Subscribe to our Newsletter | To Post On IoT Central, Click here


Featured Posts (580)

The smart technology of IoT or Internet of Things is really changing the technological landscape from all aspects. It is a network of connected devices that work through exchanging data between each other through a cloud network.

IoT technology has had a deep impact on the world of technology and web development is one of them. You might ask how these two things are connected, well, as it turns out, IoT devices need to work with web development because it needs both a front-end and back-end development, and that is where web development comes in. in the past few years, IoT has changed the web development in a lot of ways. Here are a few examples of that. 

 

  • Continuous Website Optimization

Internet of Things is a constantly evolving sector and there is no possibility of this stopping soon. And that is why the web developers have to constantly keep on optimizing their websites to match the evolving nature of the website. This is the only true way to stay relevant in the industry of IoT.

 

  • Raising The Bar On The Expertise

IoT has definitely increased the bar on the expertise when it comes to the knowledge of coding and framework. IoT developers need better knowledge of web development languages and database management. 

This need for advanced knowledge has definitely raised the bar for the developers to enter the game. They can’t just start with web development with just JavaScript knowledge anymore. They need serious knowledge of coding today. That’s hiring a reliable web development company in NYC is a necessity. 

  • Speed Of Data Transaction

The traditional data process is through request analysis by web servers. But this process is not useful when it comes to IoT. for IoT devices, the data transaction speed is much higher and that is why the traditional process is replaced by the cloud data transmission process. This way the devices work faster by transmitting data faster.

 

  • Need For An Increase In Security

IoT devices are more prone to get hacked and manipulated by hackers. And that is why web developers have to up their security game. A normal security protocol for web development is not enough for IoT devices. They need stricter security design pattern for the connected device's network to keep it safe for the users. You can follow the best practices for mobile app security here as well. 

 

  • Power Management Needs

On an IoT network, the programs that run in the background drain a lot of power. This results in decreased communications and work. And that is why web developers have to design the layout in such a way that it will minimize the amount of power being used. Before you go forward with the web development plan for IoT device network, you have to design a power management plan.

 

  • Dynamic UI

The normal UI design process by web developers has changed a lot due to the IoT industry. And that is why the developers have to rethink their UI development approach. Following the best practices to develop IoT based designs is the right way to go for web developers today. 

 

The impact of IoT is all-encompassing and even web development is not out of its impact. The developers have to change the normal practices they used to follow to match pace with the constantly evolving process of Internet of Things. Above mentioned are only a few ways IoT is effecting web development. The impact is even deeper than you think and it is going to get even deeper with time. 

Read more…

For years, I have been written about the promise and perils of the Internet of Things (IoT). In many of my articles I described how the IoT could help transform society and kickstart the next industrial revolution. However, I think after talking these summer days with people outside this "industry" that most of them are lost with the IoT. We still cannot define in a unique and clear way what IoT is and much less explain how thanks to IoT it will change our lives, without using the example of the connected refrigerator.

At the beginning of 2015, I wondered if we would be able to build the Internet of Things. Taking a look at the most recent IoT Landscape I continue seeing how the fragmentation of the market, the lack of standards and the challenge of security continue damaging the growth of IoT. The evolution that not the revolution of IoT, has been slower than I expected and desired. Today not only Telcos admit IoT is failing to meet expectations.

Why are we lost in IoT? Let´s see some arguments.

Lost in IoT connectivity

With so many IoT connectivity options on the market, choosing the right one for your project can be complicated. It scares me to think that billions of devices will be connected in a few years to decentralized IoT networks and with no interconnectivity between them, unless we use millions of edge nodes that transfer messages among devices connected in multiple networks. If it is already difficult to justify the ROI of a use case considering a single type of connectivity, it is almost impossible to justify that these devices can communicate with other devices on different IoT subnets.

In case we consider the doubt small, we add the issue of end-to-end security and the need in some use cases networking in meshes with no single point of failure. Here comes new IoT technologies such as Blockchain to help or to confuse.

It seems that it is easy to get lost among so much connectivity technology. Isn’t true?

Suggested read: IoT Connectivity Options: Comparing Short-, Long-Range Technologies

How will Edge computing impact the global connectivity landscape?

Lost among hundreds of IoT Platforms

At least we already intuit some of the platforms that will survive among the +700 that some analysts have identified. I have only been able to analyze with more or less depth about 100. Surely my methodology of Superheroes and Supervillanos will advance the end of most of them.

It is no longer just one IoT Platform, stupid! Although they want to make it easy for us, companies like AWS, Microsoft or Google add concepts such as Serverless, Data Lakes, AI, Edge Computing, DLT and all the artillery of Cloud services to the core features of the IoT platform. I get lost in its architecture and I feel that if I get too close to one of these black holes, they will end up absorbing me.

Glad to know that “Verizon retools ThingSpace IoT platform to focus on connectivity” and system integrators are they are abandoning their in house development to embrace leaders vendors’ products.

The IoT analysts are also not helping much with its reports. IoT Platform vendors are disputing relevant positions in their graphs but we are lost when do not see any vendor in the leader quadrant of Gartner and most of them are Niche Players.

Lost between the Edge and the Clouds

In “Do not let the fog hide the clouds in the Internet of Things” , I warned about the degree of complexity that Fog / Edge Computing added to the already complex solutions in the IoT Clouds. Now nothing seems to be of great value if we do not include Edge Computing in our IoT solutions. And there our confusion arises again.

The Babel tower of Alliance & Consortiums is consolidating but we keep losing in acronyms. Industrial Internet companies felt relief with the newsThe Industrial Internet Consortium® (IIC™) and the OpenFog Consortium® (OpenFog) unite to combine the two largest and most influential international consortia in Industrial IoT, fog and edge computing. While The Open Group Open Process Automation™ Forum (OPAF) is defining the next generation edge computing standards for industrial operators.

And again, the question arises, do we wait or start my Industrial IoT project? For now, I choose "Industrial IoT - Edge Computing Vendors Overview"​ as my first book. You can read my post here

Lost in the Proof of Concept (PoC)

Businesses are spending $745 billion worldwide on IoT hardware and software in 2019 alone. Yet, three out of every four IoT implementations are failing.

Microsoft launched a new research report — IoT Signals — intended to quantify enterprise internet of things (IoT) adoption around the world. The survey of over 3,000 IT team leaders and executives provides a detailed look at the burgeoning multi-billion-dollar segment’s greatest challenges and benefits, as well as related trends. Perhaps it’s not surprising, then, that 30% of respondents say their IoT projects failed in the proof-of-concept stage, often because the implementation became too expensive or the bottom-line benefits were unclear.

There are technical reasons for example the use of Rasberry Pi or Arduino boards in the PoC and realise that you need other more expensive hardware for the project.

There are economic reasons when you try to escalate your PoC to real implementations and then the ROI doesn’t look as well as in the pilot.

There are organization reasons when leaders are failing to go all in. If you can’t get the CEO on board, then the probability to finish in the PoC is almost 100%.

If you are lost in the PoC, these tips can help you implementing IIOT.

  1. Solve a problem worth solving
  2. Keep it quick and simple
  3. Manage the Human Factor

Sources: https://internetofthingsagenda.techtarget.com/blog/IoT-Agenda/Break-out-of-IoT-proof-of-concept-purgatory

https://www.avnet.com/wps/portal/us/resources/technical-articles/article/iot/5-signs-proof-concept-purgatory/

https://titoma.com/blog/industrial-iot-avoid-pilot-purgatory

Microsoft: 30% of IoT projects fail in the proof-of-concept stage

Lost in select the right IoT Ecosystems

In Harbor Research article “ Has Anyone Seen A Real Internet of Things Ecosystem?” ,dated November 2013, the analyst firm wrote that no really significant ecosystem or network of collaborators had emerged in the IoT arena in spite there was early and very interesting efforts being made by several players. This article does not need changes.

