mining, giving useful insight into the customer behavior for segmenting the market and targeting the campaign effectively. With the empowerment by IoT, CRM helps to manage relationships with the customer and facilitates in achieving the goal of an organization.

As per another report by Gartner, CRM will be the heart of the digital initiatives for many years to come.

Who mainly benefits from CRM?

  • Small businesses looking for rapid growth: CRM can take off the burden from the IT management team by automating the business process. It further helps the employees to keep the focus on the critical areas which needs human intervention.
  • Top industry leaders looking for large scale solutions: It simplifies and improves the complex engagements with a customer. Some of the top-level executives like CEOs, CIOs, CMOs require advanced tools to streamline the business and technical process of an organization and with a wide range of CRM tools it can be scaled to meet the requirements of any organization.

It should be acknowledged that with IoT, CRM can evolve to a much developed and advanced version of the technology. The combination can help in making sense of the past enterprise data, and connecting it with the real-time data through the “devices.” The combined technology can help all the departments across the organization, be it sales, marketing, or customer service.

Find out some of the best results which businesses can achieve through this integration:

1. Optimized customer service:

Have you ever thought of, fixing the errors before the customer notices it!!!!

No product in the market is entirely error-free. For a marketer, it is a nightmare when a customer complains about their product and that too on a widely-used social media platform. It can hurt a company’s reputation as negative publicity spreads fast like the wildfire of Amazon. This scenario can be easily evaded with predictive analysis, and with the right integration of CRM and IoT. It helps to push away the major lapses, which can demotivate a customer in purchasing further services or products of the same brand.

 Majority of the manufacturers are already reaping the benefits of connecting their CRM with the IoT devices. As they are partly responsible if a product does not provide the service as per the expectations of a customer, they can make the product 100% efficient with the right collection of the customer data and the product specifications needed by the customer.

Customer service as one of the essential support to generate high revenue for the organization needs an advanced version of the technology, which helps to understand the customer with the right information.  IoT with CRM is a perfect guide in this circumstance as it is the right combination of technology and customer relationship management process of the organization.

 As businesses vie up for the same customer, the one providing the best and optimized customer service will be surely a winner in this race.

2. Increased sales:

The consumer market has evolved over the years, and customers are highly valuing service over others, before making the final decision. An efficient service, which involves providing precise solutions to the business challenges of the customers at the right time, significantly improvises the business process and increase sales.

An increasing number of organizations are leveraging IoT technology to increase sales opportunities.

3. Next-generation CX: Customer experience (CX) is the sum of the customer journey throughout the business cycle with your organization. IoT and CRM pave the path for the next-generation CX as the IoT related data which provide predictive analysis enables proactive support leading to some of the best customer experiences. By using customer information on the location, preference, status, and others, the problem can be predicted and resolved at the right time.

4. Omnichannel in-store experience: CRM and IoT can provide an immersive and omnichannel in-store experience. Store owners can know what the customer is looking for, what are his preferences, etc. It would also help in suggesting the products which the customer might purchase.

5. Customer retention: As CRM provides the complete customer data, it can help in better understanding of your customers. The IoT data and customer data build up a unique combination in streamlining the marketing approach and targeting the existing customer. The whole process helps to retain the existing customer, a challenge in the current market scenario.

What are the benefits of IoT and CRM integration?

It influences customer engagement to a great extent and provides:

  • A higher degree of personalization
  • Molding of the marketing process
  • Helping to change the prices as per the demand
  • Higher revenue and sales for the organization
  • Increased customer satisfaction

Conclusion:

 As an organization, one can discover advanced ways of connecting with the customers, when IoT and CRM are enabled to work together as a connected enterprise.

 IoT is the new channel which holds great promise for CRM. The small and mid-sized businesses, along with the large enterprises equally, could reap the benefits of this amalgamation. The interaction of the devices with intelligent systems opens up a complete new world for delivering personalized services and exceptional support.

Read more…

When Refrigerators Attack - How Cyber Criminals Infect Appliances, and How Manufacturers Can Stop Them

 

Alan Grau, VP of IoT, Embedded Systems, Sectigo

 

Homes and businesses worldwide are vulnerable to attacks from cyber thieves and other bad actors – and not just through their computer networks. The embedded electronics inside appliances present an easy path of entry. It’s already been happening. According to Business Insider and Proofpoint, one of the first refrigerator incidents occurred in late 2013 when a refrigerator-based botnet was used to attack businesses.

 

Some of these attacks, such as infecting appliances with botnet malware, don’t really have much effect upon a family’s security and safety. In fact, if a “smart” refrigerator gets infected by a bot, the homeowner might not even notice anything wrong.

 

However, connected-appliance based cyberattacks are not limited to just refrigerators – and they are rarely one-off incidents. Almost any type of appliance can be hacked and used to host a botnet that could attack the web. According to Wired Magazine, a botnet of compromised water heaters, space heaters, air conditioners and other big power consuming home appliances, could suddenly turn on simultaneously, creating an immense power draw that could cripple the country’s power grid.

 

A bot, quite simply, is an infected computer. Many cyberattacks, like the Mirai Malware and the Dyn attacks, infect a network of computers, including “smart” connected devices such as home appliances, security cameras, baby monitors, air conditioning/heating controls, televisions, etc., and turn them all into compromised servers. These compromised servers then act as nodes in an attack and together create a botnet. They can participate in a variety of coordinated attacks, infecting other devices and expanding the network of bots, or participating in Denial of Service attacks.

 3423923119?profile=RESIZE_710x

Caption: A bad actor or cyber criminal can send infected messages to a home or business network that targets various appliances or machines. Once infected, that machine is under the control of the bad actor and can be used to send out thousands of infected messages to new targets worldwide. The botnets can also send out millions of dummy messages to a single target – overwhelming it and putting it out of service. 

 

 

 

 

 

 

  

Without any apparent symptoms or notice, a criminally enhanced refrigerator could be generating and sending out thousands of attacks every minute. In addition to the homeowner or business manager never realizing what is going on, these attacks may be unstoppable until unless the machine itself is disconnected from its web connection.

 

Additionally, the infected refrigerator could spread malware from the kitchen to the home’s “smart” TVs, to the home’s computer networks, to other smart devices in the home, and even to connected smart phones. Every target could be transformed into malicious bots that distribute millions of infected spam messages and cyber-attacks.

