Subscribe to our Newsletter | To Post On IoT Central, Click here


internet of things (39)

Save IoT, Save The World

When looking for a title for this article, I remembered the famous phrase from TV serie Heroes, "Save the cheerleader,  Save the world". Sorry if one more time I abuse of shocking headlines to attract more readers. 

Is the Internet of Thing (IoT) in danger? In light of the latest events I have attended in Berlin and London and news like this "Intel To Amputate Three Modules For Internet Of Things, Including Joule", I really believe  IoT is falling into the Gartner´s Trough of Disillusionment phase  and we need IoT heroes to push it faster towards the Plateau of Productivity phase.

The other part of the article's title, "Save the World," may sound pretentious, but the world need to be save. This year hot spring and summer is confirming even the most disbelieving that Global Warming is very real (Read more at " Global Warming, Christmas and the Internet of Things" and in spite I do not consider that only IoT can save our blue planet, per recent events like "Portugal forest fire", IoT can help and much.

If we cannot control runaway pollution of our air and water, the world will end

Source: Ron Lake, Technology Evangelist at Galdos Systems Inc.

Let's go by parts.

Has the Interest in IoT Slowed Down?  Some Symptoms

The IoT no longer fills single events. Now events like Internet of Things World Europe 2017 or IoT Tech Expo Europe in Berlin need help from other technologies like AR/VR AI, Blockchain, or 5G to attract exhibitors and visitors.

The heroes of IoT have lost their past evangelizing enthusiasm. What IoT heroes need to do?

  • The IoT Industry heroes need to focus on Customer Value. It is important that IoT heroes address real pain points rather than creating something gimmicky.
  • IoT Heroes can not do it alone, partnership with other heroes are absolutely essential for success in the Internet of Things.
  • IoT heroes need to be more creative with new Use Cases. As sensors continue to decrease in cost and IoT-specific networks get rolled out, everybody expect the number of use cases to increase exponentially.
  • Raise awareness about the major concern, IoT Security
  • IoT heroes should follow the trends by pairing connectivity with AI/Blockchain/AR/VR heroes

How can IoT save us from world challenges?

Gary Atkinson, Director of Emerging Technologies at ARM, identifies five main challenges that the planet is heading towards:

1.       We’re running out of agricultural land

2.       Water is our rarest commodity

3.       Energy needs to be cheaper to be efficient. 

4.       Healthcare is a growing problem

5.       Transport - Everyone will be able to afford cars, but won’t be able to afford to pay for fuel.

Save IoT, Save Agricultural land

If we all expect that IoT Agricultural solutions will be cheap, will have a long-lasting battery (+10 years), and will emit signals at least 5 miles, the smart farming will be a reality and we will not have excuses to save agricultural land.

Additional info:

Save IoT, Save the Water

Water is currently the most precious natural resource on planet Earth.

On the occasion of World Water Day, tech giant IBM entered into a pact with Ireland’s Dublin City University for a collaborative R&D pilot to leverage the internet of things (IoT) technology to help protect water.

The IoT could for instance make desalinisation coming to a cost-effectiveness point. India uses mostly a pivot irrigation system, which means 30% of land is lost and 50 to 60% of water is lost by evaporation. The switch to tape based irrigation could save 2/3 of the water used.

Back in 2014, HydroPoint Data Systems utilised the Internet of Things (IoT) to help with water conservation efforts. According to the company and its partners, this system saved local people some $137m in expenses and 15 billion gallons of water in the first year alone.

Additional info:

Save IoT, Make Energy renewable and cheaper

Smarter, more efficient energy consumption it’s been the dream of environmentalists for decades. Now, it’s possible through the power of Internet of Things devices. Because of their connection capabilities, energy consumption such as the power in a commercial building or even smart home can be constantly monitored and adjusted.

Energy consumption could be reduced thanks to a smarter consumption and the implementation of micro generation storage. Knowing that lightning is the second biggest consumer of energy (after motors), and that there are about 1 billion streetlights in the world, upgrading streetlights infrastructure would strongly impact the world consumption.

Experts said that thanks to the Internet of Things, we can move from about 13 percent aggregate energy efficiency to 40 percent in the next 25 to 30 years.

Creating a new connected economy powered by renewable energy will cause a temporary surge in productivity worldwide as grids are modernized and infrastructure is rolled out. Installing wind and solar is labor intensive, for example, so for two generations, people will have plenty of work to do.

Additional info:

IoT company SkyGrid which is based in Melbourne and Sydney, is developing a smart hot-water system in partnership with hot-water company Quantum Energy. The aim is to intelligently control when a building’s hot-water systems are switched on, so that energy isn’t wasted heating water when no one is around to use it – something that currently wastes as much as 50% of a system’s power.

  • EnLight works on streetlight efficiency
  • Freestyle has partnered with engineering firm PowerTec, on an intelligent energy grid for Kangaroo Island in South Australia. Sensors and controllers in the grid intelligently manage energy sources to sway energy consumption towards renewables without sacrificing the reliability of the supply.
  • Top 10 Internet of Things Companies Disrupting the Energy Industry -
    • PingThings is combining big data and machine learning to change the way that state utility grids operate.
    • Actility employs IoT and machine-to-machine (M2M) communication to reinvent the way the energy sector operates.
    • Tibber is a personal assistant that can regulate a house’s energy consumption and buy more energy if the need arises.
    • Wattz is implementing solar power solutions that rely not on the sun’s light, but capturing ambient light from LED and compact fluorescent bulbs to recharge the batteries in IoT devices.
    • Positive Energy uses IoT devices and software to optimize the functional efficiency of industrial buildings and smart homes alike. 
    • Smappee allows users to turn devices on and off remotely. It also has the capability to monitor solar panel output values and gas and water usage in real-time.
    • GasZen allows customers to convert their traditional “dumb,” or non-networked, propane tanks into smart tanks that can be monitored by both the gas provider and the user remotely. 
    • 75Farenheit, beyond their ability to predict and adapt to changing climates, they offer analytics and suggestions on how to make the operation of a building more efficient.
    • Inspire Energy is giving citizens the power to become a part of the growing clean energy movement.
    • Verdigris Technologies primary target is energy consumption and waste.

Save IoT, Save Healthcare

Despite incredible improvements in health since 1950, there are still a number of challenges, which should have been easy to solve.

In a 2016 report by Deloitte we can read “Change is the new normal for the global health care sector. As providers, payers, governments, and other stakeholders strive to deliver effective, efficient, and equitable care, they do so in an ecosystem that is undergoing a dramatic and fundamental shift in business, clinical, and operating models. This shift is being fueled by aging and growing populations; the proliferation of chronic diseases; heightened focus on care quality and value; evolving financial and quality regulations; informed and empowered consumers; and innovative treatments and technologies — all of which are leading to rising costs and an increase in spending levels for care provision, infrastructure improvements, and technology innovations.”

The IoT has brought many exciting advances to healthcare, improving patient experiences, increasing the quality of care provided, as well as updating and streamlining healthcare operations. From digital assistants to ‘smart’ medicine bottles, a new wave of connected devices could help people live independently for longer.

According with Goldman Sachs, IoT functions would produce an estimated $32.4 billion in annual revenue (45% from remote patient monitoring, 37% from telehealth, and 18% from behavior modification). But Healthcare IoT not only increases revenue, IoT reduces this cost by offering a more cost-effective method of managing chronic illness. The $305 billion estimated savings is accounted for by a combination of chronic disease management and telehealth.

Additional info:

Save IoT, Save Transportation 

I leave this topic for a special post in the coming months.

Key Takeaway: Save IoT and IoT will enable Save the World

As I have commented many times the IoT is a Journey. Those who have been more time in the race know that there are easier and other more difficult stages, but not for that reason we abandon the hardness of climbing one of them.

 If we have not yet achieved that the IoT has a unique definition, it is not surprising that the term could disappear for reasons of business marketing. Nor does it matter that technologies such as AI, VR / AR, Robots, Blockchain, join to IoT to solve world problems. We could call it "Unified Information Technology".

The World of 2017 has some immense problems but It is scary to think about the challenges it for the next 10, 20 50 years. As we have seen IoT must play an important Enabler to Save the World. 

IoT heroes, save the IoT, Save the World.

 Thanks in advance for your Likes and Shares

Thoughts ? Comments ?

Read more…

Future-Proofing Your IoT Infrastructure

For all the value and disruptive potential that Internet of Things (IoT) solutions provide, corporate buyers face a dilemma. Today’s IoT technologies are still immature point solutions that address emerging use cases with evolving technology standards. Buyers are concerned that what they buy today may become functionally or technologically obsolete tomorrow. Faced with this dilemma, many defer buying even if the IoT solutions they buy today offer tremendous value to their organizations.