Since I wrote “The value of partnership in Industrial Internet of Things”, I have heard, read and repeated hundreds of times how important it is to belong to an IoT ecosystem and how difficult it is to choose the one that suits you best.

All or at least most of those who read my articles know that there is no company in the world, no matter how great it is, it can do everything in IoT. Creating an IoT ecosystem either horizontal (technology) or vertical (industry) requires a lot of talent managers able to maintain win-win transactions over the time. And according to the results, it seems to me that it is becoming very complicated.

I am working in an article in which I will analyse 4 examples of IoT ecosystems that represent a big portion of the value chain in the multiple IoT markets: IoT Hardware Ecosystem, IoT telco Operator, IoT Cloud Platform Vendor and IoT System Integrators. Hope this article could help you, if you are lost with IoT ecosystems.

https://dblaza.blogspot.com/2014/04/will-strong-iot-ecosystem-beat-out-push.html

Remember, you are not the only one lost in IoT

When it comes to achieving a return on their investment from IoT, businesses really need rethink how they are deploying it so that they can manage remotely and secure their assets, use the sensors and devices data to make better real time decisions and be able to monetise it. However, for both to happen, and for IoT project to not end up in the purgatory, businesses need independent and expert advice at several levels to find the right people to lead the project and the right technology and partners to make implementation successful.

 

Thanks for your Likes and Share.

Read more…

Last year's Cambridge Analytica scandal has developed to the point in which many different big data-related problems and strategies have surfaced "the mainstream". The fact that many independent marketing agencies and enterprises started valuing data points is indeed the starting point in regards to the usage of big data and data-related algorithm in digital marketing. Let's analyse how, after GDPR, this is still a gold mine for agencies.

What Are Data Points?

With Data Points we define those packages which combine cookies, site's preferences and searches, combined together in alphanumerical strings which are then processed by native tools by many companies who are working with data science.
Data points have been used by Cambridge Analytica to set up campaigns like the Trump campaign and the Brexit one, resulting in over 80% engagement from their facebook ads, the reason why both campaigns were extremely successful, for such delicate matters.

The Machine Learning Side Of Data

In 2018, it has been stated that there was a drastic increase in hiring Python developers in digital marketing agencies, due to the fact that many were trying to "exploit" data points to better target their ads. In the UK, which was recently elected as the European technology powerhouse, it has been pointed out how machine and deep learning have impacted agencies. In Manchester, eventually, Stephen McCance, operation director at Red Cow Media, have invested over £300.000 in data science-related strategies, leading, of course, to a far bigger awareness of the topic in Europe as a whole.

GDPR, IoT And ML: How Do They Work Together?

Once the Cambridge Analytica scandal happened, the GDPRstrategy which was in place had to add specific sections which were related to this very matter. In fact, big data gathering isn't that simple in the IoT, nowadays, as the site/app/software must state properly whether data points are being collected or stored. Even if machine learning could avoid architectures that are limiting such data collection, GDPR has strictly limited access to R algorithms (the ones, to reference, which are processing those alphanumerical strings mentioned above) when it comes to data points and cookies.

To Conclude

The Cambridge Analytica will be remembered in the future as the biggest step towards proper regulation of big data and personal data in general. Data regulation and awareness have moved massively in the last couple of years, passing from being a completely neutral field to becoming part of our day to day talks and, most importantly, business strategies.

Read more…

The emerging internet of things (IoT) is an extension of digital connectivity to devices and sensors in homes, businesses, vehicles and potentially almost anywhere. This innovation means that virtually any appropriately designed device can generate and transmit data about its operations, which can facilitate monitoring and a range of automatic functions. To do this IoT requires a set of event-centered information and analytic processes that enable people to use that event information to make optimal decisions and take act effectively.

To better understand how this technology is being deployed and used Ventana Research is launching benchmark research on The Internet of Things. The research will explore organizations’ experiences with IoT initiatives and with attempts to align IT projects, resources and spending with new business objectives that demand real-time intelligence and event-driven architectures.

In many industries, organizations can gain competitive advantage if they can reduce the elapsed time between an event occurring and being able to take action or make decisions in response to it. Existing business intelligence (BI) tools provide useful analysis of and reporting on data drawn from previously recorded transactions, but organizations now areconcluding that employees and processes in IT, business operations and front-line customer sales, service and support also need to be able to detect and respond to events as they happen.

Our previous Internet of Things benchmark research found that both business objectives and regulations are driving demand for new technology and practices. By using them many activities can be managed better, among them manufacturing, customer engagement processes, algorithmic trading, dynamic pricing, yield management, risk management, security, fraud detection, surveillance, supply chain and call center optimization, online commerce and gaming. Success in efforts to combat money laundering, terrorism or other criminal behavior also depends on reducing information latency through the application of new techniques.

vr_IoT_and_OI_11_benefits_of_IoT_deployments-1.png?width=300&name=vr_IoT_and_OI_11_benefits_of_IoT_deployments-1.png

As with any innovation, embracing IoT may require substantial changes to any organization. These are among the challenges business leaders face as they consider adopting this evolving technology:

  • They find it difficult to evaluate the business value of enabling real-time sensing of data and event streams using radio frequency identification (RFID) tags, agents and other systems embedded not only in physical locations like warehouses but also in business processes, networks, mobile devices, data appliances and other technologies.
  • They lack an IT architecture that can support and integrate these systems as the volume and frequency of information increase.
  • They are uncertain how to set reasonable business and IT expectations, priorities and implementation plans for important technologies that may conflict or overlap. These can include BI, event processing, business process management, rules management, network upgrades and new or modified applications and databases.
  • They don’t understand how to create a personalized user experience that enables nontechnical employees in different roles to monitor data or event streams, identify significant changes, quickly understand the correlation between events, and determine the right decisions or actions to take.

This research will continue our investigation of how organizations are dealing with these challenges and increasing their responsiveness to events by rebalancing the roles of networks, applications and databases to reduce latency; it also will explore ways in which they are using sensor data and alerts to anticipate problematic events. We will benchmark the performance of organizations’ implementations, including IoT, event stream processing, event and activity monitoring, alerting, event modeling and workflow, and process and rules management.

Click here to participate in this research, and here to learn more about Ventana Research’s methodology and large body of business research. Ventana Research also has conducted research in related areas including Data PreparationMachine LearningData and Analytics in the CloudNext-Generation Predictive Analytics and Big Data Analytics and Integration.

Regards,
David Menninger

Read more…

The swift evolution of technology over the past decade has presented the world with a profusion of novel tools and resources that offer countless benefits to a wide variety of industries across the globe. A prime example of one such brilliant resources is the Internet of Things (IoT), which offers immense scope to enhance business operations, especially the ones involved in fleet management. The ability to connect the fleet’s vehicles to not only presents opportunities to achieve unprecedented levels of efficiency but harness new opportunities for business growth as well.

Moreover, it is so immense is its potential that researchers believe this market will be worth $15.87 million in another five years. That estimate, though massive, isn’t entirely surprising. Just look at the needs driving the need for IoT in fleet management — companies need to innovate, optimize efficiency, and keep a better eye on their operations and the personnel involved. To be able to do all of this, they need a versatile tool like IoT. Allow us to walk you through some of the other benefits provided by IoT in the context of fleet management.

  1. Monitor fleet: With the vehicles in the fleet connected, managers gain seamless access to an overview of their fleet’s activities. They can then analyze incidents, trends, and more to make adjustments in the process accordingly. It will help them to extract the most performance out of their fleet. They can also look at traffic data and road hazard data to put together the ideal route for the fleet vehicles.
  2. Utilize data better: Fleets generate massive amounts go data — including that about things like kilometers driven, speed, fuel consumed, and vehicle usage among so many other things. It is imperative that these factors both be tracked and managed efficiently at all times. Thankfully, IoT saves you the hassle of doing it manually; since all the requisite devices, including the vehicles, systems, software, and more are all connected in real-time, data is gathered and analyzed as it happens.
  3. Improved maintenance of vehicles: Once again, since cars are connected to the internet/cloud, it becomes easier to keep an eye on them for any issues and faults and execute proactive maintenance services. This ability to continually monitor the health of a vehicle helps save costs associated with unforeseen maintenance and vehicle downtime.
  4. Track driver behavior: IoT can also be used to collect data about things like driver pattern, fuel efficiency achieved, and more to gauge drivers’ productivity. Furthermore, it can be used to ensure that drivers don’t break traffic laws and conform to other regulations on the road and provide the appropriate training they are found by not submitting to any such factors.