 

So how do we combat this threat?

 

Unfortunately, end users really have no power to fix this problem. There is probably no way for a homeowner, office manager – or even an experienced refrigerator repair person – to talk to a refrigerator’s electronics. No way to get into the appliance’s software and middleware to identify and kill an infection. However, if the homeowner suspects an infection, they could disconnect the refrigerator from the its internet connection to make it “dumb” again.

 

3423925048?profile=RESIZE_710x

Fridge caught sending spam emails in botnet attack - In the first documented attack of its kind, the Internet of Things has been used as part of an attack that sent out over 750,000 spam emails

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is up to device manufacturers to protect against these attacks. 

 

So how do manufacturers combat this type of attack? How can they ensure that appliances in homes and offices do not get infected to cause mayhem?

 

Security starts in the design process for the refrigerator itself, as well as for the appliances’ various electronic components and control surfaces. Most appliance manufacturers get their control sub-assemblies from a wide network of smaller manufacturers, sometimes with a worldwide supply chain. These suppliers need to make sure that the chips and sub-assemblies they use are secure from hacks.

Two important security practices can be utilized by appliance makers:

 

  • Embedded Firewall with blacklist and whitelist support – Protect appliances and edge devices from attacks by building firewall technology directly into the appliance. An embedded firewall can review incoming messages from the web or over the home network and, via a built in, and regularly updated blacklist, reject any that are not previously approved.

 

  • Secure Remote Updates and Alerts – Validate that the firmware inside the device is authenticated and unmodified before permitting installation of any new firmware updates. Updates ensure the incoming software components have not been modified and are authenticated software downloads modules from the appliance manufacturer.

 

Most consumer and device manufacturers have heard about the potential for attacks on smart devices like door locks, baby monitors, and home thermostats, but this risk awareness needs to expand to types of connected systems – including appliances. An infected refrigerator sending out malware is not just a funny story. These systems have been attacked and used to spread malware.  Ensuring the security of these devices is necessary to protect home network, slow the spread of malware and even protect credit card numbers or other personal data stored in smart home devices.

 

# # #

 

EXTRA PROOF POINT FOR COLUMN

 

Refer to: https://www.cnet.com/news/fridge-caught-sending-spam-emails-in-botnet-attack/

 

 

 Author Bio - Alan Grau, VP of IoT, Embedded Solutions, Sectigo

 

Alan has 25 years of experience in telecommunications and the embedded software marketplace. He is VP of IoT, Embedded Solutions IoT at Sectigo, the world’s largest commercial Certificate Authority and provider of purpose-built, automated PKI solutions. Alan joined Sectigo in May 2019 as part of the company’s acquisition of Icon Labs, a leading provider of security software for IoT and embedded devices, where he was CTO and co-founder, as well as the architect of Icon Labs' award-winning Floodgate Firewall. He is a frequent industry speaker and blogger and holds multiple patents related to telecommunication and security.

 

Prior to founding Icon Labs, Alan worked for AT&T Bell Labs and Motorola.  He has an MS in computer science from Northwestern University.

 

About Sectigo

 

Sectigo provides award-winning, purpose-built and automated PKI management solutions to secure websites, connected devices, applications, and digital identities. As the largest commercial Certificate Authority, trusted by enterprises globally for more than 20 years, and more than 100 million SSL certificates issued in over 200 countries, Sectigo has the proven performance and experience to meet the growing needs of securing today’s digital landscape. For more information, visit www.sectigo.com.

 

Read more…

The Internet of Things promises a smart, fully-connected world where physical objects and services are interlinked to benefit society. According to a Statista report, by 2020 the number of IoT-enabled devices worldwide will reach 30.73 billion. From smart home appliances to connected medical devices to self-driving cars — we are moving full steam ahead towards the Internet of Everything.

But such ubiquitous connectivity raises many concerns regarding safety, and rightfully so. In October 2016, Mirai, arguably the most infamous IoT botnet, caused major disruptions and resulted in several high-profile Internet services inaccessible. 

With the continuously expanding IoT attack surface, the existing security practices often fall short. To address the new threat landscape, engineers harness the power of machine and deep learning to deliver robust, secure IoT solutions for a safer connected world.

Network traffic analysis

The sheer amount and diversity of IoT devices make it extremely difficult for network administrators to reliably monitor M2M and M2H interactions. Various network communication protocols — Bluetooth, Zigbee, WiFi, LoRaWAN, MQTT — add another layer of complexity.

To tackle the challenge at hand, researchers are leveraging machine learning to analyze IoT device traffic and establish legitimate behavioral profiles. Trained to recognize baseline behavior, ML algorithms can successfully detect any traffic anomalies and intrusions. Unsupervised learning goes further and detects even previously unseen attacks, helping to boost IoT security.

Botnet activity detection

The above mentioned Mirai botnet managed to infect over 600,000 IoT devices to pull off one of the largest DDoS attacks on record. The thing with IoT botnets is that they work silently, without compromising the infected device performance..

Traditional signature-based botnet detection methods prove ineffective as bots with slightly different signatures can go undetected. The same goes for zero-day attacks. Deep learning, in its turn, has the potential to improve botnet detection and enhance cybersecurity. As one of the options, researchers suggest using deep autoencoders — unsupervised neural networks — that can learn complex patterns and detect infected IoT devices with low false alarm rates.

IoT device authentication

Viewed as the first line of security, authentication ensures that users and devices can be trusted to be what they declare to be. In large IoT ecosystems with millions of connected devices, strong authentication becomes as important as it is challenging.

In addition to network heterogeneity and complexity, limited computational ability and power of IoT-enabled devices do not allow using traditional authentication techniques. Minimal storage capacity of embedded systems also contributes to the complexity.

Machine learning offers new capabilities in enforcing secure authentication and improving resistance to identity-based spoofing attacks. Recent researches demonstrated the success of deep learning-based RF fingerprinting for highly accurate IoT device identification based on RF emissions. 

IoT access management

Another pillar in IoT security, access control helps keep unauthorized users and devices away from protected network resources. Given the complexity of IoT ecosystems and enormous amounts of IoT-generated data, static, context-unaware access control rules cannot ensure adequate levels of protection.