This post describes a planning strategy called “future-proofing” that helps managers, buyers, and planners deal with obsolescence.

What causes IoT solution obsolescence?

An IoT solution, whether you buy it now or in the future, can become functionally obsolete for several reasons, as described in Figure One.  Unlike more established technologies, today’s immature and fast evolving nature of IoT solutions, amplifies the risk of early obsolescence.

For example, today there are multiple Low Power Wide Area Network (LPWAN) connectivity options – SigFox, LoRa, RPMA (by Ingenu), Symphony Link (by Link Labs), NB-IoT and LTE-M. While each option has advantages and disadvantages, a subset of these will eventually “win” out as technology standards, business models and use cases emerge.

Similarly, there are 350+ IoT platforms in the marketplace today (source: “Current state of the 360+ platforms”, IoT Analytics, June 9, 2016). While many of these platforms target specific applications and industry segments, consolidation is inevitable as there are more vendors than the market can eventually support. The major IoT platform vendors (Amazon, Microsoft, Google, IBM, GE, et al), currently on a market share land grab, will drive consolidation when they begin to acquire select vertical platforms to gain rapid access to those markets.

What is Future-Proofing?

According to Collins English Dictionary (10th edition), “future-proof” is defined as:

“protected from consequences in the future, esp. pertaining to a technology that protect it from early obsolescence”

Because of the high cost of enterprise technologies, many buyers perceive obsolescence as bad. To them, future-proofing means keeping the technology as long as possible in order to minimize costs and maximize return on investment (ROI). Their companies have standardized their business processes, policies and even their technical support on the technologies that they have bought. When a solution goes End of Life (EOL) and transitions to a newer version, it means that managers will have to recertify and retrain everyone on the “new” solution all over again. In general, transitions happen over a period of months (and sometimes years) in large global companies. During this time, multiple generations of the solution will co-exist, with each requiring different processes and policies.

In today’s fast moving IoT market, planned and unplanned obsolescence will be the norm for the foreseeable future. The traditional concept of “future-proofing” doesn’t apply, and can lead to significant, adverse business disruption.

In the era of cloud based solutions and IoT, future-proofing is not about outguessing the future, and choosing the “right” solution so as to never have to “buy” again. Nor is it overbuying technology now to avoid buying in the future. Finally, future-proofing is not about avoiding change. Future-proofing is a solution lifecycle management strategy. It is a continuous process to maximize solution flexibility and options, while making deliberate choices and managing risk.

What does a future-proof IoT infrastructure look like?

In planning the future-proofed IoT infrastructure, managers must first understand its key characteristics, and then define specific requirements for each of those characteristics. At a high level, these characteristics include:

  • Usable– the infrastructure and solutions achieve all functional needs with no loss in performance, security, service level agreements (SLA) over the desired time period.

  • Scalable – supports future needs, applications, devices

  • Supportable – resolves technical, performance, reliability, SLA issues

  • Changeable – addresses “lock-in” and facilitates migration to updated solutions on your schedule based on your needs

  • Economical – the total cost of ownership of the solution stays within forecasted ranges

A framework for future-proofing your IoT infrastructure

Change is constant and cannot be avoided. The driving principle behind future-proofing is managing change, not avoiding or preventing it. This principle recognizes that every solution has a useful functional life, and that what is functionally useful today may be obsolete and discarded tomorrow.

A properly designed future-proof plan provides the organization with options and flexibility, rather than lock-in and risk. It prevents suboptimal decision-making by managing the infrastructure on a system level, rather than at the individual component level.

Future-proofing your IoT infrastructure is a three step process (Figure Two). It is not a “once and done” exercise but must be done annually to remain relevant.

Plan and Design

The first step of the future-proofing process is to identify and place the various IoT infrastructure, systems and solutions into one of nine actionable categories. These categories are shown in Figure Three. The horizontal rows represent the “change” category, while the vertical columns represent the timeframe decision timeframe.

The actual classification of the IoT infrastructure solutions into one of the categories is determined in conjunction with IT, operations and the business units. Key considerations for determining the “future-proof category” include:

  • Usability/functionality – functional utility, compliance with standards, performance against needs, SLAs, and performance

  • Scalability – ability to meet current and future needs, anticipated change in standards

  • Support – resources, expertise, reliability

  • Ease of transition –contractual agreements, technology interdependence/dependence, specialized skills

  • Economics – maintenance costs, licensing/content/subscription fees, utilities, new replacement costs, transition costs

Source and Build

Once the proper categorization is completed, the second step is to procure the necessary solutions, whether they are hardware or software. This requires that a sourcing strategy be put into place over the desired time period. The terms sourcing and buying are sometimes used interchangeably, but they are not the same. Sourcing is about ensuring strategic access to supply while buying is more transactional. In executing the future-proofing plan, procurement managers must understand the supplier product lifecycle, and develop specific tactics.

As an example, a large global company decides to standardize around a specific IoT edge device (and specific generation) and technology for the next five years. In order to maintain access to this supply during this time period, it employs a number of tactics, including:

  • Stocking of spare units to be deployed in the future

  • Placing large “Last time” orders before that version of the solution is discontinued

  • Sourcing refurbished versions of the technology

  • Incorporating leasing as sourcing strategy

  • Negotiating contractual arrangements with the vendor to continue the solution line

Support and Monitor

The third step in the future-proofing strategy is to keep the IoT infrastructure and solutions operational over the desired time period. This is relatively easy when the solutions and technologies are being serviced and supported by the vendors. However, as vendors transition to newer technology and solution versions, buyers may find limited support and expertise. This problem is amplified the further you are from the original end-of-life date.

To keep the infrastructure and solutions fully operational during this time, companies must employ various reactive and proactive tactics. Some of these include:

  • Incorporating and installing vendor firmware updates to maximize functionality, apply bug fixes and extend useful life. Vendors may issue firmware updates on both End of Life and current generation solutions.

  • Purchase warranty and extended warranty and maintenance service contracts to assure access to support

  • Develop in-house maintenance and repair capability

  • Negotiate special one-off engineering support services with the vendor or their designated contractors

About:

Benson Chan is an innovation catalyst at Strategy of Things, helping companies transform the Internet of Things into the Innovation of Things through its innovation laboratory, research analyst, consulting and acceleration (execution) services. He has over 25 years of scaling innovative businesses and bringing innovations to market for Fortune 500 and start-up companies. Benson shares his deep experiences in strategy, business development, marketing, product management, engineering and operations management to help IoTCentral readers address strategic and practical IoT issues.

Read more…
Being direct part of the worldwide development community for "Internet of things" and connected device and working day by day on architectural topics and talking to many experts in this area, I've mentioned that indeed the technologies behind IoT are well known but the definition of IoT itself is very diverse. My key experience was while I was participating the Security of Things conference in Berlin this year. The discussions what IoT is and what is IoT not started already during the icebreaking session the evening before the first official day and continues in the same manner during the next two days. I've heard statements like "Every PC is an Internet of things device" over "Any internet connectivity must be disabled (to guarantee security)" up to "We log the values of a digital thermometer by hand and enter them in a specific AWS-based Back-End to run analytics on it ... therefore we converted our thermometer to an Internet of things device". This experience gave me the impulse fin
Read more…
An accurate and well-structured security analysis is the key for a holistic security concept and therefore for a secure product. But planing and performing a security analysis can be a hard nut to crack. After collecting experience in more than 6 big IoT projects over the last 2 years I decided to share some key facts that can make your life easier if you have to go the same way.
Read more…

How to measure Digital Transformation maturity?

The digital revolution has created significant opportunities and threats for every industry. Companies that cannot or do not make significant changes faster to their business model in response to a disruption are unlikely to survive
It is extremely important to do digital maturity assessment before embarking on digital transformation.
Digital leaders must respond to the clear and present threat of digital disruption by transforming their businesses. They must embed digital capabilities into the very heart of their business, making digital a core competency, not a bolt-on. Creating lasting transformative digital capabilities requires you to build a customer-centric culture within your organization.
This requires new capabilities that organizations need to acquire and develop which include disruptive technologies like Big Data,AnalyticsInternet of Things, newer business models.
Digital maturity model measures readiness of the organization to attain higher value in digital customer engagement, digital operations or digital services. It helps in incremental adoption of digital technologies and processes to drive competitive strategies, greater operationally agility and respond to rapidly changing market conditions.
Business can use the maturity model to define the roadmap, measuring progress on the milestones.
The levels of maturity can be defined as per multiple reports available and

adopt the ones which makes more sense to your business.