As you can see, with GPS tracking fleet management solutions, businesses operating in this market stand to gain a plethora of benefits, including enhanced productivity, improved efficiency, and significantly improved customer service. So, it is only fair that your business can benefit from the many advantages IoT has to offer for fleet management.

Read more…

Bad Cars: Anatomy of a Ransomware Attack

By Alan Grau, VP of IoT, Embedded Systems, Sectigo

TV and science fiction writers have let their imaginations run wild with theories about what could happen if your car was attacked by bad actors. There have been a few real-world cases where white-hat hackers and researchers have been able – in limited, controlled instances – to actually penetrate a car’s electronics and communications systems, take over the car’s steering and acceleration systems, and potentially do real damage.

However, there are other scenarios that might not be as obvious or as dramatic.

For example, what if your car’s computer was infected by a virus that greatly reduced the engine’s efficiency or capped the car’s maximum driving speed? What if the virus did something less dramatic, such as make the car unable to lock the controls for automatic window operation, or simply prevent the car from starting? No one would die, but the car owner would be very upset, posing a disaster for the automobile’s manufacturers.

3239139993?profile=RESIZE_710x

Motor City Ransomware

Electric Vehicles require sophisticated control and safety technologies for their electrical power systems to safely manage the high voltages that store and distribute from their battery systems. If something goes wrong, the car cannot operate, people could get electrocuted, or the car could burst into flames or explode. These are real dangers that are managed by the car’s network of fuses, circuit breakers, and control systems.

What would happen if a cyber hacker got into these sensitive electronic systems and turned off the safety and control system?

Why would someone do this? Money, of course.

Suppose the bad guys successfully penetrated and infected these vehicles? Imagine now that they had the software or security keys that could fix these problems, but hold them as ransom, jeopardizing an automaker’s entire fleet of new cars.

How many millions (or tens of millions) of dollars would the automaker pay to get that solution? Holding a manufacturer hostage is a very real possibility, as evidenced by the results that today’s hackers are getting by attacking hospitals and cities and successfully extracting substantial ransoms to just return these institution’s data. In a recent WIRED article, The Biggest Cybersecurity Crisis of 2019 So Far, which discusses the risks to “things” and across supply chains, the FBI explained, "We are seeing an increase in targeted ransomware attacks. Cyber criminals are opportunistic. They will monetize any network to the fullest extent.”

Pre- and Post-Assembly Infections

It is possible that cars could be infected before they even hit the auto dealers’ lots. Bad actors have the capability to infect a small electronic part, essential to the auto manufacturing food chain, purchased from one of the hundreds of component suppliers.

How could auto manufacturers possibly test each electronic element? It is almost impossible - and requires that parts manufacturers themselves take more care in their software development process to ensure the software in these components are not infected during manufacturing process, or during the testing and shipping processes.

Of course, cyber infections could happen on the actual assembly line where the cars are put together. With many car manufacturing plants using IoT connected robots and machines, there is always a possibility of infection happening on the assembly line.

These components could even become infected after assembly, during the manufacturers’ testing and process. Infection, during installation, or with after-market parts and upgrades, could arise after the vehicles arrive at the dealers’ facilities.

Already aware of the possibility and the potential disastrous effects of infected cars reaching the market, manufacturers throughout the supply chain need to become more aware of how their devices could be attacked and infected even before they leave the warehouse. This means embedding IoT security from day one - from the smallest electronic components to final assembly of motors, transmissions and other large vehicle components.

About Sectigo

Sectigo (formerly Comodo CA) provides award-winning, purpose-built and automated PKI management solutions to secure websites, connected devices, applications, and digital identities. As the largest commercial Certificate Authority, trusted by enterprises globally for more than 20 years, and more than 100 million SSL certificates issued in over 200 countries, Sectigo has the proven performance and experience to meet the growing needs of securing today’s digital landscape. For more information, visit www.sectigo.com.

 

 

 

Read more…

Ever since the year 2014, the pharmaceutical industry has witnessed an annual average growth rate of 6.9 percent. Experts think that this industry's growth rate will only get bigger and better over the coming years. So, it is easy to see that there's immense scope in this market; and yet it continues to strive against myriad challenges. World Health Organization research estimates that fake products account for anywhere between 8 percent to 15 percent of total pharmaceutical sales across the globe. Unfortunately, the agency predicts that this disturbing number will grow further.

3137144817?profile=RESIZE_710xAlso, there exists a large number of counterfeit products to have in an industry as sensitive as pharmaceuticals. Just imagine the impact knock off pharma products have, especially on the patients they are meant for. Here's some perspective: studies have found that roughly 1 million people die every year owing to the consumption of lethal fake pharmaceuticals products. However, we'll be honest; counterfeiting is not the only issue plaguing the pharmaceutical industry at the moment. Among other things, this market also has to deal with stringent cost control measures utilized by both providers as well as payers; more aware patients who now come bearing increasing requirements and expectations; and growing competition from generics.

So, is this industry at the mercy of these challenges? Alternatively, is there a way to effectively deal with them and continue the growth it is poised to witness. Thanks to the evolution of technology, there indeed exists a tool that can help this industry surmount these challenges, and that tool is near-field communication or only NFC. For starters, it helps with brand protection since it is a potent means to crusade against counterfeit products. NFC achieves this by offering a way for manufacturing regulation and product validation along with a dependable ability to trail and monitor outcomes.

Another way NFC stands to benefit pharma is by presenting unique opportunities. For example, it can offer functionalities such as product information, patient treatment alerts, and more to help address one of the most significant issues faced by this industry.

To help you further understand the advantages of NFC in pharma, let's quickly take a look at some use cases in this context.

  1. Patient engagement: One of the radical benefits of NFC-enabled pharmaceutical products is that they can be used to set up bi-directional means of communication, which, in turn, can be used to inform and advise patients remotely.
  2. Safety: Provided there are smartphones and Internet connectivity, NFC-tagged pharmaceutical products can offer item-level product authentication practically in real time.
  3. Surveillance: Yet another compelling way to use NFC is to leverage it to relay information to patients about recalled products, expiry dates, and more. Not just that, it can also be used to empower patients to communicate any side effects they may be experienced immediately.

As you can see, with a near-field communication app in their midst, businesses in the pharmaceutical industry can swiftly deal with the challenges obstructing their growth.

Read more…

Internet of Things as a concept attracts all the frenzy right now! Don't believe us? Perhaps this will help: experts say that the global spending on IoT will grow past the $1 trillion milestones by 2020. That's next year, by the way. So, yes, it is essential! Hence, it is not surprising to see IoT making its way into different industries and sectors, such as education, healthcare, and energy. It has made inroads into the mobile app industry as well. How? The answer lies in the fundamentals of IoT: it is a network of devices that enables previously-unimaginable functionalities and features.

Also, where there are devices helping people, can mobile apps be far behind? No, because they typically serve as the interface that facilitates the interaction between IoT-enabled devices. Moreover, with today's crop of smartphones boasting a plethora of novelties besides apps, such as NFC and sensors, is it astounding to see that the two virtually go hand-in-hand? So, without further ado, let's get on with what we came to discuss: how IoT is changing the face of app development.

1. Security: Security concerns among customers and businesses have existed pretty since we first became familiar with the phenomenon of mobile devices. Then came the cloud, bringing along with it, its own set of security issues. So, it isn't hard to see why people would be nervous about security when presented with a network of interconnected devices. IoT involves a sea of data that is both sensitive and confidential. Hence, the risk. Moreover, with IoT mobile apps on the rise, developers have had much thinking to do. App developers are now tuned in to the security aspect, delivering high-quality solutions that help assuage security concerns for not only users but also companies.