Keeping in mind these limitations, a reinforcement learning model can be applied to dynamically optimize access control policy. The model continues to improve over time and takes into account multiple contexts that smart devices are used in. The authors also suggest leveraging blockchain technology to provide a distributed access control architecture that can be a better fit for a decentralized IoT environment.

Summing up

As the number of connected devices is growing at a breathtaking pace, IoT security remains top of mind for manufacturers, enterprises, and consumers alike. An IoT ecosystem is only as strong as its weakest link. Without proper security in place, an infected IoT device cannot only compromise thousands of others but give access to your personal information or participate in a massive DDoS attack. 

New security threats and vulnerabilities require new approaches, and machine learning lends itself well to the challenge. From detecting anomalous behavior of IoT devices to accurate fingerprinting to adapting access control policy, machine and deep learning help enhance IoT security.

Read more…

The way businesses are carried out today has changed at the fundamental level with IoT. By connecting sensors and devices with the internet, we have reached a new height of progress and innovation, which was not previously possible. This new height is all about data connectivity, analytics, and automation. In the coming times, we will see more of IoT enabled devices and systems getting common in our lives due to the traction gained in terms of home automation and industries. The industries which understand the potential of IoT implementation are more likely to flourish and drive innovation in the niche during the next decade.

What is IoT?

IoT stands for Internet of Things which can be called as a network of physical objects which communicate and interact with each other as well as their environment through an internet connection. This simply means that with more number of devices around us being connected over the internet, it will enable companies to control them remotely, collect more amounts of data as well as enable automation.

The effect of IoT has increased drastically across different industries today. The way IoT has revolutionized them and is playing a key role in its progress has to be well noted.

IoT in Manufacturing

The contribution of IoT in the manufacturing industry is very high and you can say that it is the one that enjoys the highest IoT investment. The investment is taking place at two levels. One is working towards cost reduction and optimizing systems called as inward facing and the other is towards improving customer usage called as outward facing. 

Manufacturers are making use of IoT to carry on predictive maintenance, optimize their processes and to monitor equipment. In order to enhance the productivity and efficiency of manufacturing operations, the use of IoT devices in terms of smart manufacturing is playing a huge role. Smart manufacturing is all about making the existing manufacturing equipment equipped with sensors. This may not be required with the new manufacturing equipment as they have such sensors pre-installed. 

Smart planning is all about offering the supply chain with the smart floor. Information can be captured in real-time and actionable insights can be put to use. Smart manufacturing is all about covering each and every area in manufacturing, which includes plant operations, inventory control product design, demand & supply management, etc. With smart manufacturing, manufacturers get complete visibility of the business which helps them to optimize the supply and demand chain while streamlining the business processes. 

IoT in Transportation

If we try to look into IoT investment, then you will find that IoT holds the second highest position in this arena. One of the best gifts that we have from IoT is self-driving cars. Some of the big names in the industry like Uber, BMW, Ford, GM, and Google have been heavily investing in this area to make use of innovative technologies to come up with self-driving cars. Such kind of self-driving cars will simplify transportation, reduce pollution and even save more lives by preventing accidents. 

More number of public transportation and freight vehicles is using sensors to optimize fuel consumption, schedule maintenance and fleet management. Even some of the vehicles come with digital data recorders which record driving under heavy acceleration so as to indicate the driver of any fatal accidents which might occur. 

IoT in Agriculture

By using IoT technologies, farming and agriculture have been able to make greater benefits. With the help of IoT device installations, the farmers are able to collect valuable data which reveals about their livestock and crops in a number of ways. They can survey land using drones and even measure the resources available on the farms. When all these things come together, it helps the farmers with a new way of carrying out things like precision farming. The role of IoT in agriculture and farming will increase significantly as the demand for food keeps on increasing. 

IoT impacting Healthcare

As per many experts, it has been said that the healthcare industry is going to be one of the main areas where spending on IoT will be considerably high. We already have a number of equipment which does things in a better way like share patient reports and images, helps with ICU management, real-time location systems, finding problems and troubleshooting and medicine dispensing. It is possible for IoT to streamline the data coming from medical service providers and send them back with the help of technologies like mobility solutions and wearables. 

When medical devices are connected with IoT sensors, the doctors will get right information delivered that too with reduced errors. This positively affects the quality of service and diagnosis process. The use of smart beds is also increasing across a number of hospitals. Such beds are capable of sensing the patient and adjusting it automatically so as to offer proper support. 

Improving patient care at homes is possible using IoT applications. Smart medication dispensers can notify the patient automatically when it is time to take the medicines and can also be used to upload the reports on the cloud platform for the doctors to check and make changes in the dose. 

IoT has proved itself and so it is going to stay here for a long time. The use of IoT across the healthcare industry will keep improving as they are looking for better ways to leverage technology so as to improve efficiency. With data sharing becoming simpler in the coming times, the use of IoT applications across the sector will grow too. 

IoT in Retail

What if one day you don’t have to worry about the shortage of supplies in your fridge? What if it can order the items on its own when the stock in the fridge starts to go low? The potential of IoT in the retail industry is high. It is time for us to face smart retailing. A smart supply chain which is based on IoT already exists. There are applications for automated delivery systems, real-time inventory management, product tracking, auto-billing, etc. and here, new trends are visible fast. 

With a smart retail store, it is possible to analyze and understand the shopping journey of the customers through footfalls. Earlier, businesses carried out long surveys to understand the market demands and this was an expensive affair. Now the use of foot-traffic monitoring has increased as a part of smart stores to analyze the areas where the customer is having a problem with finding goods and which are the best selling products. This way it will become possible to assign an executive to the customer so as to help with quick shopping. Based on store traffic monitoring, businesses can improve the in-store shopping experience. This way, by making use of mobile devices, retailers will have a better chance to engage customers and implement new digital marketing strategies. 

With the online marketplace growing exponentially, retailers are looking for ways to grab the attention of the customers and bring them to their stores. For the same, they need to get their hand on data and analytics, which can help them increase footfalls. Based on the data and analytics, IoT can help retailers make the right decisions. Keeping it short, retailers should focus on using IoT applications which can be used to serve the customers in an enhanced manner. 