·     Level 1 : Project based solutions are developed for a particular problem, no integration to home grown systems, unaware of risks and opportunities
·     Level 2 : Departmentalized projects but still not known to organization, little integration
·     Level 3 : Solutions are shared between the departments for a common business problem, better integration
·     Level 4 : Organization wide efforts of digital, highly integrated, adaptive culture for fail fast  and improve
·     Level 5 : Driven by CXOs, customer centric and complete transformation changes happen to organization
Here are the 7 categories on which business should ask questions to all the stakeholders to gauge the maturity of Digital Transformation and identify the improvement and priorities.
1.   Strategy & Roadmap - how the business operates or transforms to increase its competitive advantage through digital initiatives which are embedded within the overall business strategy
2.   Customer – Are you providing experience to customers on theirpreferred channels, online, offline, anytime on any device
3.   Technology – Relevant tools and technologies to make data available across all the systems
4.   Culture – Do you have the organization structure and culture to drive the digital top down
5.   Operations – Digitizing & automating the processes to enhance business efficiency and effectiveness.
6.   Partners – Are you utilizing right partners to augment your expertise
7.   Innovation – How employees are encouraged to bring the continuous innovation to how they serve the customers
Finally you know when you are digital transformed?
·             When there is nobody having “Digital” in their title
·             There is no marketing focused on digital within the organization
·             There is no separate digital strategy than company’s business strategy
Read more…

Most IoT projects today are unsuccessful

A recent Cisco survey of 1845 business and IT decision-makers in mid market and enterprise companies, conducted in April 2017, found that nearly three quarters of Internet of Things (IoT) projects were not successful.

The top five reasons include:

  • Long completion times,
  • Poor quality of the data collected,
  • Lack of internal expertise,
  • IoT integration,
  • Budget overruns.

These results are not surprising given the immaturity of the IoT solutions, evolving technology standards, and limited expertise among the IoT community.

In light of these survey results, how do you ensure that your first IoT project implementation will be successful? In this post, I’ll share ten best practices for managers planning their first IoT project.

Best Practices for IoT Projects

Best Practice #1 – Solve a problem that someone cares about. Whether it’s a pilot project, or a mini IoT project added to a larger non-IoT project, make the project relevant by addressing a real need. This ensures visibility and support from the organization, whether it is something as simple as time to answer your questions, commitment from management, or contribute resources. Equally important, it gives you a foundation from which to build follow-on projects.

Best Practice #2 – Plan conservatively. As an early IoT adopter, your organization’s capabilities will be limited and the learning curve will be steep. Managers must plan for this in several ways. Don’t try to “change the world”, but instead focus on doing one or two things well. Define the requirements well and resist scope creep. Build in a larger than usual contingency for schedule, resources and cost.

Best Practice #3 – Fix outdated processes and policies. IoT solutions can disrupt existing organizational processes and policies. If you fix the technology but not the processes and policies, you will just get “bad news faster”. Implementing the technology side of IoT is only half the solution. Realize its full potential by updating affected, or in some cases, creating new processes and policies.

Best Practice #4 – Partner for success. IoT solutions affect multiple teams within the organization. Partner with these affected teams early in the planning process to get their requirements, gain their support (knowledge, resources, and budget), and leverage their influence to remove barriers during the execution stages. Partner with your organization’s digital transformation or innovation office, if one exists.

Equally important, partner with IoT solution vendors throughout the process. At this stage of the market, their solutions are still evolving. Work with your IoT vendor at a deeper level than you would with other vendors. Stay in close contact and leverage their product management and technical support teams throughout the project.  Co-design the solution and project with them – tell them what features you like to see, report bugs, and test updated versions of the product.

Best Practice #5 – Augment your capabilities with outside resources. Address gaps in your internal capabilities by leveraging outside resources. Build your IoT knowledge through information shared on industry blogs, publications and analyst reports. Augment your project planning and execution capabilities by contracting with subject matter experts, IoT consultants, and innovation labs.

Best Practice #6 – Address resistance to change. The more disruptive the IoT solution is, the more likely you will face adoption resistance both internally and externally. Whether the changes are small or large, ensure IoT project success with a change adoption plan early on in the project. Identify who is affected and how they are affected, then understand their objections. Craft a plan to address these objections, be transparent and communicate regularly, and implement well before the solution goes live. Be responsive and act with a sense of urgency to any concerns raised during the project.

Best Practice #7 – Define extended project success and goals. During the project planning stage, identify the key success outcomes of the project. Beyond the goals directly enabled by the IoT solution, consider goals around internal capabilities development, gaps identification (processes, policies, technologies, resources, etc.), organization readiness, channel and customer acceptance. Treat your early IoT projects as learning experiences, and use these projects to learn, experiment, uncover challenges, develop the organization and go faster on future projects.

Best Practice #8 – Drive shared ownership and accountability. IoT solutions affect multiple teams across the organization. Because of this, you must establish a structure of shared ownership and accountability to drive project success. Identify and secure the commitment of the critical executive sponsors and  business unit owners. Align the value and relevance of the IoT solution to their team’s goals and needs to drive their ownership.

Best Practice #9 – Establish a learning culture. To ensure that your subsequent IoT projects are successful, you must establish a rapid learning culture right from the start. During the project, establish a process for experimenting, prototyping and problem solving. At the end of the project, document the knowledge and expertise gained, and then develop a system to retain and transfer that knowledge. Identify who the “experts” are, the lessons learned, and project debriefs. Develop a system to share that knowledge across the organization, with solutions vendors, consultants, and other resources.

Best Practice #10 – Be flexible and adapt. Despite careful planning and risk management, your first IoT projects will still be significant learning experiences. You know what you know, but you don’t know what you don’t know. Your planning and risk management is based on what you know. Unforeseen things happen because of the things you, your consultants, or the vendors don’t know. In this type of environment, the project teams should be nimble and agile to respond to the unplanned. Incorporate larger contingencies in project plans. Prepare your sponsors and owners to expect change. Select your project team members for their ability to quickly adapt and learn, as well as for their knowledge and execution ability.

About:

Benson Chan is an innovation catalyst at Strategy of Things, helping companies transform the Internet of Things into the Innovation of Things through its innovation laboratory, research analyst, consulting and acceleration (execution) services. He has over 25 years of scaling innovative businesses and bringing innovations to market for Fortune 500 and start-up companies. Benson shares his deep experiences in strategy, business development, marketing, product management, engineering and operations management to help IoTCentral readers address strategic and practical IoT issues.

Read more…

Top 5 uses of Internet of Things!!

While many organizations are creating tremendous value from the IoT, some organizations are still struggling to get started.  It has now become one of the key element of Digital Transformation that is driving the world in many respects.
It is really a time to look beyond the hype and get real about Internet of Things.
Just putting IoT in place may not help organizations but applyinganalytics is extremely essential for the success of IoT systems for better decision making.
Here are top 5 areas where IoT is making the disruption:
1.     Wellness - IoT helps continuously monitor the patients and symptoms to early detection, diagnosis & accelerate breakthrough drug development. Wearables like Fitbit, Apple watch, and Samsung have all created new revenue streams from giving their users workout analytics and the ability to set daily health goals. Mobile apps around wellness have been around for years now to track your sleep, weight, nutrition, and more. 
2.     Safety and Security – Sensor based monitoring of elevators, escalators improves travelers safety at airports.  Sensors, which are much cheaper these days, can let you know whether or not your water pipes are leaking or are about to burst. The droneswill allow the handful of rangers to quickly investigate reports of fires, than traveling into remote parts of the jungle over unpaved roads. Connected cars allows vehicle diagnostics and real time intervention from technicians for better safety.
3.     Marketing – with use of IoT, businesses can reach to right customer at at right time using geofencing. It is a virtual field in which apps are capable of sending alerts depending on your entrance or exit from a vicinity. With geofencing, your shopping experience can be more hyper-personalized to what you’re looking for. 1-800-Flowers covered the area around jewelry stores that were close to their flower shops to encourage customers to buy flowers with jewelry. Amazon Go is Amazon’s store concept without a check-out line. 
4.     Smart Cities & Smart Infrastructure – IoT is helping build the infrastructure which is really smart in quick response and improves the life of residents. Real time weather response systems, better traffic management, waste management, and optimal utilities management helps governments around the world.  Smart Homes helps people more peaceful life.
5.     Energy, Aviation & Manufacturing – Using IoT to do predictive maintenance can reduce downtime up to 50%. Companies like GE have put up 100s of sensors across the plant that provide round-the-clock monitoring and diagnostics of existing hardware. IoT enabled engines consume almost 15% less fuel than average jet engines, and also have reduced emissions and noise.  Smart grids helps in increasing the reliability and efficiency of grid, avoid thefts.
In future IoT will continue to enhance our lives more and more by tracking our needs in real time giving opportunity to businesses to react accordingly and immediately.
Read more…