2. Convenience: Quite unlike what you may have been led to believe, IoT has made life simpler for not just users, but app developers as well. Allow us to explain -- see, it enables devices to interact with mobile apps to help users execute tasks. As a result, app developers are freed from the laborious task of developing apps instead of allowing them to focus on user-friendliness and global innovation.

3. Necessitates expertise: IoT may be highly prevalent in our lives now, but it continues to be a novelty. It means, to properly leverage it, one needs high-quality expertise. So, for app developers who want to retain their edge among their contemporaries, they must skill up. It is vital to take a break out of their comfort zone and work on acquiring skills requisite for building consummate IoT apps.

Both the Internet of Things and mobile app development have the world's attention right now. Several other studies have amply demonstrated their potential and that their relevance will only grow for the foreseeable future. It is why, no matter if you are working on custom iOS app development or any other OS, it would be wise to factor in IoT into your plans.

Read more…

In spite of the fact that it has been with us in some structure and under various names for a long time, the Web of Things (IoT) is abruptly the thing. The capacity to interface, speak with, also, remotely deal with a limitless number of arranged, mechanized gadgets by means of the Web is getting to be inescapable, from the production line floor to the emergency clinic working space to the private cellar. The change from shut systems to big business IT systems to the open Internet is quickening at a disturbing pace—and legitimately raising cautions about security.

 As we become progressively dependent on insightful, interconnected gadgets in each part of our lives, how do we shield conceivably billions of them from interruptions and obstruction that could bargain individual security or undermine open wellbeing? 

As a worldwide innovator in inserted innovation arrangements, Wind River® has been profoundly included since its beginning in verifying gadgets that perform life-basic capacities and conform to stringent administrative necessities. This paper inspects the limitations and security difficulties presented by IoT associated gadgets, and the Wind Riverway to deal with tending to them.


The IoT development is driven by business needs as a feature of big business advanced change 

As indicated by Machina Research, the absolute number of IoT associations will develop from six billion of every 2015 to 27 billion by 2025. It implies a compound yearly development rate (CAGR) of 16%. As far as market development, the Berg Insight report predicts an expansion of the worldwide third-party  IoT platform from €610m in 2015 to €3.05bn in 2021.

IoT Security Risks and Challenges 

Three classes of IoT dangers include: 

 

  1. Dangers that are common in any Internet framework 

 

  1. Dangers that are explicit to IoT gadgets 

 

  1. Wellbeing to guarantee no mischief is brought about by abusing actuators, for example. 

 

Conventional security practices, for example, securing open ports on gadgets have a place with the first class (for instance, an industrial refrigerator associated with the Internet so as to send alarms about the item stock and temperature may utilize an unbound SMTP server and can be undermined by a botnet).

The second class incorporates issues explicitly identified with IoT equipment, for example, the gadget may have its safe data traded off. For instance, some IoT gadgets are excessively little to bolster appropriate unbalanced encryption. Moreover, any gadget that can interface with the Internet has an inserted working framework sent in its firmware and a significant number of these installed working frameworks are not structured with security as their essential thought. 

Adaptability: Managing an enormous number of IoT hubs requires versatile security arrangements. 

 

Availability: In IoT interchanges, associating different gadgets of various capacities in a safe way is another test. 

 

End-to-end Security: End-to-end safety efforts between IoT gadgets and Internet has are similarly significant.

 

Validation and Trust: Proper ID and confirmation abilities and their arrangement inside a complex IoT condition are not yet adult.

 

This counteracts foundation of trust connections between IoT parts, which is essential for IoT applications requiring impromptu availability between IoT segments, for example, Smart City situations. Trust the board for IoT is expected to guarantee that information investigation motors are sustained with legitimate information Without validation it is beyond the realm of imagination to expect to guarantee that the information stream created by an element contains what it should contain. 

Personality Management: Identity the board is an issue as poor security practices are frequently executed. For instance, the utilization of clear content/Base64 encoded IDs/passwords with gadgets also, machine-to-machine (M2M) is a typical mix-up. 

This ought to be supplanted with oversaw tokens, for example, JSON Web Tokens (JWT) utilized by OAuth/OAuth2 confirmation and approval structure (the Open Authorization). 

Assault Resistant Security Solutions: Diversity in IoT gadgets results in a requirement for attack-resistant and lightweight security arrangements. As IoT gadgets have restricted process assets, they are helpless against asset enervation assaults.

Conclusion

IoT has already taken the market by storm. If you want to consider getting into the niche, IoT based mobile applications and devices are the best entry point for entrepreneurs. A reputed mobile application development company can help you develop a robust IoT based application.

Read more…

Scaling IoT to meet enterprise needs

Enterprises are increasingly complementing their cloud-based IoT solutions with edge computing to accelerate the pace of data analysis and make better decisions, faster.

Just a few years ago, many expected all the Internet of Things (IoT) to move to the cloud—and much of the consumer-connected IoT indeed lives there—but one of the key basics of designing and building enterprise-scale IoT solutions is to make a balanced use of edge and cloud computing. Most IoT solutions now require a mix of cloud and edge computing. Compared to cloud-only solutions, blended solutions that incorporate edge can alleviate latency, increase scalability, and enhance access to information so that better, faster decisions can be made, and enterprises can become more agile as a result.

That being said, complexity introduced by edge computing should justify the objectives at hand, which include scale, speed, and resiliency. A choice that goes too far in one direction typically introduces substantial operational complexities and expenses. Ultimately, the enterprise should take into consideration a full range of factors that reflect its own particular objectives in designing and building an IoT solution in the first place.

In this article, we discuss when and how enterprises can optimally make use of both the edge and the cloud in their IoT solutions. We explain the roles edge and cloud computing play, why the edge may be needed, and how to approach selecting a solution. We also explain some of the complexities with edge computing and provide some use cases.

The cloud explosion and the latency challenge: Enter edge computing

We have experienced a veritable explosion of cloud adoption in the past decade—the IT functionality of many modern companies exists exclusively, or in large part, in the cloud. Among the many benefits of the cloud infrastructure are cost effectiveness, scale, self-service automation, interoperability with traditional back-office systems, and centralized functionality.

At the same time, the amount of sensor-generated data has grown strongly too, and this trend is expected to continue in the years ahead. Because data can become essentially valueless after it is generated, often within milliseconds, the speed at which organizations can convert data into insight and then into action is generally considered mission critical. Therefore, having the smallest possible latency between data generation and the decision or action can be critical to preserve an organization’s agility. However, as the speed of data transmission is inviolably bounded by the speed of light, it is only by reducing the distance that data must travel that the latency challenge can be mitigated or avoided altogether. In a cloud-only world the data ends up traveling hundreds or even thousands of miles, so where latency is critical to a solution, edge computing can become key.

According to one estimate, as much as 55 percent of IoT data could soon be processed near the source, either on the device or through edge computing. Indeed, scale plays a big role in this likely shift—growing data demands will likely put the focus on latency, and decreased latency could dramatically improve the response time, thereby saving both time and money.

Continuing reading more by Deloitte's Ken Carroll and Mahesh Chandramouli here.

Read more…

Newest Trends For Internet Of Things

Now that the Internet of Things has become a social and technical phenom, it is time to check out some of the coming year trends for app developers and the Internet of Things.

Due to the massive amounts of data that is able to be moved through the Internet of Things airways, app developers will continue to develop apps that help as far as artificial intelligence and machine learning. It is not because of the massive amount of information and data that is sent through, rather because of the amount, app developers are working on applications that are able to make logical sense from the information and data.

Storing information and data in the cloud has become firsthand to people and businesses alike. Due to the high amount of bandwidth required to save information in the cloud, businesses are looking for ways to expand on the cloud. All have used private clouds, public clouds and even a private data center, however app developers are working on ways to combine all of those options. When looking for ways to streamline all the business needs, connected clouds are becoming more of a trend. App developers are designing more of a multi-cloud habitat for information and data.