IoT in Fintech

When we talk of fintech businesses or financial services organizations, their main concern is security. This is the reason why they depend on the network of visual sensors and cameras, which can offer them reliable facilities. When it comes to IoT deployment, the financial services organizations are quite good in numbers and even they are good at visual analytics adoption. Financial companies are going for mobile phones as their endpoint choice along with sensors and cameras. When it comes to IoT implementation, financial forms have many goals to achieve, but the main one is to have better connectivity for their networks as well as employ greater security for their services. 

IoT in Smart Homes & Buildings

IoT has greatly influenced the way we live and work. If we talk about living space, IoT has brought to light the concept of the smart home automation system. This system is all about different connected products which work towards making life more convenient, more comfortable and more pleasant. By using intelligent homes, it becomes possible for the homeowners to build up a pleasant environment within the four walls while working towards efficient energy management and enhanced security through proper customization. To build and monitor smart homes, a number of IoT technologies are available. 

Some of the leading consumer product manufacturing companies in the market are Philips, Haier, and Amazon. You can get news headlines to read to you while you are working, by asking Alexa, the voice assistant of Amazon Echo. 

A perfect example of a smart home design is Philips Hue. This bulb offers you 600 to 800 color lumens to choose from. It can change based on your mood. This product is compatible with other smart home platforms like Apple’s iPhone Home Kit and Amazon Echo. 

In the coming years, the number of smart home devices is going to go high. The smart appliances will includes washing machines, refrigerators, TV, dryers, etc. Then you have smart home energy equipment which provides for thermostats and smart lighting while smart home security systems which include cameras, sensors, alarm systems, etc. Saving energy and reduction in electricity costs can be seen as the major advantage of IoT implementation in smart home concept. 

IoT impact on energy

One of the early adopters of IoT is the utility industry. It is possible to make a better recording of energy consumption using smart meters. This will help the companies offering utility services to efficiently and accurately bill their customers based on consumption. 

Moreover, with the help of smart meters, it will become possible to track down and send back to the grid the amount of energy the users of green technologies consume. And based on that, credit them and pay some incentives as a part of encouraging them towards using environment-friendly options. 

Conclusion

If you are looking for the next level of automation, then IoT is the answer. In the coming time, IoT implementation will become more comfortable with the innovation of new technologies and it will make things faster and secure too. This makes life better at home, as well as at work. IoT is adding in more and more things to the digital environment and it is to make everything easy right from smart kitchen to smart offices, smart traffic to smart parking spaces.

Read more…

Let's be honest. Numerous individuals are resistant to technological changes in both their own lives and at the workplace. However, what they regularly need is the vision to perceive how the new technology they are opposing will improve their lives later on.

Blockchain has risen out to turn into the best game-changer for worldwide businesses. Upcoming and budding business people have understood the genuine capability of the blockchain. One of the most excited and discussed technology in the business world right now is Blockchain technology. More than 25 Industry sections have understood the genuine capability of this technology and keenly look forward to relating with the right technology partner.

Bitcoin, and the blockchain technology behind it, didn't disrupt the world as was at first idea when Satoshi Nakamoto published his invention in 2009. More recently, in any case, the blockchain has turned out to be one of the most generally discussed buzzwords, in the payment industry as well as over various industries. Truth be told, some accept that blockchain technology could eventually be more vital than the web.

Industries that are evolving Blockchain Technology

The first application of blockchain technology is digital cash like Bitcoin. The capability of blockchain technology lies in its versatility for a wide assortment of blockchain applications and use cases across many industries. Take a look at industries that blockchain is ready to disrupt:

1. Banking

Ironically banks are currently beginning to grasp blockchain technology, even though cryptocurrencies were first made to wipe out the reliance and trust on monetary intermediaries. Banks play an intermediary to a pack of financial services over the world, and blockchain technology banking will change the idea of numerous daily bank tasks throughout the following decade.

Blockchain technology in banking

By utilizing blockchain, transferring assets between two parties that are situated on opposite sides of the world work as though they were directly nearby to one another. Blockchain technology in banking could likewise help banks move currency inside their organizations. Banks could build up their own managed cryptocurrencies to replace traditional dollars.

2. Manufacturing

blockchain in manufacturing

The specialists expressed that the blockchain in the manufacturing business sector is anticipated to be worth around $30 million by 2020, and the market will keep on developing at a yearly development rate of 80 percent, to $566 million by 2025. Other real cryptographic money markets like Japan and South Korea have been empowering the development of blockchain in manufacturing technology and usage of decentralized systems across different businesses.

3. Industry Applications

blockchain industry applications

Since blockchain technology is encrypted and decentralized, it is in effect broadly investigated for building up such platforms to encourage distributed and business communications. Starting today, the tide of time is by all accounts for decentralized and encrypted messaging applications. For example, Telegram, one such encoded application for messaging, is settling the adoption of blockchain industry applications for different purposes.

4. Blockchain in Food Industry

blockchain technology in food industry

Imagine you could follow the source of your food like a minute or if you could check if the natural products you bought were really natural. This could really occur sooner rather than later, with blockchain technology set to make its debut in the food business.

Blockchain can help in many ways of view through:

Food safety: Blockchain helps in making the food supply chain transparent and furthermore engages the chain to know about any food safety disasters. This is one reason why associations like Unilever and Nestle are thinking about utilizing blockchain technology. By utilizing it, buyers would most likely follow the causes of specific products to prove their credibility.

Preventing Fraud: It would likewise help in preventing fraud if the information gathered is free of any human error. Actualizing blockchain would help in preventing these issues. It would likewise help in distinguishing the offender if a culprit is made.

Simpler and Quicker Payment: Blockchain would accelerate the payment procedure. It would help farmers in selling more and being repaid appropriately as the market information would be readily available. It could likewise prevent the occurrence of retroactive payments and price intimidation.

Read more…

The smart technology of IoT or Internet of Things is really changing the technological landscape from all aspects. It is a network of connected devices that work through exchanging data between each other through a cloud network.

IoT technology has had a deep impact on the world of technology and web development is one of them. You might ask how these two things are connected, well, as it turns out, IoT devices need to work with web development because it needs both a front-end and back-end development, and that is where web development comes in. in the past few years, IoT has changed the web development in a lot of ways. Here are a few examples of that. 