Top 7 Virtual Reality Industry use cases

Today Digital Transformation has entered our life and we have subconsciously using it also in day to day life.
Virtual Reality technology has evolved dramatically in the past few years the costs of VR devices has gone down so it is all set to hit mainstream markets soon. While gaming applications like Pokemon Go have attracted most of the attention, there are many other use cases that could have a much larger impact on our lives.
Google Cardboard is a super low-cost headset ($15) to which a compatible, VR enabled mobile phone is attached to deliver the VR experience.
Other commercial product is Oculus Rift gear which has becomeextremely popular in gaming & business equally.
Here are some great VR use cases:
1.     VR for Tourism: do you want to sit on your couch and climb up the Eiffel tower? Or walk on the glass horse shoe at grand canyon? Wild Within is VR app available for experience of travel through rain forest in Canada. Travelers around the world are able to experience a helicopter flight around New York City or a boat ride around the Statue of Liberty.
2.     VR for Education: Over last decade eLearning had picked up very much. But it could not deliver hands on experience which is now possible with VR technology. Technicians can actually learn the real life examples and do their bit to solve the problems on the shop floor. Medical students can actually perform surgeries allowing them to make mistakes without any impact on actual patients.
3.     VR for Sales: Traditionally automakers have the showroom to show the cars to the customers and explain their features and sometimes a test drive is also possible. But customization of how the interior will look as per their choice was not possible which now can be done via VR.  Audi is experimenting this in London, where customer can configure their Audi with accessories as they want and drive virtually in real time.
4.     VR in Gaming: who does not know the excitement Pokemon Go had created and reached 50 million users in record time of 22 days.  Using AR/VR technology games have changed the life of seniors as well as teens. Game of Thrones has capitalized on VR and gone viral in various countries.
5.     VR in Designing: product designing is tedious task and changes to products based on the competition or customization is time consuming. This is where VR helps designers. They can now create the products easily, configure all the features and test them out. It is more popular in construction of buildings to see how the interior will look like.
6.     VR in Marketing: With Digital Marketing ads are becoming more intrusive. The best marketing campaigns use VR to create successful campaigns as users get completely immersed into the content, and create memorable experiences. Coca Cola created a virtual reality sleigh ride. New York times releases multiple immersive documentaries in their app. Finnair is showing their Airbus 350 via VR to attract more customers.
7.     VR in Sports coaching: The potential for VR in sports in endless. You get all the benefits of real-world interaction, but in a controlled environment. Showing is so much more effective than explaining, and experiencing something first-hand is that much more powerful again. Football, Cricket.

Virtual reality technology holds enormous potential to change the future for a number of fields, from medicine, business, and architecture to manufacturing. We are on the roller coaster ride !!
Read more…



Internet of Things (IoT) solutions offer tremendous and disruptive value for customers, but sometimes have the unintended effect of adversely impacting the channel that it is sold and serviced through. This results in slow adoption of IoT solutions, even if those solutions have significant and tangible customer value.


Common product-market fit mistakes

While many IoT vendors understand the concept of product-market fit, a common mistake that many product managers make is to overlook or understate the impact of the solution on stakeholders that “touch” the solution (Figure One) beyond the end user customer. When the needs of all the primary and secondary stakeholders are aligned with the solution, market adoption is facilitated. When the needs of these stakeholders conflict, market adoption is slowed or even stopped. 

One example of an external stakeholder is the channel reseller. Many manufacturers incorporate a channel strategy to market, sell and service their products in order to scale the business. The channel can be an one tier channel (manufacturer sells direct to reseller, who then resells it to the end customer) or a two tier channel (manufacturer sells to distributor, who then resells it to reseller, who finally resells it to the end customer). 

Consider an IoT based predictive maintenance solution for commercial heating, ventilation, and air conditioning (HVAC) systems. With this solution, the channel resellers will now know when the parts in the HVAC system are wearing out and a proactive service call is needed. While this assures the customers that their HVAC system will have minimum downtime, it may not be so good for the reseller. Prior to the incorporation of IoT into an HVAC system, channel resellers may have set up a service agreement with the end user where they would perform routine maintenance four times a year. With the IoT solution in place, it may reveal that they only need to come out once or twice a year to do maintenance. The reduced number of visits mean that their revenues from service calls is also reduced. Given this reality, the channel resellers have no incentive to adopt the predictive maintenance solution. 

A second common mistake is to look at product-market fit from a static perspective. In fact, the product manager must look at the product-market fit over the solution’s entire lifecycle from purchase to retirement (Figure Two). At each of the stages over the lifecycle, there may be different people or organizations “touching” the solution and performing a slightly different task in support of common activities. Problems arise when the needs of each party are inconsistent or misaligned.

Conflicts, or friction arise between the buyer, the vendor and the other affected stakeholders when there is misalignment of their needs. These needs may include performance, cost, revenue, operating efficiency, roles and responsibilities. Some of these misalignments may be managed, while others may be more severe and require a solution redesign.


Best practices to remove the friction points


Practice#1 - Expand your product-market fit analysis over the entire solution lifecycle.

As you design your IoT solutions, map out the different stakeholders that touch your product, from the time it leaves your hands delivery to the time it is retired from use. Identify who they are, why the customer buys from them, the tasks they do, the value they add, and how they make their money.

 How does your solution impact the services the channel provides, their value, and their financials?  What is changed and disintermediated?

It is not always possible to avoid disintermediation. But with this understanding, work with the channel to co-create a solution that removes the friction points, creates new value and opportunities.


Practice #2 - Create new value beyond product innovation.

Product managers must think beyond product and technology innovation. IoT solutions can also provide business model, service, and customer experience innovation. When designing the IoT solution with the channel needs in mind, look for opportunities to create these forms of innovation that will provide significant value for all stakeholders.

Customer experience innovation transforms the “customer journey”. It re-imagines how a customer uses a product or service. It uses data collected to create new processes, business partnerships, organizations and technology to support the new journey. Examples include Apple iPod/iTunes changes how we buy and listen to music, Uber changes how we go from one place to another, Netflix changes how we watch television, and Amazon Echo ((“Alexa”) changes how we control devices.

Services innovation transforms how, what and when a service is rendered, and who it is being offered to. It enhances a current value, or creates an entirely new value that was not possible before. A product can also be transformed into a service (e.g. car rentals). Some examples include Software-as-a-Service changes how we buy software, Uber changes how we go from one place to another, and Amazon Web Services changes businesses use IT infrastructure.

Business model innovation. A business model describes how an organization creates and delivers value to its customers. It is defined by nine parts – customer types, value to customer, sales channels, customer relationship types, revenue sources, operating resources, operational activities, key partnerships, and cost structure. Business model innovation transforms these nine parts to create to enhance or create new value to existing customers or to an entirely new customer base. Some example include Amazon Web Services “IT pay for you use” model, ZipCar’s “car sharing” model and Apple iPhone’s app ecosystem model.


Practice #3 - Develop marketing programs that incentivize the channel to pursue “green field” opportunities.

It is not always possible to redesign the solution to eliminate the misalignment between the stakeholders. In this type of scenario, develop marketing and channel programs that allow the channel to target new opportunities where the solution provides a significant competitive advantage. This will allow them to create new revenue streams that will offset any loss of revenues from the current business.

Recalling the predictive maintenance example in which the reseller is reluctant to offer the IoT based solution because their services revenues would decrease. However, the reseller can offer the solution to new customers (those it never had, including those customers who use a competitor’s solutions). The new solution may give them an unique compelling competitive advantage and offset potential revenue decreases when their customers convert to the new IoT solution in the future.


Practice # 4 - Help your channel identify suitable niches within their existing customer base.

While the channel may be reluctant to offer your IoT solution to all of their existing customers, there may be pockets within their base where your solution is in alignment with the reseller’s needs. They may have existing customers where the cost to service them is high, or the revenue impact is minimal, or are considering alternative offerings from other vendors.  Help the channel understand what these opportunities are, identify the target customer profiles, and develop conversion campaigns that allow them to sell to these customer niches.

About:

Benson Chan is an innovation catalyst at Strategy of Things, helping companies transform the Internet of Things into the Innovation of Things through its innovation laboratory, research analyst, consulting and acceleration (execution) services. He has over 25 years of scaling innovative businesses and bringing innovations to market for Fortune 500 and start-up companies. Benson shares his deep experiences in strategy, business development, marketing, product management, engineering and operations management to help IoTCentral readers address strategic and practical IoT issues.

Read more…

IoT and Energy Management

It’s not uncommon to drive about any major city at night and see many buildings illuminated despite the fact that the workers went home hours earlier. Likewise, manufacturing plants the world over often have equipment unnecessarily consuming energy during idle periods. Power plants create and store energy everyday and use energy distribution grids to distribute energy to users, but are they doing it “smartly?”