There is a simulation tool that works alongside machine learning, or artificial intelligence. The DTT, Digital Twin Technology is known as a hybrid twin, is a virtual imitation of real products, processes, system or asset used for certain purposes.

Although cloud storage will remain popular in use, app developers are getting real close to edge architecture. This brings the centralized system and the cloud to a further expansive advantage. Not only cheaper but able to be more effective, edge architecture is able to store more data in a micro center.

This is the year of advancement for the 5G mobile devices and their improvements. Last year we witnessed 5G brought to life in applications. Now we see that the new 5G cellular networks will gain massive attention in the Internet of Things. Which will ultimately begin the change of the landscape for the IoT?

We are facing the age of Social acceptance or denial for the Internet of Things. The longer that the Internet of Things develops, the more we will find that some groups are questioning the social, ethical and legal issues. This is because the Internet of Things is very broad-based and capable of changing all business areas.

Infonomics is moving data ownership or monetization to brand new heights. All this data in the Internet of Things will become more of an asset.

The user experience of the Internet of Things is going to be led by factors such as new sensors, new experience edge architecture and context, and of course new and different algorithms. We will then need to adopt new ways without the use of screens or keyboards, and definitely no voice assistant.

There will also be a massive increase of the Smart Homes. App developers have increased the Smart apps that we use, and are developing apps that will make our homes interact with people. Imagine a world where the home is not only where the heart is, but also the home that directs it’s people on what to do.

This means it will not be too far off before app developers have found a way to make smart cities or smart towns. This possibility that the Internet of Things can mix with responsive cities to lighten the traffic congestion, improve the safety in its community and also look for ways to maintain sustainability.

It is also coming closer to the time when the Internet of Things combines with Artificial Intelligence and we produce the robotic assistants. They will help make all critical decisions that need to be made. This self-learning system will read all analytics and derive any important changes.

App developers already have created many apps for Artificial Intelligence. There is a little robot like ‘friends’ that will assist in teaching your children, they interact with the child and some can have little conversations with the child.

A huge improvement that will be soon possible with the help of app developers is what we can call predictive maintenance. This can prevent the labor costs associated with routine maintenance when it is not necessary. Predictive maintenance could be intelligent apps designed by app development companies to notify before maintenance is needed. This could be helpful in automation businesses as a warning before there is a big issue or major break in a piece of equipment. Maintenance will only be necessary when any change is noted in the process or working gears of the machines.

The benefits of predictive maintenance or predictive skills will help auto and health insurance industries to lessen risks or have payouts when the vehicle, home or health issue would have been maintained as needed.

It may not be too far into the future when we are living like George Jetson and his family did, in the days of our youth and on the television. Was that truly foresight, or just a dumb cartoon made up for kids to laugh at? All the technology that has developed to this point, and app developers continue to make our lives easier with smart apps, I do truly think we are very near George Jetson and his wife. Maybe we will be in flying cars real soon too? Dare we say that we do have skywalks, and some automated ones.

Read more…

The topic of the evolution of technology over the years is a vast one, and any discussion in this matter is bound to be extensive. For this article, we will narrow down our focus to three products of this rapid evolution: the Internet of Things, cloud computing, and mobile app development. To be more precise, we will discuss the impact of cloud computing and IoT on mobile apps and how they have transformed the latter ever since they first burst onto the scene.


Everyone knows that mobile apps are a crucial part of the digital world that we live in, and their development is bound to be affected by factors in the ecosystem. In this context, there are currently two 'factors' that have been in the limelight -- IoT and cloud computing. Among other things, these two phenomena have had a significant impact on the development process and completely transforming how programmers and companies behind mobile apps go about it.


So, let's jump into it and take a closer look at how the Internet of Things and cloud computing have changed the face of mobile app development.

1. Mobile Enterprise Application Platforms: A mobile enterprise application platform, or simply MEAP, is an IoT tool that is meant to ease support for mobile apps and enable developers to make use of cloud computing. Put, it is essentially an extensive collection of multiple resources and services aimed at helping developers quickly build hybrid cross-device mobile apps. MEAPs also ensure that data stored in the cloud is delivered to different devices without a hitch.


2. Enhanced security: Cloud platforms today come fortified with high levels of encryption along with other modern security measures to make sure that data stored in it as secure as it can be. So, what is the cardinal rule when it comes to mobile apps? Ensure thorough and absolute security! So, with the cloud, companies can administer centralized security. Also, let's not forget that the integration of advanced security measures means that any data transfer is utterly safe and secure, thus further fortifying the cloud's position as a leading and trusted resource for mobile apps. Oh, and did we mention the bonus of security? Thanks to more secure mobile apps, business users are more open to adopting enterprise apps.


3. Cross-platform apps: Considering the growth in popularity of cross-platform apps, it isn't surprising to see that the cloud has had a role to play in this context as well. Such apps are necessarily web apps wrapped in a native container, which, interestingly relies on the cloud for data transmission so they can operate on most platforms available in the market.


There is no doubt that mobile app development is nothing like what it used to, say, a decade ago. However, to ensure the success of the mobile apps you build, it is imperative that you continually stayed clued into the latest trends in the market. It will allow you to deliver A1 apps to the demanding customers of today.

Read more…

Drivers are the backbone of the trucking industry and driver retention is one of the biggest concerns. Are you facing issues like driver shortage or driver retention? Advanced technology offers various solutions to transportation industry for such issues. Real-time monitoring, time-saving in shifts, better communication of drivers with managers, etc. simplify the work of drivers. Job dissatisfaction and operational inefficiencies are the major reasons why drivers leave the job. But this can be reduced, let’s see how.

How to improve the job satisfaction of drivers?
Trucking industry relies on the drivers for navigating through complex routes to transport sensitive goods safely and on time. It is a hectic job already and hence it is necessary that the drivers are satisfied with their job. Or else they will leave the job which hampers the business profits. What efforts can be taken for retention of drivers?

Simplifying the Driver’s Work using Technology
Drivers are constantly on the road. Traffic, bad weather conditions, etc. can be very irritating to them. However, using GPS systems, such conditions can be tracked proactively. The drivers can be directed to other routes which are having less traffic or some shifts can be canceled if the routes show bad weathers ahead. The drivers will not be annoyed by waiting for long hours and instead can take rest if the shifts are canceled due to bad weathers.

Automation and digitalization save time and efforts of the drivers. There are mobile apps which keep track of the load on the trucks. It saves the drivers of manual checking of load and also sends messages to the owners about the load. Also, in case of any theft or adding illegal loads to the truck, the owners can get instant messages right on their smartphones.

One such eminent example is the mobile app- Appweigh. It uses Bluetooth-enabled weight sensor to keep the track of the load on your truck. It is a budget-friendly app which combines the sensor and Bluetooth technology. Throughout the shipment of the trucks, the sensors detect the pressure on the tyres and clearly display the weight through AppWeigh on the smartphone of owners or fleet managers. The drivers don’t need to keep manual watch on the weight when the load reaches a certain destination. It is automatically sent to the owners.

Using IoT in Transportation for Better Communication and Time Management
Open communication with the drivers not only ensures transparency but also makes the drivers feel like true partners in the business. It encourages and engages them. Internet of things or IoT in transportation industry is playing a crucial role in connecting technology with people for more accurate results. It connects tools like sensors, RFID systems, GPS systems, smartphones, etc. to each other to gather vital data and communicate it to drivers and owners. Using this data, they can make informed decisions for improving various processes in fleet management. With such transparency, manual errors by drivers can be avoided and small issues can be discussed proactively before they turn into bigger problems.

Technology saves the drivers from keeping manual records of loads, timings, etc. as everything is automatically recorded. It reduces the stress of the drivers and ensures loyalty to the owners.