 

  • Continuous Website Optimization

Internet of Things is a constantly evolving sector and there is no possibility of this stopping soon. And that is why the web developers have to constantly keep on optimizing their websites to match the evolving nature of the website. This is the only true way to stay relevant in the industry of IoT.

 

  • Raising The Bar On The Expertise

IoT has definitely increased the bar on the expertise when it comes to the knowledge of coding and framework. IoT developers need better knowledge of web development languages and database management. 

This need for advanced knowledge has definitely raised the bar for the developers to enter the game. They can’t just start with web development with just JavaScript knowledge anymore. They need serious knowledge of coding today. That’s hiring a reliable web development company in NYC is a necessity. 

  • Speed Of Data Transaction

The traditional data process is through request analysis by web servers. But this process is not useful when it comes to IoT. for IoT devices, the data transaction speed is much higher and that is why the traditional process is replaced by the cloud data transmission process. This way the devices work faster by transmitting data faster.

 

  • Need For An Increase In Security

IoT devices are more prone to get hacked and manipulated by hackers. And that is why web developers have to up their security game. A normal security protocol for web development is not enough for IoT devices. They need stricter security design pattern for the connected device's network to keep it safe for the users. You can follow the best practices for mobile app security here as well. 

 

  • Power Management Needs

On an IoT network, the programs that run in the background drain a lot of power. This results in decreased communications and work. And that is why web developers have to design the layout in such a way that it will minimize the amount of power being used. Before you go forward with the web development plan for IoT device network, you have to design a power management plan.

 

  • Dynamic UI

The normal UI design process by web developers has changed a lot due to the IoT industry. And that is why the developers have to rethink their UI development approach. Following the best practices to develop IoT based designs is the right way to go for web developers today. 

 

The impact of IoT is all-encompassing and even web development is not out of its impact. The developers have to change the normal practices they used to follow to match pace with the constantly evolving process of Internet of Things. Above mentioned are only a few ways IoT is effecting web development. The impact is even deeper than you think and it is going to get even deeper with time. 

Read more…

For years, I have been written about the promise and perils of the Internet of Things (IoT). In many of my articles I described how the IoT could help transform society and kickstart the next industrial revolution. However, I think after talking these summer days with people outside this "industry" that most of them are lost with the IoT. We still cannot define in a unique and clear way what IoT is and much less explain how thanks to IoT it will change our lives, without using the example of the connected refrigerator.

At the beginning of 2015, I wondered if we would be able to build the Internet of Things. Taking a look at the most recent IoT Landscape I continue seeing how the fragmentation of the market, the lack of standards and the challenge of security continue damaging the growth of IoT. The evolution that not the revolution of IoT, has been slower than I expected and desired. Today not only Telcos admit IoT is failing to meet expectations.

Why are we lost in IoT? Let´s see some arguments.

Lost in IoT connectivity

With so many IoT connectivity options on the market, choosing the right one for your project can be complicated. It scares me to think that billions of devices will be connected in a few years to decentralized IoT networks and with no interconnectivity between them, unless we use millions of edge nodes that transfer messages among devices connected in multiple networks. If it is already difficult to justify the ROI of a use case considering a single type of connectivity, it is almost impossible to justify that these devices can communicate with other devices on different IoT subnets.

In case we consider the doubt small, we add the issue of end-to-end security and the need in some use cases networking in meshes with no single point of failure. Here comes new IoT technologies such as Blockchain to help or to confuse.

It seems that it is easy to get lost among so much connectivity technology. Isn’t true?

Suggested read: IoT Connectivity Options: Comparing Short-, Long-Range Technologies

How will Edge computing impact the global connectivity landscape?

Lost among hundreds of IoT Platforms

At least we already intuit some of the platforms that will survive among the +700 that some analysts have identified. I have only been able to analyze with more or less depth about 100. Surely my methodology of Superheroes and Supervillanos will advance the end of most of them.

It is no longer just one IoT Platform, stupid! Although they want to make it easy for us, companies like AWS, Microsoft or Google add concepts such as Serverless, Data Lakes, AI, Edge Computing, DLT and all the artillery of Cloud services to the core features of the IoT platform. I get lost in its architecture and I feel that if I get too close to one of these black holes, they will end up absorbing me.

Glad to know that “Verizon retools ThingSpace IoT platform to focus on connectivity” and system integrators are they are abandoning their in house development to embrace leaders vendors’ products.

The IoT analysts are also not helping much with its reports. IoT Platform vendors are disputing relevant positions in their graphs but we are lost when do not see any vendor in the leader quadrant of Gartner and most of them are Niche Players.

Lost between the Edge and the Clouds

In “Do not let the fog hide the clouds in the Internet of Things” , I warned about the degree of complexity that Fog / Edge Computing added to the already complex solutions in the IoT Clouds. Now nothing seems to be of great value if we do not include Edge Computing in our IoT solutions. And there our confusion arises again.

The Babel tower of Alliance & Consortiums is consolidating but we keep losing in acronyms. Industrial Internet companies felt relief with the newsThe Industrial Internet Consortium® (IIC™) and the OpenFog Consortium® (OpenFog) unite to combine the two largest and most influential international consortia in Industrial IoT, fog and edge computing. While The Open Group Open Process Automation™ Forum (OPAF) is defining the next generation edge computing standards for industrial operators.

And again, the question arises, do we wait or start my Industrial IoT project? For now, I choose "Industrial IoT - Edge Computing Vendors Overview"​ as my first book. You can read my post here

Lost in the Proof of Concept (PoC)

Businesses are spending $745 billion worldwide on IoT hardware and software in 2019 alone. Yet, three out of every four IoT implementations are failing.

Microsoft launched a new research report — IoT Signals — intended to quantify enterprise internet of things (IoT) adoption around the world. The survey of over 3,000 IT team leaders and executives provides a detailed look at the burgeoning multi-billion-dollar segment’s greatest challenges and benefits, as well as related trends. Perhaps it’s not surprising, then, that 30% of respondents say their IoT projects failed in the proof-of-concept stage, often because the implementation became too expensive or the bottom-line benefits were unclear.

There are technical reasons for example the use of Rasberry Pi or Arduino boards in the PoC and realise that you need other more expensive hardware for the project.

There are economic reasons when you try to escalate your PoC to real implementations and then the ROI doesn’t look as well as in the pilot.