With rising concerns about global warming, this immense waste of energy undoubtedly hurts the environment, but it also hurts business. Offices, manufacturing plants, commercial spaces and power grids all stand to benefit financially from better and “smarter” energy management.

 

How IoT Reduces Energy Usage for Businesses and Manufacturing

In his article, “Report: Lofty Energy Management Goals Far Ahead of Reality,” (Panoramic Power, August 5, 2015) Jon Rabinowitz points out that most companies receive data on their energy usage only at the end of each billing cycle, which is usually a month at a time. By incorporating Internet of Things (IoT) technology, energy consumption data will be available in real-time, and energy-reducing measures can be implemented as soon as a problem gets detected (rather than waiting until the end of the month). Integrating smart devices through IoT technology will provide greater visibility into energy usage and help both industrial and commercial enterprises save energy, and as a result, save money.

Starting with simple, smart and low cost sensors, like User to User Information (UUI) and Feature Driven Development (FDD) devices, businesses can reduce energy usage and cost by dimming lights, turning off unnecessary equipment and improving the use the cooling/heating apparatus. Software that collects and correlates granular usage data, performs analytics and then converges information to increase efficiency will make manufacturing plants “smarter,” and thus more cost-effective.

Local and remote sensors that detect points of inefficiency quickly and perform triage to decrease waste will also reduce the need for maintenance as constant monitoring will detect small issues before they become big problems. Continuous optimization through 24/7 monitoring will assure that energy is not wasted during slow periods in between high-usage spans, while maximizing the use of energy-demanding equipment at critical times.

Specific Use Cases – Energy Production and Management

  • General Electric’s Asset Performance Management software connects disparate data sources in power plants, enabling data analytics to guide energy usage and to increase efficiency (“10 Real-Life Examples of IoT Powering the Future of Energy,” Internet of Business, Freddie Roberts, Oct. 7, 2016).

  • Duke Energy, a Florida-based electric power holding company, has developed a self-healing grid that automatically reconfigures itself when power goes out. Using digital smart sensors at sub stations and on power lines, the system automatically detects, isolates and reroutes power in the most efficient way when problems occur (Roberts).

  • Pacific Gas & Electric Company is testing drones as a means to monitor and evaluate electric infrastructure systems in hard-to-reach areas. The ease of access will allow more frequent and consistent monitoring and drastically reduce the amount of methane leaks and other unwanted disruptions. (Roberts).

 

Energy Saving in the Auto Sector

Nissan (manufacturer of the world’s best-selling electric car, the Leaf) and ENEL (Europe’s second largest power company) have teamed to develop an innovative vehicle-to-grid (V2G) system that creates mobile energy hubs, which also integrates the electric cars and the power grid. The system allows Leaf owners to charge at low-demand, cheap-tariff periods, while allowing owners to use the energy stored in the car’s battery to power their home during peak periods, or when power goes out. Owners can store excess energy, or return it to the grid, making the entire system more efficient for everyone (“Nissan and ENEL to test first Grid Integrated Vehicles in Denmark,” Copenhagen Capacity, December 11, 2015).

 

Conclusions

As evidenced by these specific use cases, IoT technology is making energy-intensive systems in power generation and in manufacturing far more efficient. It’s good for the environment, but it’s also good for business. Intelligent implementation of energy saving technology stands to benefit every business, from small commercial enterprises to the largest power producing utility companies in the world. It’s time to make the move to smarter energy usage, for both the environment and for your bottom line.

 

Originally published on the Unified Inbox blog

About the Author

Richard Meyers is a former high school teacher in the SF Bay Area who has studied business and technology at Stanford and UC-Berkeley. He has a single-digit handicap in golf and is passionate about cooking, wine and rock-n-roll.

Read more…

Internet of (Medical) things in Healthcare

Over the past few decades, we’ve gotten used to the Internet and cannot imagine our lives without it. Millennials and new age kids don’t even know what is life without being online.
With the disruption of Digital Transformation, Internet of Things have added lots of opportunities to business and consumers like us, equally.
 
IOT means connecting things, extracting data, storing, processing and analyzing in big data platforms and making decisions based on analytics. It helps in predicting certain outcomes thereby helping with taking preventive actions.
The popularity of wearables, such as fitness trackers, blood glucose monitors and other connected medical devices, has taken healthcare by storm. Connected devices have become a prevalent phenomenon in the consumer space and have made their way into healthcare.
 
Healthcare is fast adopting IoT & changing rapidly, as it reduces costs, boosts productivity, and improves quality. IoT can also boost patient engagement and satisfaction by allowing patients to spend more time interacting with their doctors.
 
There are a number of opportunities for the internet of things to make a difference in patients' lives. IoT-enabled devices capture and monitor relevant patient data and allow providers to gain insights without having to bring patients in for visits. Adding sensors to medicines or delivery mechanisms allows doctors to keep accurate track of whether patients are sticking to their treatment plan and avoid patient's readmission.
 
Patients are using these connected medical products to capture ECG readings, record medication levels, sense fall detection and act as telehealth units.
 
Diabetes self-management includes all sorts of gadgets and devices, which control glucose levels and remind patients to take their insulin dose. The newest wearables are even capable of delivering insulin on their own, according to health condition indicators. 
 
Remote patient monitoring is one of the most significant cost-reduction features of IoT in healthcare. Hospitals don’t have to worry about bed availability, and doctors or nurses can keep an eye on their patients remotely. At the same time, patients usually feel more relaxed at home and recover faster.
 
Smart beds are a convenient solution for patients who have trouble adjusting bed positions on their own. This kind of IoT tool can sense when the patient is trying to move on their own and it reacts by correcting the bed angle or adjusting pressure to make the person more comfortable. Additionally, this frees up nurses, who don’t have to be available all the time and can dedicate extra time to other duties. Many hospitals have already introduced smart beds in their rooms.
 
At Boston Medical Center, IoT is everyday life:
  • Newborn babies are given wristbands, allowing a wireless network to locate them at any time.
  • They have installed wireless sensors in refrigerators, freezers and laboratories to ensure that blood samples, medications and other materials are kept at the proper temperatures.
  • Hospital has more than 600 infusion pumps which are IoT enabled. BMC staff members can now dispense and change medications automatically through the wireless network, rather than having to physically touch each pump to load it up or make changes.
At Florida Hospital, when patients go in for surgery, they're tagged with real-time location system (RTLS) badges that track their progress through from the pre-op room to the surgical suite to the recovery unit so relatives can track the patients from outside.
 
Philips GoSafe can be worn as a pendant and it helps to detect and alert falls in elderly people.
 
There are few challenges as well in implementing IoT:
  • Data security & lack of standard security policy
  • Hospital’s internal system integration with IoT data
  • Further changes and improvements in IoT hardware
The Internet of these Medical Things is a game-changer as future will be connected, integrated & secure healthcare industry.
Read more…
IoT or Internet of Things solutions, built on a cloud-based infrastructure, create opportunities for new business models and value delivery methods. While many IoT solutions are usually sold as a “product”, many vendors are now beginning to offer IoT “as-a-service”. But selling a recurring revenue solution is not the same as selling an “one time” sale product. This post highlights seven best practices for selling an IoT as a service solution.
Read more…
The rise of the Internet of Things was just the beginning. There is something much bigger brewing. It’s called the Internet of Everything — otherwise known as IoE. Instead of the communications between electric-powered, internet-connected devices that the IoT allows, the IoE expands it exponentially. The IoE extends well beyond traditional IoT boundaries to include the countless everyday, disposable items in the world. If the IoT is the solar system, then the IoE is every galaxy in the universe.
Read more…

The world is full of normal people like you and me, but I love to think that superheroes live between us and I dream that maybe someday I could become one of them and make a better world with my super powers.

In the universe of superheroes fit gods, mutants, humans with special skills, but also the special agents. I found fun to find similarities between this fantastic world and the world of IoT platforms.  Compare and find a reasonable resemblance between IoT Platforms and Superheroes or Super villains is the goal of this article. Opinions as always are personal and subject to all kinds of comments and appreciations. Enjoy, the article.

About IoT Platforms

Many of my regular readers remember my article “It is an IoT Platform, stupid !.”. At that time, per Research and Markets, there were more than 260 IoT platforms, today some sources speak about 700 IoT platforms. I confess, I have not been able to follow the birth, evolution and in some cases death of all IoT platforms out there. I think that many enthusiasts like me also have given up keeping an updated list.

I cannot predict which IoT platforms will survive beyond 2020, or which will be the lucky start-ups that will be bought by big companies or will receive the investors' mana to become a Unicorn, but I like to speculate, and of course, I have my favourite winners and unlucky losers.

