Subscribe to our Newsletter | To Post On IoT Central, Click here


data (4)

Antarctica inhabits a unique place in the human exploration mythos. The vast expanse of uninhabitable land twice the size of Australia has birthed legendary stories of human perseverance and cautionary tales about the indomitable force of nature. However, since those early years, Antarctica has become a rich research center for all different kinds of data collection – from climate change, to biology, to seismic and more. And although today there are many organizations with field stations running this data collection, the nature of its, well, nature still presents daily challenges that technology has had a hand in helping address.

Can You Send Data Through Snow?

British Antarctic Survey (BAS) – of recent Boaty McBoatface fame – has been entrenched in this brutal region for over 60 years, the BAS endeavors to gather data on the polar environment and search for indicators of global change. Its studies of sediments, ice cores, meteorites, the polar atmosphere and ever-changing ice shelves are vitally important and help predict the global climate of the future. Indeed, the BAS is one of the most essential research institutions in the world.

In addition to two research ships, five aircraft and five research stations, the BAS relies on state of the art data gathering equipment to complete its mission. From GPS equipment to motion and atmospheric sensors, the BAS deploys only the most precise and reliable equipment available to generate data. Reliable equipment is vital because of the exceedingly high cost of shipping and repair in such a remote place.

To collect this data, BAS required a network that could reliably transmit it in what could be considered one of the harshest environments on the planet. This means deploying GPS equipment, motion and atmospheric sensors, radios and more that could stand up to the daily tests.

In order to collect and transport the data in this harsh environment, BAS needed a ruggedized solution that could handle both the freezing temperatures (-58 degrees F in the winer), strong winds and snow accumulation. Additionally, the solution needed to be low power due to the region’s lack of power infrastructure.

 The Application

Halley VI Research Station is a highly advanced platform for global earth, atmospheric and space weather observation. Built on a floating ice shelf in the Weddell Sea, Halley VI is the world’s first re-locatable research facility. It provides scientists with state-of-the-art laboratories and living accommodation, enabling them to study pressing global problems from climate change and sea-level rise to space weather and the ozone hole (Source: BAS website).

The BAS monitors the movement of Brunt Ice Shelf around Halley VI using highly accurate remote field site GPS installations. It employs FreeWave radios at these locations to transmit data from the field sites back to a collection point on the base.

Once there, the data undergoes postprocessing and is sent back to Cambridge, England for analysis. Below are Google Maps representation of the location of the Halley VI Research Station and a satellite image (from 2011) shows the first 9 of the remote GPS systems in relation to Halley VI.

The Problem

Data transport and collection at Halley VI requires highly ruggedized, yet precise and reliable wireless communication systems to be successful. Antarctica is the highest, driest, windiest and coldest region on earth and environmental condition are extremely harsh year round. Temperatures can drop below -50°C (-58 °F) during the winter months.

Winds are predominantly from the east. Strong winds usually pick up the dusty surface snow, reducing visibility to a few meters. Approximately 1.2 meters of snow accumulates each year on the Brunt Ice Shelf and buildings on the surface become covered and eventually crushed by snow.

This part of the ice shelf is also moving westward by approximately 700 meters per year. There is 24-hour darkness for 105 days per year when Halley VI is completely isolated from the outside world by the surrounding sea ice (Source: BAS Website).

Additionally, the components of the wireless ecosystem need to be low power due to the region’s obvious lack of power infrastructure. These field site systems have been designed from ‘off the shelf’ available parts that have been integrated and ‘winterized’ by BAS for Antarctic deployment.

The Solution

The BAS turned to wireless data radios from FreeWave that ensure uptime and that can transport data over ice – typically a hindrance to RF communications. Currently, the network consists of 19 FreeWave 900 MHz radios, each connected to a remote GPS station containing sensors that track the movement of the Brunt Ice Shelf near the Halley VI Research Station.

The highly advanced GPS sensors accurately determine the Shelf’s position and dynamics, before reporting this back to a base station at Halley VI. Throughput consists of a 200 kilobit file over 12 minutes, and the longest range between a field site and the research station is approximately 30 kilometers.

Deployment of the GPS field site is done by teams of 3-4 staff using a combination of sledges and skidoo, or Twin Otter aircraft, depending on the distance and the abundance of ice features such as crevassing. As such, wireless equipment needed to be lightweight and easy to install and configure because of obvious human and material resource constraints.

In addition, the solution has to revolve around low power consumption. FreeWave radios have more than two decades of military application and many of the technical advancements made in collaboration with its military partners have led to innovations around low power consumption and improved field performance. The below image shows an example of a BAS remote GPS site, powered by a combination of batteries, a solar panel and a wind turbine (penguin not included).

