Subscribe to our Newsletter | To Post On IoT Central, Click here


gartner (3)

 

As we covered in the past, Gartner is out with their predictions for IoT. This time for the year's 2018-2023. The announcement was made at the Gartner Symposium/ITxpo 2018 in Barcelona, Spain. 

Nick Jones, research vice president at Gartner said, “The IoT will continue to deliver new opportunities for digital business innovation for the next decade, many of which will be enabled by new or improved technologies. CIOs who master innovative IoT trends have the opportunity to lead digital innovation in their business.”

And CIOs if you're not paying attention, get on it. Gartner says you need skills and partners to support IoT. Come 2023 the average CIO will be responsible for more than three times as many endpoints as this year.

Gartner shortlisted the 10 most strategic IoT technologies and trends that will enable new revenue streams and business models, as well as new experiences and relationships:

Trend No. 1: Artificial Intelligence (AI)

Gartner forecasts that 14.2 billion connected things will be in use in 2019, and that the total will reach 25 billion by 2021, producing immense volume of data. “Data is the fuel that powers the IoT and the organization’s ability to derive meaning from it will define their long term success,” said Mr. Jones. “AI will be applied to a wide range of IoT information, including video, still images, speech, network traffic activity and sensor data.”

The technology landscape for AI is complex and will remain so through 2023, with many IT vendors investing heavily in AI, variants of AI coexisting, and new AI-based tolls and services emerging. Despite this complexity, it will be possible to achieve good results with AI in a wide range of IoT situations. As a result, CIOs must build an organization with the tools and skills to exploit AI in their IoT strategy.

Trend No. 2: Social, Legal and Ethical IoT

As the IoT matures and becomes more widely deployed, a wide range of social, legal and ethical issues will grow in importance. These include ownership of data and the deductions made from it; algorithmic bias; privacy; and compliance with regulations such as the General Data Protection Regulation.

“Successful deployment of an IoT solution demands that it’s not just technically effective but also socially acceptable,” said Mr. Jones. “CIOs must, therefore, educate themselves and their staff in this area, and consider forming groups, such as ethics councils, to review corporate strategy. CIOs should also consider having key algorithms and AI systems reviewed by external consultancies to identify potential bias.”

Trend No. 3: Infonomics and Data Broking

Last year’s Gartner survey of IoT projects showed 35 percent of respondents were selling or planning to sell data collected by their products and services. The theory of infonomics takes this monetization of data further by seeing it as a strategic business asset to be recorded in the company accounts. By 2023, the buying and selling of IoT data will become an essential part of many IoT systems. CIOs must educate their organizations on the risks and opportunities related to data broking in order to set the IT policies required in this area and to advise other parts of the organization.

Trend No. 4: The Shift from Intelligent Edge to Intelligent Mesh

The shift from centralized and cloud to edge architectures is well under way in the IoT space. However, this is not the end point because the neat set of layers associated with edge architecture will evolve to a more unstructured architecture comprising of a wide range of “things” and services connected in a dynamic mesh. These mesh architectures will enable more flexible, intelligent and responsive IoT systems — although often at the cost of additional complexities. CIOs must prepare for mesh architectures’ impact on IT infrastructure, skills and sourcing.

Trend No. 5: IoT Governance

As the IoT continues to expand, the need for a governance framework that ensures appropriate behavior in the creation, storage, use and deletion of information related to IoT projects will become increasingly important. Governance ranges from simple technical tasks such as device audits and firmware updates to more complex issues such as the control of devices and the usage of the information they generate. CIOs must take on the role of educating their organizations on governance issues and in some cases invest in staff and technologies to tackle governance.

Trend No. 6: Sensor Innovation

The sensor market will evolve continuously through 2023. New sensors will enable a wider range of situations and events to be detected, current sensors will fall in price to become more affordable or will be packaged in new ways to support new applications, and new algorithms will emerge to deduce more information from current sensor technologies. CIOs should ensure their teams are monitoring sensor innovations to identify those that might assist new opportunities and business innovation.

Trend No. 7: Trusted Hardware and Operating System

Gartner surveys invariably show that security is the most significant area of technical concern for organizations deploying IoT systems. This is because organizations often don’t have control over the source and nature of the software and hardware being utilised in IoT initiatives. “However, by 2023, we expect to see the deployment of hardware and software combinations that together create more trustworthy and secure IoT systems,” said Mr. Jones. “We advise CIOs to collaborate with chief information security officers to ensure the right staff are involved in reviewing any decisions that involve purchasing IoT devices and embedded operating systems.”