About my Own Methodology

Some reputed analysts have adapted their classification methodologies of IT solutions to put some order and consistency into the chaotic and confusing Internet of Things (IoT) platforms market. But given the moment of business excitement around the IoT, have appeared new analyst firms focused on IoT who also wanted to contribute their bit and at the same time make cash while this unsustainable situation lasts.

After reading numerous reports from various sources on this topic, talking to many IoT platform vendors and seeing endless product demos, I have decided to create my own methodology that includes a questionnaire of near 100 questions around different areas: technical, functional, business, strategy, and a scoring mechanism based on my knowledge and experience to make justified recommendations to my clients.

About Super Powers Methodology

But I also had defined an alternative Methodology based on Super Powers.

Super Heroes and Super Villains usually gain their abilities through several different sources, however these sources can be divided into four categories. The Super Powers methodology is based on these four categories of Power Sources.

  • Mind Powers – Powers with notable mental abilities. Companies like IBM Watson IoI or GE Predix are notable examples.
  • Body Powers – Powers that are gained from genetic mutation. Companies like Microsoft or Amazon mutate to IaaS / PaaS IoT platforms.
  • Spirit Powers  Powers gained over time through extensive investment, and are easily obtainable by companies without the risk of horrible mutation or disfigurement. PTC Thingworx, Software AG/Cumulocity or Cisco-Jasper are examples.
  • Artefact Powers   Powers gained abilities through ancient objects such as networks, or hardware. Incumbent Telcos M2M Platforms, Telco vendors like Huawei, Nokia or Ericsson, and Hardware vendors like Intel IoT platform, ARM Beetle or Samsung Artik are examples.

For each Power Source category, Super Powers are divided into different levels of power that depend on how strong, or unique, their abilities are.

  • Level 0 -  with useless, or minimal abilities.
  • Level 1 -  they are still particularly weak compared to the higher levels.
  • Level 2 -  have developed their powers to a certain point. About 75% of the platforms belong to this class,
  • Level 3 - Mostly are most commonly amateur heroes or sly villains.
  • Level 4 - Some of the most unique with a wider variety of powers.
  • Level 5 - these fellows are seasoned veterans of their abilities, capable of using them without even needing to concentrate.
  • Level 6 - Only a few beings are classified under this level, and their powers are that of being able to control multiple aspects of IoT reality.

Whatever the source of power was, I add Sandy Carter´s recommendation: If you want to become an Extreme Innovator you also need Super Intelligence, Super Speed and Super Synergy.  

About Super Heroes and Super Villains

Previously in “Internet of Things: Angels & Demons” and “Internet of Things – Kings and Servants” , I identified some IoT Platform companies as potential superheroes. What was certain is that we knew who the supervillains were. Governments, organizations and business giants that try to control us, manipulate us and frighten us with their economic, political and military powers.

Deciding which superhero can help you more or what superpower is more important for your business is an extremely important milestone in your IoT Strategy.

I've defined the six types/categories of superheroes / IoT Platforms:

a)The superhero whose power is a birthright like Amazon AWS IoT (Superman) or GE Predix (Magneto/Professor Xavier).

b)The superhero whose power is the result of power acquisitions like PTC Thingworx (The Flash) or Cisco Jasper-Parstream (Spiderman) or Autodesk Fusion Connect (FireStorm).

c)The superhero whose power is made possible by technology like Oracle IoT (Iron Man) or SAP Leonardo(Green Lantern). 

d)There is the superhero who doesn't have any superpowers but who is a superhero by extremely intensive training like Batman (Ayla Networks) or Black Widow (Exosite) or LogMeIn-Xively (Hawkeye)

e)The superhero who obtains his/her powers due to some supernatural event like Satya Nadella named new CEO for MSFT IoT Azure (Thor) or Telit DeviceWise (Dr. Manhattan) or Google acquisition of Nest (Hulk)

f)Finally, there is the superhero, usually a sentient android, who was created by a human like IBM Watson IoT (Vision) or a normal human playing with magic like Salesforce IoT Cloud Einstein (Dr Strange) or leader of a young team like Hitachi Data System(Most Excellent Superbat)

“Do you agree with my classification system for superheroes and superpowers?”

Although the number of superheroes and supervillains is enormous (more that the IoT Platforms Universe), it would take me a long time to assign each one of the IoT platform a single superhero or supervillain. Since I do not think many companies are willing to pay to know who represents them better, at least I have done a partial and fun exercise.

The Bottom Line 

If you are an IoT Platform vendor, you could be doing yourself some questions right now:

-          If I could be a Superhero what would it be?".

-          Worth to acquire a Super Power or reach an upper level to convince customers I am their Superhero?

And remember …

“With power comes responsibility; with great power comes great responsibility”

Although the number of superheroes and supervillains is enormous (more than the IoT Platforms Universe), it would take me a long time to assign each one of the IoT platform a single superhero or supervillain. Since I do not think many companies are willing to pay to know who represents them better, at least I have done a partial and fun exercise.

Thanks for your Likes and Shares.

Read more…

Smart IoT - Generate Greatest Value

Digital Transformation

We have now entered an era with a new virtual revolution, particularly, the Internet of things (IoT). The virtual revolution marks the starting of information age. We use the Internet almost every day. The net has turned out to be one of established ways for us to work together, to share our lives with others, to shop, to teach, to research, and to learn. However  the next wave of the Internet isn't about people. it's far about things, honestly?

All about IoT

IoT is defined as the network of physical objects that can be accessed through the Internet. These objects contain embedded various technology to interact with internal states or the external environment.

IoT is characterized as "the figuring frameworks of sensors and actuators associated by systems, where the processing frameworks can screen or deal with the status and actions of connected objects and machines, and the connected sensors can likewise screen the characteristic world, individuals, and creatures." The center of IoT is not just about interfacing things to the Internet. It is about how to generate and use the big data from the things to make new values for individuals, and about how we empower new trades of significant worth between them. In other words, when objects can sense and communicate, IoT has its knowledge to change how and where choices are made, and who makes them, and to pick up a superior esteem, solution or service.

Smart IoT

Fundamental to the estimation of IoT is in actuality the Internet of smart things (smart IoT). Supported by intelligent optimization, smart IoT can increase productivity of work and enhance quality of lives for people. Let us take “cities” — the engines of global economic growth — as an example. Smart cities have the potential to dramatically improve the lives of everyone. In intelligent transportation systems (ITS), smart IoT can not only monitor the status of the transportation, but also optimize traffic signal controls to solve traffic congestion and provide the travelers with better routes and appropriate transportation information, etc. Combining IoT and machine learning (ML) can also make our roads safer. Profits by smart IoT have been shown also in health-care, logistics, environment, smart home, in the aspects of better quality, energy conservation, efficiency increase, and so on.

Smart IoT remains in its infancy now in terms of the technology  development and the effect on our global economy system and our daily lives. Maximum IoT statistics aren't used presently within the era of big data. Maximum IoT has no intelligence inside the generation of artificial intelligence (AI).  IoT which might be used these days are on the whole for anomaly detection and control, as opposed to optimization and prediction. Given the brilliant anticipated increase of the Internet over the following 10 years, it is considered one of vital challenges and possibilities for us to invent and practice in real-global programs on a way to make the IoT smarter to generate the greatest value.

 

 

Read more…

A few weeks ago, when I returned from the MWC and I wrote about “The wandering souls Network”, I wondered if it would not have been better for my career if I had specialized in a very specific area instead of being a generalist. I think there are decisions in our life that in spite every of us can analyse many times, the final decision will be always the same, because each person is the way he is.

“I define myself today as “A Generalist specialized in Internet of Things (IoT)”

Although the rest of this article can possibly be applied to all White Collar professionals, I'm going to focus on how will affect your decision of being an IoT specialist or an IoT generalist in a futuristic world dominate maybe by Robots.

Defining IoT Generalist and IoT Specialist

Before start examining the pros and cons of becoming an IoT generalist or a IoT specialist in this competitive and unfair world, it’s important to understand the distinction of these two approaches and how they relate to our future career path.

The Merriam-Webster dictionary’s simple definition of a generalist states a generalist is “a person who knows something about a lot of subjects”. A specialist is defined as “a person who has special knowledge and skill relating to a particular job, area of study”.

An IoT Generalist is a professional that understand a bit of everything. The IoT Generalist can speak about new business models enabled by IoT, the value of ecosystems, all kind of networks connectivity, protocols, sensors, devices, Gateways, Architecture, Cloud Platforms, Edge Analytics or Predictive Maintenance. And of course, he must be up to date of standards and security. Such a professional should be able to present to C-Level but also to maintain an intelligent conversation with different technical people. A value added of an IoT Generalist is his/her social network reputation, industry expertise recognition and strategic relationship with IoT/IIOT vendors, Telcos, Analyst, System Integrators. 

Being an IoT generalist also require a skill-set of project management, effective communication and good people skills.