Making the Driver Health a Priority
Drivers’ health is the most critical topic when it comes to driver retention. A trucking industry can offer health benefits like health insurance plans, nutrition programs, free health screenings, etc. to drivers. Such benefits are an investment in your drivers. Also, the incorporation of smart cameras can reduce the risks of accidents. When the drivers feel safe and cared for their lives, your company reputation improves. They themselves will ask other drivers to join your company.

Giving Performance Incentives and Engaging Drivers
When drivers are appreciated and rewarded for their good work, it inspires them to do better and also be stable with your trucking industry. Financial incentive systems can be used to reward the most productive and safest drivers. Technology can be used to evaluate the drivers’ performance fairly. Real-time coaching and user-friendly solutions to any issues will help the drivers to progress faster and feel supported. The drivers who work hard to improve their performance can be awarded with the performance incentives. This will also encourage and engage fellow drivers. 

 

Conclusion
Smart technologies are providing highly efficient solutions to transportation industry. Along with driver retention, these technologies help in real-time visibility of the processes, maintaining the vehicle health, improving warehouse and yard management, etc. which enormously boost the business profits. IoT in transportation industry provides robust security services to drivers as well as the freight. Reliable data that owners get from smart technical solutions lets them take the right decisions to maintain their workforce. It enhances driver satisfaction and retention rates.

Read more…

The range and depth of applications dependent on IoT sensors continues to swell – from collecting real-time data on the floors of smart factories, to monitoring supply chains, to enabling smart cities, to tracking our health and wellness behaviors. The networks utilizing IoT sensors are capable of providing critical insights into the innerworkings of vast systems, empowering engineers to take better informed actions and ultimately introduce far greater efficiency, safety, and performance into these ecosystems. 

One outsized example of this: IoT sensors can support predictive maintenance by detecting data anomalies that deviate from baseline behavior and that suggest potential mechanical failures – thus enabling an IoT-fueled organization to repair or replace components before issues become serious or downtime occurs. Because IoT sensors provide such a tremendous amount of data pertaining to each particular piece of equipment when in good working condition, anomalies in that same data can clearly indicate issues.

Looking at this from a data science perspective, anomalies are rare events which cannot be classified using currently available data examples; anomalies can also come from cybersecurity threats, or fraudulent transactions. It is therefore vital to the integrity of IoT systems to have solutions in place for detecting these anomalies and taking preventative action. Anomaly detection systems require a technology stack that folds in solutions for machine learning, statistical analysis, algorithm optimization, and data-layer technologies that can ingest, process, analyze, disseminate, and store streaming data from myriad IoT sources.

But that said, actually creating an IoT anomaly detection system remains especially challenging given the large-scale nature inherent to IoT environments, where millions or even billions of data events occur daily. To be successful, the data-layer technologies supporting an IoT anomaly detection system must be capable of meeting the scalability, computational, and performance needs fundamental to a successful IoT deployment.

I don’t work for a company that sells anomaly detection, but I – along with colleagues on our engineering team – recently created an experimental anomaly detection solution to see if it could stand up to the specific needs of large-scale IoT environments using pure open source data-layer technologies (in their 100% open source form). The testing utilized Apache Kafka and Apache Cassandra to produce an architecture capable of delivering the features required for IoT anomaly detection technology from the perspectives of scalability, performance, and realistic cost effectiveness. In addition to matching up against these attributes, Kafka and Cassandra are highly compatible and complementary technologies that lend themselves to being used in tandem. Not fully knowing what to expect, we went to work.

In our experiment, Kafka, Cassandra, and our anomaly detection application are combined in a Lambda architecture, with Kafka and our streaming data pipeline serving as the speed layer, and Cassandra acting as the batch and serving layer. (See full details on GitHub, here.) Kafka enables rapid and scalable ingestion of streaming data, while leveraging a “store and forward” technique that acts as a buffer for ensuring that Cassandra is not overwhelmed when data surges spike. At the same time, Cassandra provides a linearly scalable, write-optimized database well-suited to storing the high-velocity streaming data produced by IoT environments. The experiment also leveraged Kubernetes on AWS EKS, to provide automation for the experimental application’s provisioning, deployment, and scaling. 

We progressed through the development of our anomaly detection application test using an incremental approach, continually optimizing capabilities, monitoring, debugging, refining, and so on. Then we tested scale: 19 billion real-time events per day were processed, enough to satisfy the requirements of most any IoT use case out there. Achieving this result meant scaling out the application from three to 48 Cassandra nodes, while utilizing 574 CPU cores across Cassandra, Kafka, and Kubernetes clusters. It also included maintaining a peak 2.3 million writes per second into Kafka, for a sustainable 220,000 anomaly checks per second.

In completing this experiment, we’ve demonstrated a method that IoT-centric organizations can use for themselves in building a highly scalable, performant, and affordable anomaly detection application for IoT use cases, fueled by leveraging the unique advantages offered by pure open source Apache Kafka and Cassandra at the all-important data layer.

Read more…
The recent advent of additive manufacturing for printed electronics, for example, has made engineering and design labs game-changing R&D enablers. Engineers will soon find themselves able to quickly, accurately and cost-effectively design and build functional electronics in new shapes with added functionality without having to wait weeks or months to understand whether their smart device works or not. The greater design freedom, compressed project timelines and fully in-house workflows afforded by 3D printing are setting the stage for the long-awaited IoT revolution. These advantages ultimately increase product and cost efficiencies and reduce time to market, meaning consumer can enjoy the benefits of these products faster than ever before.
Read more…

Considering that the IoT is in its infancy and due to the last years wasted in predictions that have not been fulfilled, in disappointing statistics of successful projects and with most companies without clear strategies, it is normal to think that R & D is today so necessary for boost and accelerate this increasingly sceptical market.

R&D should be an essential part of bringing innovation to any company via IoT projects. And though we can all agree how important R&D is, it requires a great deal of experience, senior experts, and specific toolsets—resources that not every company can say they have handy.

However, there is a risk when deriving the strategic decisions that the executive directors consider to be technological towards the R & D departments. Many times, oblivious to the reality of the markets, those responsible for R & D with the invaluable aid of the subsidies of the different Administrations, they launch to develop products and technologies for problems that do not exist, just for the fact of obtaining recognition or to continue living without pressures of the Top Management. I am enemy of granted subsidies granted most of the time by unqualified Administration organisms that does not understand that need to prevail the utility, the business model, the business case and the commercialization over the innovation that R & D said to be developed.

Now, if we ask the sellers of IoT technology, products and services, they may not be so happy with the idea of having to talk with the R & D areas instead of with other areas of the company more likely to buy. Most time, R &D departments decide to do it themselves. Vendors know, that with great probability, they will not to close deals due to lack of budget of the R &D or the low visibility of this area by the rest of the departments of the company.

The Importance of R&D for the Internet of Things

Innovation in IoT is a major competitive differentiator. See below some advices to have a decisive advantage over competitors:

  • IoT-focused companies need to invest in R&D to keep up with the rapidly changing and expanding market. It is important that an organization’s R&D iteration turn times are quick, otherwise the company is not going to be able to keep pace with the expected IoT market growth. However, it’s not enough to simply speed up R&D—innovative IoT firms, both start-ups and established companies, must also make sure their R&D processes are extremely reliable.
  • You can’t solve R&D speed issues just by increasing budget.
  • Executives must maintain strong, steady communication with R&D regarding the department’s priorities over a particular time frame and how progress will be measured.
  • Guidelines are invaluable: The more structured and streamlined R&D procedures are, the better IoT companies will be able to move from conception to delivery.
  • Design innovative IoT products but accelerate time to market.
  • Internal collaboration: R&D team should share real-time data across internal departments to spur intelligent product design
  • External collaboration: Connect with customers and partners to ensure success
  • Differentiation: Drive overall business value with IoT.

 

 

Outsource or not Outsource R & D for your IoT project

Just like any other technology, IoT products and solutions require thorough research and development, and it better be done by professionals. Despite the noise generated by analysts and companies around the IoT, the reality is that there have not been many IoT projects and therefore it is not easy to find good professionals with proven experience in IoT to hire.