There are organization reasons when leaders are failing to go all in. If you can’t get the CEO on board, then the probability to finish in the PoC is almost 100%.

If you are lost in the PoC, these tips can help you implementing IIOT.

  1. Solve a problem worth solving
  2. Keep it quick and simple
  3. Manage the Human Factor

Sources: https://internetofthingsagenda.techtarget.com/blog/IoT-Agenda/Break-out-of-IoT-proof-of-concept-purgatory

https://www.avnet.com/wps/portal/us/resources/technical-articles/article/iot/5-signs-proof-concept-purgatory/

https://titoma.com/blog/industrial-iot-avoid-pilot-purgatory

Microsoft: 30% of IoT projects fail in the proof-of-concept stage

Lost in select the right IoT Ecosystems

In Harbor Research article “ Has Anyone Seen A Real Internet of Things Ecosystem?” ,dated November 2013, the analyst firm wrote that no really significant ecosystem or network of collaborators had emerged in the IoT arena in spite there was early and very interesting efforts being made by several players. This article does not need changes.

Since I wrote “The value of partnership in Industrial Internet of Things”, I have heard, read and repeated hundreds of times how important it is to belong to an IoT ecosystem and how difficult it is to choose the one that suits you best.

All or at least most of those who read my articles know that there is no company in the world, no matter how great it is, it can do everything in IoT. Creating an IoT ecosystem either horizontal (technology) or vertical (industry) requires a lot of talent managers able to maintain win-win transactions over the time. And according to the results, it seems to me that it is becoming very complicated.

I am working in an article in which I will analyse 4 examples of IoT ecosystems that represent a big portion of the value chain in the multiple IoT markets: IoT Hardware Ecosystem, IoT telco Operator, IoT Cloud Platform Vendor and IoT System Integrators. Hope this article could help you, if you are lost with IoT ecosystems.

https://dblaza.blogspot.com/2014/04/will-strong-iot-ecosystem-beat-out-push.html

Remember, you are not the only one lost in IoT

When it comes to achieving a return on their investment from IoT, businesses really need rethink how they are deploying it so that they can manage remotely and secure their assets, use the sensors and devices data to make better real time decisions and be able to monetise it. However, for both to happen, and for IoT project to not end up in the purgatory, businesses need independent and expert advice at several levels to find the right people to lead the project and the right technology and partners to make implementation successful.

 

Thanks for your Likes and Share.

Read more…

Last year's Cambridge Analytica scandal has developed to the point in which many different big data-related problems and strategies have surfaced "the mainstream". The fact that many independent marketing agencies and enterprises started valuing data points is indeed the starting point in regards to the usage of big data and data-related algorithm in digital marketing. Let's analyse how, after GDPR, this is still a gold mine for agencies.

What Are Data Points?

With Data Points we define those packages which combine cookies, site's preferences and searches, combined together in alphanumerical strings which are then processed by native tools by many companies who are working with data science.
Data points have been used by Cambridge Analytica to set up campaigns like the Trump campaign and the Brexit one, resulting in over 80% engagement from their facebook ads, the reason why both campaigns were extremely successful, for such delicate matters.

The Machine Learning Side Of Data

In 2018, it has been stated that there was a drastic increase in hiring Python developers in digital marketing agencies, due to the fact that many were trying to "exploit" data points to better target their ads. In the UK, which was recently elected as the European technology powerhouse, it has been pointed out how machine and deep learning have impacted agencies. In Manchester, eventually, Stephen McCance, operation director at Red Cow Media, have invested over £300.000 in data science-related strategies, leading, of course, to a far bigger awareness of the topic in Europe as a whole.

GDPR, IoT And ML: How Do They Work Together?

Once the Cambridge Analytica scandal happened, the GDPRstrategy which was in place had to add specific sections which were related to this very matter. In fact, big data gathering isn't that simple in the IoT, nowadays, as the site/app/software must state properly whether data points are being collected or stored. Even if machine learning could avoid architectures that are limiting such data collection, GDPR has strictly limited access to R algorithms (the ones, to reference, which are processing those alphanumerical strings mentioned above) when it comes to data points and cookies.

To Conclude

The Cambridge Analytica will be remembered in the future as the biggest step towards proper regulation of big data and personal data in general. Data regulation and awareness have moved massively in the last couple of years, passing from being a completely neutral field to becoming part of our day to day talks and, most importantly, business strategies.

Read more…

The emerging internet of things (IoT) is an extension of digital connectivity to devices and sensors in homes, businesses, vehicles and potentially almost anywhere. This innovation means that virtually any appropriately designed device can generate and transmit data about its operations, which can facilitate monitoring and a range of automatic functions. To do this IoT requires a set of event-centered information and analytic processes that enable people to use that event information to make optimal decisions and take act effectively.

To better understand how this technology is being deployed and used Ventana Research is launching benchmark research on The Internet of Things. The research will explore organizations’ experiences with IoT initiatives and with attempts to align IT projects, resources and spending with new business objectives that demand real-time intelligence and event-driven architectures.

In many industries, organizations can gain competitive advantage if they can reduce the elapsed time between an event occurring and being able to take action or make decisions in response to it. Existing business intelligence (BI) tools provide useful analysis of and reporting on data drawn from previously recorded transactions, but organizations now areconcluding that employees and processes in IT, business operations and front-line customer sales, service and support also need to be able to detect and respond to events as they happen.

Our previous Internet of Things benchmark research found that both business objectives and regulations are driving demand for new technology and practices. By using them many activities can be managed better, among them manufacturing, customer engagement processes, algorithmic trading, dynamic pricing, yield management, risk management, security, fraud detection, surveillance, supply chain and call center optimization, online commerce and gaming. Success in efforts to combat money laundering, terrorism or other criminal behavior also depends on reducing information latency through the application of new techniques.

vr_IoT_and_OI_11_benefits_of_IoT_deployments-1.png?width=300&name=vr_IoT_and_OI_11_benefits_of_IoT_deployments-1.png

As with any innovation, embracing IoT may require substantial changes to any organization. These are among the challenges business leaders face as they consider adopting this evolving technology:

  • They find it difficult to evaluate the business value of enabling real-time sensing of data and event streams using radio frequency identification (RFID) tags, agents and other systems embedded not only in physical locations like warehouses but also in business processes, networks, mobile devices, data appliances and other technologies.
  • They lack an IT architecture that can support and integrate these systems as the volume and frequency of information increase.
  • They are uncertain how to set reasonable business and IT expectations, priorities and implementation plans for important technologies that may conflict or overlap. These can include BI, event processing, business process management, rules management, network upgrades and new or modified applications and databases.
  • They don’t understand how to create a personalized user experience that enables nontechnical employees in different roles to monitor data or event streams, identify significant changes, quickly understand the correlation between events, and determine the right decisions or actions to take.