FreeWave Technologies has been a supplier to the BAS for nearly a decade and has provided a reliable wireless IoT network in spite of nearly year-round brutal weather conditions. To learn more, visit: http://www.freewave.com/technology/.

Read more…

Article: A Brief History of Field Programmable Devices (FPGAs)-data-analytics-alone-cannot-deliver-effective-automation-solutions-industrial-iot-min-jpg

By Akeel Al-Attar. This article first appeared here

Automated analytics (which can also be referred to as machine learning, deep learning etc.) are currently attracting the lion’s share of interest from investors, consultants, journalists and executives looking at technologies that can deliver the business opportunities being afforded by the Internet of Things. The reason for this surge in interest is that the IOT generates huge volumes of data from which analytics can discover patterns, anomalies and insights which can then be used to automate, improve and control business operations.


One of the main attractions of automated analytics appears to be the perception that it represents an automated process that is able to learn automatically from data without the need to do any programming of rules. Furthermore, it is perceived that the IOT will allow organisations to apply analytics to data being generated by any physical asset or business process and thereafter being able to use automated analytics to monitor asset performance, detect anomalies and generate problem resolution / trouble-shooting advice; all without any programming of rules!

In reality, automated analytics is a powerful technology for turning data into actionable insight / knowledge and thereby represents a key enabling technology for automation in Industrial IOT. However, automated analytics alone cannot deliver complete solutions for the following reasons:

i- In order for analytics to learn effectively it needs data that spans the spectrum of normal, sub normal and anomalous asset/process behaviour. Such data can become available relatively quickly in a scenario where there are tens or hundreds of thousands of similar assets (central heating boilers, mobile phones etc.). However, this is not the case for more complex equipment / plants / processes where the volume of available faults or anomalous behaviour data is simply not large enough to facilitate effective analytics learning/modelling. As a result any generated automated analytics will be very restricted in its scope and will generate a large number of anomalies representing operating conditions that do not exist in the data.

ii- By focussing on data analytics alone we are ignoring the most important asset of any organisation; namely the expertise of its people in how to operate plants / processes. This expertise covers condition / risk assessment, planning, configuration, diagnostics, trouble-shooting and other skills that can involve decision making tasks. Automating ‘Decision making’ and applying it to streaming real-time IOT data offers huge business benefits and is very complementary to automated analytics in that it addresses the very areas in point 1 above where data coverage is incomplete, but human expertise exists.

Capturing expertise into an automated decision making system does require the programming of rules and decisions but that need not be a lengthy or cumbersome in a modern rules/decision automation technology such as Xpertrule. Decision making tasks can be represented in a graphical way that a subject matter expert can easily author and maintain without the involvement of a programmer. This can be done using graphical and easy to edit decision flows, decision trees, decision tables and rules. From my experience in using this approach, a substantial decision making task of tens of decision trees can be captured and deployed within a few weeks.

Given the complementary nature of automated analytics and automated decisions, I would recommend the use of symbolic learning data analytics techniques. Symbolic analytics generate rules/tree structures from data which are interpretable and understandable to the domain experts. Whilst rules/tree analytics models are marginally less accurate than deep learning or other ‘blackbox models’, the transparency of symbolic data models offer a number of advantages:

i- The analytics models can be validated by the domain experts
ii- The domain experts can add additional decision knowledge to the analytics models
iii- The transparency of the data models gives the experts insights into the root causes of problems and highlights opportunities for performance improvement.

Combining automated knowledge from data analytics with automated decisions from domain experts can deliver a paradigm shift in the way organisations use IOT to manage their assets / processes. It allows organisations to deploy their best practice expertise 24/7 real time throughout the organisation and rapidly turn newly acquired data into new and improved knowledge.

Below are example decision and analytics knowledge from an industrial IOT solution that we developed for a major manufacturer of powder processing mills. The solution monitors the performance of the mills to diagnose problems and to detect anomalous behaviour:

The Fault diagnosis tree below is part of the knowledge captured from the subject matter experts within the company

Article: A Brief History of Field Programmable Devices (FPGAs)-fault-diagnosis-tree-min-jpg



The tree below is generated by automated data analytics and relates the output particle size to other process parameters and environmental variables. The tree is one of many analytics models used to monitor anomalous behaviour of the process.

Article: A Brief History of Field Programmable Devices (FPGAs)-automated-data-analytics-min-jpg



The above example demonstrates both the complementary nature of rules and analytics automation and the interpretability of symbolic analytics. In my next posting I will cover the subject of the rapid capture of decision making expertise using decision structuring and the induction of decision trees from decision examples provided by subject matter experts.

Read more…

Upcoming IoT Events

More IoT News

IoT Career Opportunities