When I think of Outsourcing IoT projects, Eastern European and Indian companies immediately come to my mind. No doubt because the R & D talent seems to be cheaper there. Spain could also be a country to outsource IoT, but at the moment I do not see it.

The benefits of Outsourcing R&D for IoT Projects:

  • Expertise and an Eye for Innovation
  • Bring an IoT Project to Market Faster
  • Optimize Your Costs
  • Control and Manage Risks

I am not sure about the quality of most of these companies or the experience of their teams in the development of IoT products or in the implementation of IoT projects, but there is no doubt that there are benefits to Outsource R & D for some IoT Projects. You should select any of these companies after a careful evaluation.

Recommendation: Do not stop your IoT projects if you do not have the skills and professionals in house. Luckily, there are companies who offer outsourcing R&D for IoT projects.

Note: Remember I can help you to identify and qualify the most suitable Outsource R&D for your IoT project.

Spain is not different in R & D for IoT

I have not believed in R & D in Spain for years. There are exceptions without a doubt, but it seems evident that the prosperity and welfare of Spain is not due to our R & D. Fortunately we have sun and beach and a lot of brick to put in houses that are not sold because of high prices and low wages.

With the entry into the EU, I thought that we had great markets open to us. I was also optimistic that we would have great opportunities in the Latin American market, thanks to the fact that our research and development capacity would have been consolidated effectively in our companies and universities because it would be profitable and worldwide recognized.

But it has not been that way. The technology developed in Spain and more specifically that relating to the IoT has little chance of being commercialized in France, Germany and not to mention in the UK. If we add the development gap of the countries of South America and that our local market is averse to technological risk, it is difficult to flourish R & D in IoT or Industry 4.0 here in our lovely Spain.

That does not mean that we do not have public R & D budgets for these areas. What happens is that the same thing that happened during the last 30 years has happened. The incentives and aids are few and for the most part used to finance large companies with little return to society. There is no rigorous control of the aid granted and, above all, there is no plan to encourage the local and global marketing of the products developed with the talent of our scientists and researchers.

I have stopped believing and trusting in our successive Governments for the change in R & D but there are exceptions that are worthwhile to follow and work with them. For this reason, I continue help them demonstrate that “SPAIN CAN BE DIFFERENT”.

Key Takeaway

After years of unfulfilled expectations, companies are sceptical of the potential growth of the IoT market or the benefits in their business. R&D department can be a cure to boost IoT initiatives but also a poison to kill IoT initiatives.

 

IoT may have started in R&D, but their benefits don’t have to end there. To drive overall business value, it’s important to share IoT data – both internally and externally. Facilitating open collaboration, discovering new ways to innovate products, and accelerating time to market, you can differentiate R&D and your business.

As fast turn times and reliability becomes a focal part of companies’ R&D processes, these companies will be well-positioned to thrive within the IoT market.

Thanks for your Likes and Comments

Read more…

IoT in Secondary Education

Elements of IoT are being shared with secondary students in classrooms all around the world.  My contribution to this educational arena has been toward the design and implementation of IoT curriculum.  My first attempt at such a curriculum was in partnership with a technology camp company called Young Hacks Academy for which I designed their IoT curriculum.  You can see a presentation of the core curriculum here.

I recently revisted the YHA IoT curriculum I developed and am ready for a complete rewrite.  I encourage potential collaborators in the IoT space to reach out to me if interested.  My first effort towards rewriting some of my IoT curriculum is to integrate my CS1 Game Engine, for multiplayer progressive web applications, with IoT components.  At this point I have only written a very basic example which can be seen in the tech demo for the CS1 Game Engine.  I have made a Glitch project for the CS1 Game Engine here.  You can log into the CS1 Game Engine tech demo with username computer or science, both with password 1234.

Please reach out to me if you are interested in raising the bar for IoT in secondary education.

 

Sincerely,

Eric Eisaman

LinkedIn

 

Read more…

There is no doubt about the capability of IoT the way it is spearheading in the smart technology market by providing innovative solutions to various industries.


Advanced industries, smart vehicles, smarter cities, smart home and more have already under the influence of the IoT touch. However, IoT in farming is the new trend that has geared up for a while. And why not?

Do you know the global population is growing at a rapid speed. It is about to touch 9.6 billion by 2050. And to feed this much of the population there has to be an innovative way to compensate this need. IoT comes as a silver bullet solution for it.

The way IoT is helping out farmers and farm owners is commanding. The upcoming years are expecting more inventions in farming by different IoT applications.

This article explains the different ways of smart farming and effective applications of IoT in smart farming.

Precision Farming

To make the Farming practice more productive and accurate precision agriculture (also known as precision farming) is used.

Basically, this is done through installing or using some sensors, smart devices, robots, drones, autonomous vehicles, and so on. By doing so farming can be made so systematic and well maintained thereby raising livestock and growing crops in a smart way.

The adoption of access to high-speed internet, low-cost satellites, mobile devices by the manufactures are few mostly used agriculture IoT technologies.

Numerous organizations are leveraging this technology on ultramodern agronomic solutions due to the popularity of precision agriculture.

The soil moisture probe technology is an amazing example of IoT in smart farming. It provides complete in-season local agronomy support, and recommendation to optimize water use efficiency.

Drones for Agriculture

Technology in farming is changing for a good and what better example would it be than Agriculture Drones. Today, agriculture is the leading industry to integrate drones for better results.

Agricultural drones are best to monitor crop, crop health assessment, irrigation, crop spraying, planting , and soil and field analysis.

The prime benefits of using drones in agriculture are health imaging, GIS mapping, saves time, increase crop yields.

Precision Hawk is a company that uses drones for collecting valuable information via a series of sensors. Mostly these sensors are used for imaging, mapping, and surveying of agricultural land.

Drones are used to do in-flight monitoring and observations. The farmers can easily access by entering details of the field they want to survey and select the altitude or ground resolutions.

From the information of the drone, we can draw insights regarding the plant’s health indices, plan counting and yield prediction, and plant measurement. We pressure mapping, drainage mapping, nitrogen content, scouting report and so on.

Livestock Monitoring

Wireless IoT applications are used by the large farm owners to gather the data regarding the location, well-being, and health of their cattle.
This data helps them in identifying sick animals to separate them from the herd thereby preventing the spread of disease. It also lowers the cost off labors as it locates their cattle with the IoT based sensors.

There is a company called JMB North America which offers cow monitoring solution to cattle producers. One solutions let owners of the production company to monitor if the cow is pregnant or not.

Smart Greenhouse

Greenhouse farming is a method which helps in enhancing the yield of fruits, veggies, and crops. Greenhouses control regulate the environmental parameters through manual intervention results in production loss, energy loss, and labor cost. These methods are less effective.

With IoT, you can build a smart greenhouse which will monitor as well as controls the climate reducing the need for manual intervention.

Different sensors that measure environmental parameters according to plant are used for controlling the environment in the smart greenhouse. Additionally, we can create a cloud server for remote access when it is connected using IoT.

The sensors used in IoT provide data on the light levels, pressure, humidity, and temperature. It can control the actuators to open a window, turn on/off lights, controlling a heater, all connected through a Wifi signal. 

Conclusion

Farmers and rancher are relieved to have an IoT agricultural application making it possible to-gather meaning full information. Large landowners should understand the potential of the IoT market for agricultural.

If you are willing to integrate IoT in smart farming, you should approach for Leading IoT App Development Company and leverage the benefits of IoT.

Read more…

 

 

Picture Courtesy: Pixabay

 

Recently I have attended an IoT conference where three presentations caught my attention:

Presentation 1: Development of IoT. This presentation was held by an IoT expert representing a renowned IT company. He proudly spoke about pioneering IoT projects his company is working on:

(1) A smart house, equipped with sensors from sofa to the main gate, with a notification feature in case of any abnormal activities.