This research will continue our investigation of how organizations are dealing with these challenges and increasing their responsiveness to events by rebalancing the roles of networks, applications and databases to reduce latency; it also will explore ways in which they are using sensor data and alerts to anticipate problematic events. We will benchmark the performance of organizations’ implementations, including IoT, event stream processing, event and activity monitoring, alerting, event modeling and workflow, and process and rules management.

Click here to participate in this research, and here to learn more about Ventana Research’s methodology and large body of business research. Ventana Research also has conducted research in related areas including Data PreparationMachine LearningData and Analytics in the CloudNext-Generation Predictive Analytics and Big Data Analytics and Integration.

Regards,
David Menninger

Read more…

The swift evolution of technology over the past decade has presented the world with a profusion of novel tools and resources that offer countless benefits to a wide variety of industries across the globe. A prime example of one such brilliant resources is the Internet of Things (IoT), which offers immense scope to enhance business operations, especially the ones involved in fleet management. The ability to connect the fleet’s vehicles to not only presents opportunities to achieve unprecedented levels of efficiency but harness new opportunities for business growth as well.

Moreover, it is so immense is its potential that researchers believe this market will be worth $15.87 million in another five years. That estimate, though massive, isn’t entirely surprising. Just look at the needs driving the need for IoT in fleet management — companies need to innovate, optimize efficiency, and keep a better eye on their operations and the personnel involved. To be able to do all of this, they need a versatile tool like IoT. Allow us to walk you through some of the other benefits provided by IoT in the context of fleet management.

  1. Monitor fleet: With the vehicles in the fleet connected, managers gain seamless access to an overview of their fleet’s activities. They can then analyze incidents, trends, and more to make adjustments in the process accordingly. It will help them to extract the most performance out of their fleet. They can also look at traffic data and road hazard data to put together the ideal route for the fleet vehicles.
  2. Utilize data better: Fleets generate massive amounts go data — including that about things like kilometers driven, speed, fuel consumed, and vehicle usage among so many other things. It is imperative that these factors both be tracked and managed efficiently at all times. Thankfully, IoT saves you the hassle of doing it manually; since all the requisite devices, including the vehicles, systems, software, and more are all connected in real-time, data is gathered and analyzed as it happens.
  3. Improved maintenance of vehicles: Once again, since cars are connected to the internet/cloud, it becomes easier to keep an eye on them for any issues and faults and execute proactive maintenance services. This ability to continually monitor the health of a vehicle helps save costs associated with unforeseen maintenance and vehicle downtime.
  4. Track driver behavior: IoT can also be used to collect data about things like driver pattern, fuel efficiency achieved, and more to gauge drivers’ productivity. Furthermore, it can be used to ensure that drivers don’t break traffic laws and conform to other regulations on the road and provide the appropriate training they are found by not submitting to any such factors.

As you can see, with GPS tracking fleet management solutions, businesses operating in this market stand to gain a plethora of benefits, including enhanced productivity, improved efficiency, and significantly improved customer service. So, it is only fair that your business can benefit from the many advantages IoT has to offer for fleet management.

Read more…

Bad Cars: Anatomy of a Ransomware Attack

By Alan Grau, VP of IoT, Embedded Systems, Sectigo

TV and science fiction writers have let their imaginations run wild with theories about what could happen if your car was attacked by bad actors. There have been a few real-world cases where white-hat hackers and researchers have been able – in limited, controlled instances – to actually penetrate a car’s electronics and communications systems, take over the car’s steering and acceleration systems, and potentially do real damage.

However, there are other scenarios that might not be as obvious or as dramatic.

For example, what if your car’s computer was infected by a virus that greatly reduced the engine’s efficiency or capped the car’s maximum driving speed? What if the virus did something less dramatic, such as make the car unable to lock the controls for automatic window operation, or simply prevent the car from starting? No one would die, but the car owner would be very upset, posing a disaster for the automobile’s manufacturers.

3239139993?profile=RESIZE_710x

Motor City Ransomware

Electric Vehicles require sophisticated control and safety technologies for their electrical power systems to safely manage the high voltages that store and distribute from their battery systems. If something goes wrong, the car cannot operate, people could get electrocuted, or the car could burst into flames or explode. These are real dangers that are managed by the car’s network of fuses, circuit breakers, and control systems.

What would happen if a cyber hacker got into these sensitive electronic systems and turned off the safety and control system?

Why would someone do this? Money, of course.

Suppose the bad guys successfully penetrated and infected these vehicles? Imagine now that they had the software or security keys that could fix these problems, but hold them as ransom, jeopardizing an automaker’s entire fleet of new cars.

How many millions (or tens of millions) of dollars would the automaker pay to get that solution? Holding a manufacturer hostage is a very real possibility, as evidenced by the results that today’s hackers are getting by attacking hospitals and cities and successfully extracting substantial ransoms to just return these institution’s data. In a recent WIRED article, The Biggest Cybersecurity Crisis of 2019 So Far, which discusses the risks to “things” and across supply chains, the FBI explained, "We are seeing an increase in targeted ransomware attacks. Cyber criminals are opportunistic. They will monetize any network to the fullest extent.”

Pre- and Post-Assembly Infections

It is possible that cars could be infected before they even hit the auto dealers’ lots. Bad actors have the capability to infect a small electronic part, essential to the auto manufacturing food chain, purchased from one of the hundreds of component suppliers.

How could auto manufacturers possibly test each electronic element? It is almost impossible - and requires that parts manufacturers themselves take more care in their software development process to ensure the software in these components are not infected during manufacturing process, or during the testing and shipping processes.

Of course, cyber infections could happen on the actual assembly line where the cars are put together. With many car manufacturing plants using IoT connected robots and machines, there is always a possibility of infection happening on the assembly line.