Trend 8: Novel IoT User Experiences

The IoT user experience (UX) covers a wide range of technologies and design techniques. It will be driven by four factors: new sensors, new algorithms, new experience architectures and context, and socially aware experiences. With an increasing number of interactions occurring with things that don’t have screens and keyboards, organizations’ UX designers will be required to use new technologies and adopt new perspectives if they want to create a superior UX that reduces friction, locks in users, and encourages usage and retention.

Trend No. 9: Silicon Chip Innovation

“Currently, most IoT endpoint devices use conventional processor chips, with low-power ARM architectures being particularly popular. However, traditional instruction sets and memory architectures aren’t well-suited to all the tasks that endpoints need to perform,” said Mr. Jones. “For example, the performance of deep neural networks (DNNs) is often limited by memory bandwidth, rather than processing power.”

By 2023, it’s expected that new special-purpose chips will reduce the power consumption required to run a DNN, enabling new edge architectures and embedded DNN functions in low-power IoT endpoints. This will support new capabilities such as data analytics integrated with sensors, and speech recognition included in low cost battery-powered devices. CIOs are advised to take note of this trend as silicon chips enabling functions such as embedded AI will in turn enable organizations to create highly innovative products and services.

Trend No. 10: New Wireless Networking Technologies for IoT

IoT networking involves balancing a set of competing requirements, such as endpoint cost, power consumption, bandwidth, latency, connection density, operating cost, quality of service, and range. No single networking technology optimizes all of these and new IoT networking technologies will provide CIOs with additional choice and flexibility. In particular they should explore 5G, the forthcoming generation of low earth orbit satellites, and backscatter networks.

Gartner clients can learn more in the report “Top Strategic IoT Trends and Technologies Through 2023.”

Photo credit: Jim Templeton Cross www.templeton-cross.com, Gartner Symposium/ITxpo Barcelona 2011

Read more…

Gartner recently released their 2017 Emerging Technologies Hype Cycle. Where do IoT Platforms stand? At the peak of inflated expectations!

Do you agree?

Gartner says that the hype cycle reveals three distinct megatrends that will enable businesses to survive and thrive in the digital economy over the next five to 10 years. (See graphic below).

Artificial intelligence (AI) everywhere, transparently immersive experiences and digital platforms are the trends that will provide unrivaled intelligence, create profoundly new experiences and offer platforms that allow organizations to connect with new business ecosystems.

The Emerging Technologies Hype Cycle is unique among most Gartner Hype Cycles because it garners insights from more than 2,000 technologies into a succinct set of compelling emerging technologies and trends. This Hype Cycle specifically focuses on the set of technologies that is showing promise in delivering a high degree of competitive advantage over the next five to 10 years.

"Enterprise architects who are focused on technology innovation must evaluate these high-level trends and the featured technologies, as well as the potential impact on their businesses," said Mike J. Walker, research director at Gartner. "In addition to the potential impact on businesses, these trends provide a significant opportunity for enterprise architecture leaders to help senior business and IT leaders respond to digital business opportunities and threats by creating signature-ready actionable and diagnostic deliverables that guide investment decisions."

Read more…

Last week Gartner identified the Top 10 Internet of Things Technologies for 2017 and 2018.

Nick Jones, vice president and distinguished analyst at Gartner, said, "The IoT demands an extensive range of new technologies and skills that many organizations have yet to master. A recurring theme in the IoT space is the immaturity of technologies and services and of the vendors providing them. Architecting for this immaturity and managing the risk it creates will be a key challenge for organizations exploiting the IoT. In many technology areas, lack of skills will also pose significant challenges."

 

 

Here are the top 10 IoT technologies for 2017 and 2018 according to Gartner:

IoT Security

The IoT introduces a wide range of new security risks and challenges to the IoT devices themselves, their platforms and operating systems, their communications, and even the systems to which they're connected. Security technologies will be required to protect IoT devices and platforms from both information attacks and physical tampering, to encrypt their communications, and to address new challenges such as impersonating "things" or denial-of-sleep attacks that drain batteries. IoT security will be complicated by the fact that many "things" use simple processors and operating systems that may not support sophisticated security approaches.