Do you have anyone in mind?

An IoT Specialist is a professional that is a subject matter expert in at least one of the core IoT tracks. Since the IoT is very complex even though we try to simplify it with concepts such as  IoT in a Box, an IoT Specialist should offer at least expertise in one of the following 6 distinct tracks:

  • IoT Devices (IoT Hardware Engineer or IoT SW Embedded Engineer)
  • IoT Connectivity (5G, LTE, NB-IOT, 3GLoRA, SigFox, WiFI, Bluetooth) (IoT Telco Engineer)
  • IoT Platforms (IoT Architects)
  • IoT Edge/Cloud Analytics (IoT Data Scientists)
  • IoT Enterprise Integration (IoT Business Process)
  • IoT Development and DevOps. Take a look “IoT Skills For Developers”

Do you have anyone in mind?

But possibly to survive the future era of robots, it may matter little to be an IoT Generalist or Specialist and you will need a mix of a (someone who starts out as a generalist, but also has in-depth knowledge over a particular area) or specializing-generalist (someone who is specialized in a particular field, but also has a broader understanding of other aspects of the business) as Lev Kaye, the founder and CEO of CredSpark, wrote.

Remember that moving between both extremes can be extremely difficult once a career path has been embarked upon, so the mix is always good to have. There is, of course, opportunity to move between general and special IoT roles. But the more experience a professional gain in one area or the other, the more difficult it becomes to make a transition, at least without suffering from a dramatic salary loss.

Advantages and Disadvantages of being an IoT Generalists vs an IoT Specialist

There are benefits and downsides to both career routes. In the following table I have included some upsides and downsides of becoming an IoT generalist versus becoming an IoT specialist.

 

IoT Generalist

IoT Specialist

Advantages

  • Having a good understanding of a wider selection of IoT topics can help make better decisions and find solutions that a specialist might not be able to see.
  • In a fast-changing workplace, IoT generalist transferable skills will become increasingly important and will be less restricted with their career opportunities.
  • The salaries tend to be higher, even at the starting point and can also provide more internal power.
  • You can become a widely recognized leader in your field.

 

Disadvantages

  • By simply knowing the surface you can easily be replaced by another generalist.
  • Become a widely recognized leader will require specialization.
  • The narrowed focus and expert skills in an area mean IoT Specialist can only find work in this narrow field.
  • ·   The opinion on other issues might not be as valid if the topic at hand not involve your area of expertise directly.

 

“The good news is that IoT job market is likely going to require both”

Age does matter - Which path is right for you?

If you are at the start of your career, you are probably pondering which route you should take: IoT Generalist or IoT Specialist

When you start, selling yourself as an IoT generalist could be complicate to justify in a job interview, so will be better become a subject matter expert and then progressively move into a specializing-generalist

My Opinion: If you are under 30 you need to stay on top of your areas of IoT expertise and be willing to move when your expertise becomes a commodity or obsolete. This requires vigilance and the willingness to move with industry trends. You must be aware of disruptive trends in IoT technologies. Take into account that in the future, the IoT Specialists will be also under threat from software and robots. 

But if you have already passed the barrier of 45 years and suddenly you want to use your background and experience to sell yourself as an IoT Generalist, remember that you have 6 months to demonstrate your added value (most of the time you will be required for selling) or you will be fired without any leniency.

My Opinion: As an IoT Generalist over 45 you will find harder and harder to get hired. You need to be creative and become at least in spirit an entrepreneur. You must continue creating your own brand and reputation and extending your network with key people in the industry. Opportunities for IoT Generalist will not be forever but they must fight project by project. It would not hurt to start specializing in any of the IoT tracks.

And Enterprise size matters too. What are you looking for?

IoT Startups

Governments insist to sell us the importance of entrepreneurs for the well-being and sustainable development of countries and encourage us to create startups. Of course, there is no work for life except for Government employees. And it is known that the big multinationals are rewarded in stock market by the number of employees that are fired out each quarter.

Even so, startups are possibly the only way out for IoT Specialist under 25 or IoT Generalist over 45.

My Opinion

  • ·         If you are an IoT Generalist over 45, find a job in IoT startups will be a chimera, except as Sales roles. Launching your own startup with other partners can be a better option.
  • ·         If you are an IoT Specialist under 25 you can try to convince other colleagues to create a Startup and enter in the dynamic of find investors, win awards and pray for a stroke of luck. If you decide to work in an existing startup to get experience and you are not a Founder or Co-Founder, you must be prepared to be exploited, and then move to a Big company.

SMB (Small and Medium Enterprises)

IoT Generalists add value specially to medium to big international companies. Knowing the details about the complex ecosystem and can handle a vast array of technical concerns is becoming critical for SMBs. There is little need for IoT specialist as there are not enough technical needs in any one specific area to warrant a full-time staff member dedicating themselves to them.

This does not mean that if you are an IoT Specialist you should not try to work for a SMB. Other consideration like industry knowledge, proximity or quality of life will compensate the promises of more money and relevance in Big International companies.

My Opinion:

  • ·         IoT Generalist over 45 are typically more valued in smaller organizations. Small organizations typically cannot afford to hire a lot of IoT specialists. You will be more valued in smaller organizations who need their employees to wear a lot of hats. In a SMB the transition to a generalizing-specialist will be natural-
  • ·         If you are an IoT Specialist under 25 and you do not pursue the fame of being a number in a Big international company, you can enjoy more in a SMB because you will have more probability to become more quickly a specializing-generalist.

Big International companies / Top IoT companies

Here we must separate into two types of companies: Top IoT companies including Big IT and OT vendors and End Customers.

There are many lists of Top IoT companies. Almost always these lists include the habitual suspects, and as usual they have notable absences and without forget that the ranks leave much to be desired. But at least such type of list provide the names of companies that either IoT Specialists of IoT Generalists should be searching for a job.

End Customer will need help from both IoT Generalist and IoT Specialist, the question is when and who are them?

My Opinion:

  • ·         The desire of an IoT Generalist over 45, that used to work on Big Companies, is return to a Top IoT Company or Big Enterprise. Although it would seem easy, it is by no means a road of roses. You must create your own strong personal brand and be a well-known and influencer of the industry.
  • ·         If you are an IoT Specialist under 25 with experience in startups you will be hunted soon for one of IoT Top vendor.  Do not let yourself be blinded by the name of the company, but the project and the future importance of IoT within it.

Looking beyond 2025, the begin of the era of robots

Not because I attend the MWC that specifically caused me to think back on the changes that will occur in the IoT job landscape, it was this conference in addition to the many other IoT events that I attended over the past years that make me think how IoT professionals will be living the strong gravitational rift as we approach to 2025 and beyond.

Unemployment is one of the main problems in today consumer owned society. The unemployment is especially cruel to young people in search of their first job. But also for those who have passed the barrier of 45 (IF $your age is >45 THEN "sorry you are overqualified”).

When I wrote “Your job will be in our special metal hands” I imagined a near future in which companies will use Recruitment Robots to search, identify, select and manage candidates and employees more efficiently. Although it is crucial you follow your heart and your passion when making the decision you should consider the requirements of future employers will be robots.

If today, what matters is knowing a little of everything in the Internet of Things, an IoT Generalist, cross-trained and energetic. Fast forward a few years, and the IoT profession will took a different turn. IoT Specialists must emerge, particularly in larger organizations.  IoT Specialist should also be aware of the way IoT jobs will change. Several traditional IoT specialist jobs today will be facing the threat of automatization and will not have an easy time beyond 2025.

THE BOTTOM LINE

When deciding between IoT generalist and IoT specialist career paths, you need to carefully consider the type of person you are. Ultimately, the advantages and disadvantages of either path depend on your personality and drive. If you work hard towards achieving your career goals, you can do so as an IoT specialist and as an IoT generalist and remember you need to be passionate and your attitude will matter today and beyond 2025.

IoT Specialist or IoT Generalist? Choose your own destiny.

Thanks for your Comments and Likes

Read more…

MWC- The Great Illusionists Show

First of all, I will explain the reason for the post title. For those who have not seen the films, I summarize: "A group of four illusionists win year after year to the public with their incredible magic shows and even mocking the FBI.

GSMA is a great illusionist and MWC is their principal magic show. We are invited year after year to visit an event with unique keynote speakers, an enormous list of exhibitors, amazing performances and a great LinkedInplace where we can meet in person some of our social media contacts. What else can we ask for?

I know that it is very ruthless to compare the GSMA with illusionists and the MWC as their greatest magic show, but at least I see quite a few reasonable resemblances, you don´t.

 My fears and my wishes for MWC17

If in 2015 I wrote " MWC 2015: Everything Connected, Tapas and Jamon", and I argued as one the reasons to attend MWC was the fact it was celebrated in Barcelona. In 2016, in my post “GSMA need to think how to reinvent MWC” I justify the reasons why the MWC needed to reinvent itself.