These components could even become infected after assembly, during the manufacturers’ testing and process. Infection, during installation, or with after-market parts and upgrades, could arise after the vehicles arrive at the dealers’ facilities.

Already aware of the possibility and the potential disastrous effects of infected cars reaching the market, manufacturers throughout the supply chain need to become more aware of how their devices could be attacked and infected even before they leave the warehouse. This means embedding IoT security from day one - from the smallest electronic components to final assembly of motors, transmissions and other large vehicle components.

About Sectigo

Sectigo (formerly Comodo CA) provides award-winning, purpose-built and automated PKI management solutions to secure websites, connected devices, applications, and digital identities. As the largest commercial Certificate Authority, trusted by enterprises globally for more than 20 years, and more than 100 million SSL certificates issued in over 200 countries, Sectigo has the proven performance and experience to meet the growing needs of securing today’s digital landscape. For more information, visit www.sectigo.com.

 

 

 

Read more…

Ever since the year 2014, the pharmaceutical industry has witnessed an annual average growth rate of 6.9 percent. Experts think that this industry's growth rate will only get bigger and better over the coming years. So, it is easy to see that there's immense scope in this market; and yet it continues to strive against myriad challenges. World Health Organization research estimates that fake products account for anywhere between 8 percent to 15 percent of total pharmaceutical sales across the globe. Unfortunately, the agency predicts that this disturbing number will grow further.

3137144817?profile=RESIZE_710xAlso, there exists a large number of counterfeit products to have in an industry as sensitive as pharmaceuticals. Just imagine the impact knock off pharma products have, especially on the patients they are meant for. Here's some perspective: studies have found that roughly 1 million people die every year owing to the consumption of lethal fake pharmaceuticals products. However, we'll be honest; counterfeiting is not the only issue plaguing the pharmaceutical industry at the moment. Among other things, this market also has to deal with stringent cost control measures utilized by both providers as well as payers; more aware patients who now come bearing increasing requirements and expectations; and growing competition from generics.

So, is this industry at the mercy of these challenges? Alternatively, is there a way to effectively deal with them and continue the growth it is poised to witness. Thanks to the evolution of technology, there indeed exists a tool that can help this industry surmount these challenges, and that tool is near-field communication or only NFC. For starters, it helps with brand protection since it is a potent means to crusade against counterfeit products. NFC achieves this by offering a way for manufacturing regulation and product validation along with a dependable ability to trail and monitor outcomes.

Another way NFC stands to benefit pharma is by presenting unique opportunities. For example, it can offer functionalities such as product information, patient treatment alerts, and more to help address one of the most significant issues faced by this industry.

To help you further understand the advantages of NFC in pharma, let's quickly take a look at some use cases in this context.

  1. Patient engagement: One of the radical benefits of NFC-enabled pharmaceutical products is that they can be used to set up bi-directional means of communication, which, in turn, can be used to inform and advise patients remotely.
  2. Safety: Provided there are smartphones and Internet connectivity, NFC-tagged pharmaceutical products can offer item-level product authentication practically in real time.
  3. Surveillance: Yet another compelling way to use NFC is to leverage it to relay information to patients about recalled products, expiry dates, and more. Not just that, it can also be used to empower patients to communicate any side effects they may be experienced immediately.

As you can see, with a near-field communication app in their midst, businesses in the pharmaceutical industry can swiftly deal with the challenges obstructing their growth.

Read more…

Internet of Things as a concept attracts all the frenzy right now! Don't believe us? Perhaps this will help: experts say that the global spending on IoT will grow past the $1 trillion milestones by 2020. That's next year, by the way. So, yes, it is essential! Hence, it is not surprising to see IoT making its way into different industries and sectors, such as education, healthcare, and energy. It has made inroads into the mobile app industry as well. How? The answer lies in the fundamentals of IoT: it is a network of devices that enables previously-unimaginable functionalities and features.

Also, where there are devices helping people, can mobile apps be far behind? No, because they typically serve as the interface that facilitates the interaction between IoT-enabled devices. Moreover, with today's crop of smartphones boasting a plethora of novelties besides apps, such as NFC and sensors, is it astounding to see that the two virtually go hand-in-hand? So, without further ado, let's get on with what we came to discuss: how IoT is changing the face of app development.

1. Security: Security concerns among customers and businesses have existed pretty since we first became familiar with the phenomenon of mobile devices. Then came the cloud, bringing along with it, its own set of security issues. So, it isn't hard to see why people would be nervous about security when presented with a network of interconnected devices. IoT involves a sea of data that is both sensitive and confidential. Hence, the risk. Moreover, with IoT mobile apps on the rise, developers have had much thinking to do. App developers are now tuned in to the security aspect, delivering high-quality solutions that help assuage security concerns for not only users but also companies.

2. Convenience: Quite unlike what you may have been led to believe, IoT has made life simpler for not just users, but app developers as well. Allow us to explain -- see, it enables devices to interact with mobile apps to help users execute tasks. As a result, app developers are freed from the laborious task of developing apps instead of allowing them to focus on user-friendliness and global innovation.

3. Necessitates expertise: IoT may be highly prevalent in our lives now, but it continues to be a novelty. It means, to properly leverage it, one needs high-quality expertise. So, for app developers who want to retain their edge among their contemporaries, they must skill up. It is vital to take a break out of their comfort zone and work on acquiring skills requisite for building consummate IoT apps.

Both the Internet of Things and mobile app development have the world's attention right now. Several other studies have amply demonstrated their potential and that their relevance will only grow for the foreseeable future. It is why, no matter if you are working on custom iOS app development or any other OS, it would be wise to factor in IoT into your plans.

Read more…

Upcoming IoT Events

More IoT News

How wireless charging works

Wireless charging technology has been around for over 100 years, but it has only recently found mainstream practical use for powering electronic devices like smartphones. Learn how this technology works and what advancements we may see in the future.

How wearables can improve healthcare | TECH(talk)

Wearable tech can help users track their fitness goals, but these devices can also give wearers ownership of their electronic health records. TECH(talk)'s Juliet Beauchamp and Computerworld's Lucas Mearian take a look at how wearable health tech can… Continue

IoT Career Opportunities