"Experienced IoT security specialists are scarce, and security solutions are currently fragmented and involve multiple vendors," said Mr. Jones. "New threats will emerge through 2021 as hackers find new ways to attack IoT devices and protocols, so long-lived "things" may need updatable hardware and software to adapt during their life span."

IoT Analytics

IoT business models will exploit the information collected by "things" in many ways — for example, to understand customer behavior, to deliver services, to improve products, and to identify and intercept business moments. However, IoT demands new analytic approaches. New analytic tools and algorithms are needed now, but as data volumes increase through 2021, the needs of the IoT may diverge further from traditional analytics.

IoT Device (Thing) Management

Long-lived nontrivial "things" will require management and monitoring. This includes device monitoring, firmware and software updates, diagnostics, crash analysis and reporting, physical management, and security management. The IoT also brings new problems of scale to the management task. Tools must be capable of managing and monitoring thousands and perhaps even millions of devices.

Low-Power, Short-Range IoT Networks

Selecting a wireless network for an IoT device involves balancing many conflicting requirements, such as range, battery life, bandwidth, density, endpoint cost and operational cost. Low-power, short-range networks will dominate wireless IoT connectivity through 2025, far outnumbering connections using wide-area IoT networks. However, commercial and technical trade-offs mean that many solutions will coexist, with no single dominant winner and clusters emerging around certain technologies, applications and vendor ecosystems.

Low-Power, Wide-Area Networks

Traditional cellular networks don't deliver a good combination of technical features and operational cost for those IoT applications that need wide-area coverage combined with relatively low bandwidth, good battery life, low hardware and operating cost, and high connection density. The long-term goal of a wide-area IoT network is to deliver data rates from hundreds of bits per second (bps) to tens of kilobits per second (kbps) with nationwide coverage, a battery life of up to 10 years, an endpoint hardware cost of around $5, and support for hundreds of thousands of devices connected to a base station or its equivalent. The first low-power wide-area networks (LPWANs) were based on proprietary technologies, but in the long term emerging standards such as Narrowband IoT (NB-IoT) will likely dominate this space.

IoT Processors

The processors and architectures used by IoT devices define many of their capabilities, such as whether they are capable of strong security and encryption, power consumption, whether they are sophisticated enough to support an operating system, updatable firmware, and embedded device management agents. As with all hardware design, there are complex trade-offs between features, hardware cost, software cost, software upgradability and so on. As a result, understanding the implications of processor choices will demand deep technical skills.

IoT Operating Systems

Traditional operating systems (OSs) such as Windows and iOS were not designed for IoT applications. They consume too much power, need fast processors, and in some cases, lack features such as guaranteed real-time response. They also have too large a memory footprint for small devices and may not support the chips that IoT developers use. Consequently, a wide range of IoT-specific operating systems has been developed to suit many different hardware footprints and feature needs.

Event Stream Processing

Some IoT applications will generate extremely high data rates that must be analyzed in real time. Systems creating tens of thousands of events per second are common, and millions of events per second can occur in some telecom and telemetry situations. To address such requirements, distributed stream computing platforms (DSCPs) have emerged. They typically use parallel architectures to process very high-rate data streams to perform tasks such as real-time analytics and pattern identification.

IoT Platforms

IoT platforms bundle many of the infrastructure components of an IoT system into a single product. The services provided by such platforms fall into three main categories: (1) low-level device control and operations such as communications, device monitoring and management, security, and firmware updates; (2) IoT data acquisition, transformation and management; and (3) IoT application development, including event-driven logic, application programming, visualization, analytics and adapters to connect to enterprise systems.

IoT Standards and Ecosystems

Although ecosystems and standards aren't precisely technologies, most eventually materialize as application programming interfaces (APIs). Standards and their associated APIs will be essential because IoT devices will need to interoperate and communicate, and many IoT business models will rely on sharing data between multiple devices and organizations.

Many IoT ecosystems will emerge, and commercial and technical battles between these ecosystems will dominate areas such as the smart home, the smart city and healthcare. Organizations creating products may have to develop variants to support multiple standards or ecosystems and be prepared to update products during their life span as the standards evolve and new standards and related APIs emerge.

If you’re a Gartner client, you can dive deeper into the topic here.



Read more…