(2) A robot arm which performs a quality assurance test by detecting flaws in a manufactured part and communicating the error via sound or speech. The message delivered: These robots are being taught, by means of AI, to take over the human work. The presentation of these projects elicited a big round of applause as the audience just witnessed the future development of the digitally empowered products and AI. The whole enthusiasm turned into confusion as the second speaker came up with his presentation.

Presentation 2: Disruption of IoT. This presentation was held by a cybersecurity startup company, founded by a couple of ethical hackers, which highlighted the risks of minor security loopholes in almost all IoT applications. The speaker ended most of his statements with “this can ruin the end user or even lead to fatal consequences”. Examples he provided included hacking and manipulating a pace-maker, remote hijacking a plane, manipulating a smart house to cause a false alarm or open the doors, hacking the industrial IoT to manipulate the processes, copying bitcoins and so on.  For those who think that brownfield manufacturing is still an unknown world for hackers: The last 5 minutes of his time, he utilized hacking live into a legacy SCADA system. What the gentleman also stated is that the hackers are always a step ahead of what society thinks the latest development in the field of cybersecurity and that the hackers view each and every sensor as a potential “doorway” to the system sitting behind it.  His presentation left us all questioning the digitalization trend (or opening more doors to the hackers) and associated risks.

Presentation 3: Disruption by IoT. The speaker from a renowned MNC highlighted the upcoming manpower crisis. The creation and operation of IoT applications oftentimes demand a different set of skills. Companies are investing heavily in IoT projects and they are either hiring IT experts or outsourcing the complete development.  This comes at the cost of shutting down entire business units and laying off hundreds of employees. Big organizations term it as restructuring. But the story does not end here. Once the smart machines take over more human jobs, then there will be an era of huge job scarcity. What will the society do with workers (let’s say all with an average age of 50), whose work has been taken over by the sophisticated robots?

I guess I do not have to tell you how these three cases are interlinked. These three presentations gave the audience a good food for thought as everyone was talking about them in one or the other context. The discussion however revolved around one question which I would like to ask here as well:

How much of IoT is too much?

 

Read more…

Heavy equipment is mainly used extensively in industries such as construction, oil and gas, mining, forestry, energy, civil engineering, military engineering, transportation, and many others. Industrial heavy machines include construction equipment, wheel loaders, oilfield pieces, manufacturing equipment, earthmovers, hydraulic cranes, bulldozers, oversized trucks, forklifts, and more. Organizations rely on heavy machinery to speed up production and to avoid human errors or health risks.

With developments in IoT, it is possible to decrease equipment downtime while improving the efficiency of the output. Companies that supply industrial machinery and components are seeing strong interest in connected machinery and components which providing many IoT consulting Companies. IoT-powered asset management solutions offer a host of benefits, including predictive maintenance to prevent equipment failure, increased asset reliability, improved asset health, accident avoidance in the workplace, and downtime reduction.

Smart Asset Monitoring with IoT

Safety of personnel and assets, theft or pilferage of assets, accidents and resulting injuries, and bottlenecks in the supply chain are some of the common challenges that are prevalent in asset-intensive industries like manufacturing, utilities, construction. By improving visibility into day-to-day operations, replacing legacy systems with an integrated solution and automating manual processes, many of these challenges can be overcome. 

Digitalization, combining connected devices with IoT-based solutions, can help to overcome these issues. End-to-end clarity on the status of the equipment enables improved decision-making, increases asset reliability, and also improves the people and process efficiency. With the advances in technology, mature organizations have heavy machinery that is computerized, automated and enabled with connectivity and big data analytics, which increases the efficiency of the overall product development process.

Use cases: IoT in heavy machinery management

Let’s take a look at some of the use cases where IoT is transforming the way heavy equipment and related assets are managed.

Smart heavy equipment in warehouse management

Material handling equipment like trucks, forklifts, pallet trucks, and pump trucks are very important for any warehouse to perform daily activities such as loading, unloading, transporting goods to different areas, and picking goods from risky areas. Needless to say, these machines and their operators need to be managed properly to minimize the chances of accidents. Warehouse operators need to take preventive measures for vehicle accidents and injuries that occur while from shifting material, and take proper care while handling hazardous materials.

Today, futuristic warehouses are using driverless robotic equipment to assist in picking and moving operations. Guidance systems like global positioning system (GPS), lasers, and radio-frequency identification (RFID) are used in such warehouses and equipment.

For example, advanced driverless pallet trucks and forklifts are equipped with audible warnings and lights and have built-in sensors to detect obstructions. These sensors come with lasers or camera systems, which are positioned to detect objects and activity from the floor and are able to determine the height and distance around all sides of vehicles and warehouse corners. This makes the equipment intelligent – it knows when to slow down and stop to avoid a collision.

With the recent advances in IoT for warehouse equipment, the market has a new breed of smart forklifts that come equipped with 360-degree detection forklift antenna, which is able to detect when the workers come into forklift zone. When a worker is detected within the predefined danger zone, audio and visual alarms are set off inside the forklift cab to alert the driver. This helps to reduce the risk of injuries and property damage.

Smart heavy equipment in the construction sector

According to a MarketandMarkets report, the heavy construction equipment market size is estimated to grow from USD 121.46 Billion in 2015 to USD 180.66 Billion by 2020, at a CAGR of 7.0%. Depending on the construction application, heavy machines are mainly categorized into four types:

  • Earth moving equipment
  • Construction vehicles
  • Material handling equipment
  • Construction equipment

Wireless technology has a huge impact on the construction industry to provide connectivity for heavy equipment. These machines use technology-enabled devices combined with cloud computing, allowing storage and sharing of data.

IoT is playing a key role in boosting productivity, improving preventive maintenance, minimizing downtime, and reducing repair costs. Sensors integrated with the equipment are able to detect and send automated alerts related to the status of the equipment systems and parts. They can also compile and analyze usage and maintenance data, helping with preventive and predictive maintenance.

 

One of the major problems in the construction industry are injuries caused due to accidents involving people and heavy equipment. As the number of heavy equipment continues to rise, the risk also increases. IoT can help to make the equipment smarter and safer.

Additionally, IoT can help to track assets as they move around the site, or to a different site, ensuring that the assets are never stolen or lost – an ongoing issue on large construction sites that causes delays and decreases productivity.

Smart heavy equipment in transport and logistics

Transportation and logistics businesses want to optimize the supply chain. Many transportation companies are already using mobile devices, such as barcode scanners, mobile computing devices, and radio frequency identification (RFID) to solve challenges related to the supply chain. With RFID, many companies are achieving a high level of shipping and receiving accuracy, inventory accuracy, and faster order processing, along with a reduction in labor costs.

However,  due to drivers’ careless behavior, while driving heavy trucks or conveyors, company owners have to shell out a big amount for accident-related injuries, material loss or shipping delays. By using advanced technology that is capable of monitoring driver’s behavior and delivering alerts in case of possible collisions, the risk of these issues can be minimized.

Computer vision-based techniques and ADAS solutions, with a number of onboard sensors, can help with lane detection, traffic signal detection, driver behavior detection, GPS tracking, fuel management, report generation, notification alert, and predictive maintenance.

Using such solutions, the driver receives support to detect and avoid accidents. It is also possible to monitor a driver operating a heavy machine and automatic alerts can be generated if the driver is sleepy or inactive for a long duration.

Another effective solution for tracking of heavy machines/vehicles is based on installing GPS fleet tracking devices on the vehicles to gain real-time data updates. This is an efficient and secure solution that helps to resolve issues related to operational inefficiencies, theft, and fleet maintenance, increasing the overall productivity of the machines and vehicles.

Read more…

Upcoming IoT Events

More IoT News

How wearables can improve healthcare | TECH(talk)

Wearable tech can help users track their fitness goals, but these devices can also give wearers ownership of their electronic health records. TECH(talk)'s Juliet Beauchamp and Computerworld's Lucas Mearian take a look at how wearable health tech can… Continue

IoT Career Opportunities