One thing has become clear to me after many years attending MWCs, this is the world's biggest phone and mobile networks show, with manufacturers set to unveil a raft of new phone handsets and new technology. However, the GSMA had insisted on introducing more and more distractions like Internet of Things (IoT), Connected Living, Connected Car, AR/ VR, Robots. Maybe the reason is because Telecom operators do not have the DNA to change. Still, many telecom operators take a dim view of some of the aggressive moves being made by these peers, especially when it comes to business models based on commercializing customer data.

“I expected to see less hype and a dose of common sense”

 Starting by the announcement of Spain’s Telefonica to introduce a broad plan “4th Platform” to help both consumer and business customers keep greater control over their data rather than giving it away to web giants Google, Facebook and Amazon.

 “I expected to see more applications where IoT will become a lot less exciting, but more useful and profitable. The real world.” 

But I also feel like Scott Bicheno that  “Mobile World Congress is disconnected from reality”.

 

The Top 5 tricks of illusionism this year

5G, Network Slicing and their associated Business Models

5G will undoubtedly be the next big thing in mobile wireless networks. For Niall Norton: fact, fiction, MWC – and strangers dancing in the dark, the most over-hyped technology or trend this year will be 5G in spite he thinks 5G is still miles away and therefore we have to wait for augmented reality, virtual reality, driverless cars and the like. It is a big ask for investors to keep piling money in.

For Phil Laidler, Network slicing is essentially an extension of policy control, virtualisation, NFV and SDN, and their orchestration; the move towards software-centric, flexible end-to-end networks. At MWC this year he is looking forward to seeing more "proof of concepts" for network-slicing and the associated business models, in addition to any insights into how slicing will work in practice.

Nokia’s big 5G announcement on ‘day 0’ of the event was overshadowed by a large consortium of operators and vendors calling for just the ‘new radio’ part of the 5G standard to be accelerated, despite the fact that it will lack the backhaul, cloud infrastructure, software platforms, etc needed to make the 5G dream viable. If anything highlights the wishful-thinking folly of much of the talk at this year’s show it’s that.

IoT

IoT has been a hot topic at MWC for the last few years, but, operators do not succeed with new business models beyond managed connectivity. Strategic alliances with IoT vendors has shown no results yet.

The battle between connectivity technologies remains fierce, cellular IoT Chip Battle Escalates at MWC ARM, Sequans and Altair to compete on NB-IoT solutions, but vendors and operators are now looking for more innovative ways to overcome the problem. This might just be the year of Low-Power Wide Area Networks (LPWAN).  Although LoRa and Sigfox are currently dominant in the LPWA market, cellular IoT proponents had steal the show.

For example, Telefonica - who is working on NB-IoT with Huawei - recently announced a global partnership with Sigfox. In addition, Nokia launched its worldwide IoT network grid ('WING') a few weeks ago, which it describes as "a 'one-stop-shop', full service model offering seamless IoT connectivity across technologies and geographical borders."

For Operators, the real value from IoT will be created when they can start combining data sets from different areas and different connectivity technologies. For example, smart cities, healthcare or Food & Beverage, retail, transportation and logistics to improve the cold chain supply management processes.

I hope that at MWC18 we will be looking out for examples of operators and vendors developing IoT use-cases that do just that.

“The Internet of Things is in MWC to stay for a few more years, but If your focus is Internet of Things (IoT) then your money probably will have more ROI in other IoT events”

Blockchain

Blockchain has become one of the latest buzz words in telecoms, IT and IoT , thanks to a rapid increase in start-ups using it for new use-cases beyond its original application in financial services. Despite the excitement around blockchain the technology is still poorly understood by many, so operators need to explore the practical applications of blockchain and investigate whether developing these capabilities would be beneficial and understand what will be their role telcos in this field. 

Machine learning, Artificial Intelligence (AI), Robots

Not many people in the Operators and in general in the Telco sector can explain what will be the practical potential of AI and machine learning in this sector. Other industry sectors are starting to apply machine learning models to their business. And as the technology and algorithms become more refined, early adopters expect to see huge cost savings. But at what cost? 

I expect to see real use cases for AI, machine learning and Robots to make the eternal promise of Customer Experience happen.

Will Telcos someday use machine learning and AI to learn about customer’s habits so that their services and product features can emulate a human behaviour more accurately?. This is a huge opportunity for both vendors and operators.

The wandering souls network

The first time I visited MWC as CEO of OIES, that is to say, as an independent consultant, I feel like a walking dead. Without a clear agenda, without scheduled meetings. I walk through hundreds of exhibitor booths looking for friend’s faces that can spend a couple of minutes to tell them my history.

The Telco sector (Operators, Large Vendors) and the IT sector is being very cruel with employees over 45 years old. This year I have had the opportunity to spend some time with some of ex-colleagues, friends and also LinkedIn contacts that wanted to tell me their history and asked me for advice about the new “El Dorado world of IoT”. 

There is a lot of talent out there. Do not exclude this extraordinary wandering network because you believe they are overqualified and you can not manage them.

See you next year at MWC18

I've been saying the same thing for years when I come exhausted from MWC  “No more tricks, no more illusions, this has been my last year". But will be this time the real one. Do I need a sabbatical MWC?.

“Whether you passed 1 day, 3 days or a whole week of your life in the MWC17 illusionism, ask yourself: Was it worth it? “

Now you see me or not @MWC18.

 Thanks for your Comments and Likes

Read more…

It was a matter of time to end up writing an article to talk about the connection between Internet of Things (IoT) and the technology (arguably still in the infancy of its development) that may have the greatest power to transform our world, Blockchain.

In a future planet interconnected not just by devices, but by the events taking place across it, with billions of devices talking to one another in real time, the Internet of Things will require a secure and efficient way to track all interactions, transactions, and activities of every “thing” in the network.

Blockchain’s role could be a coordination layer across devices and the enabler of the IoT to securely facilitate interactions and transactions between devices, and may also support certain processes related to architecture scalability, data sharing, and advancements in encryption and private key technology, enhanced security, and potentially even privacy.

With blockchain, the Achilles’ heel of the IoT of heterogeneous OEM devices world now becomes viable. I wonder however, if is feasible that this decentralized IoT network may co-exist IoT sub-networks or centralized cloud based IoT models.

But let's face it, blockchain is still a nascent and controversial technology (experts estimate that it might take 5 -10 years for the mainstream adoption of blockchain technologies). Therefore, we must consider that blockchain’s applications within the Internet of Things is still a matter of conjecture and trial, and that it will take more time to determine whether and how blockchain might be implemented to secure IoT ecosystems.

What is Blockchain?

Blockchain, the technology that constitutes the backbone of the famous bitcoin, is a database that maintains a continuously growing set of data records. It is distributed in nature, meaning that there is no master computer holding the entire chain. Rather, the participating nodes have a copy of the chain. It’s also ever-growing — data records are only added to the chain.

A blockchain consists of two types of elements:

  • Transactions are the actions created by the participants in the system.
  • Blocks record these transactions and make sure they are in the correct sequence and have not been tampered with. Blocks also record a time stamp when the transactions were added.

If you want to know more about blockchain you can read:

Fascinating opportunities ahead with IoT and Blockchain

The possibilities of IoT are virtually countless, especially when the power of IoT is combined with that of other technologies, such as machine learning. But some major hurdles will surface as billions of smart devices will want to interact among themselves and with their owners.

While these challenges cannot be met with the current models that are supporting IoT communications, tech firms and researchers are hoping to deal with them through blockchain.

Applying the blockchain concept to the world of IoT offers fascinating possibilities. Is yet to be seen if blockchain is bound to expedite the revolution, simply by being the backbone for most of the future IoT systems.

An example -  Right from the time a product completes final assembly, it can be registered by the manufacturer into a universal blockchain representing its beginning of life. Once sold, a dealer or end customer can register it to a regional blockchain (a community, city or state).  But, this is only the beginning for the blockchain and Internet of Things (IoT). A washing machine could become a semi-autonomous device capable of managing its own consumables supply. It can perform self-service and maintenance, and even negotiating with other peer devices.

Challenges of Blockchain and IoT ecosystems

The chaotic growth of IoT will introduce several challenges, including identifying, connecting, securing, and managing so many devices. It will be very challenging for the current infrastructure and architecture underlying the Internet and online services to support huge IoT ecosystems of the future.

Forrester analyst Martha Bennett in the report “Disentangle Hype From Reality: Blockchain’s Potential For IoT Solutions defines three categories of challenges that Internet of Things and blockchain ecosystems participants must address: Technology, Operational challenges and Legal and compliance issues.

According with the report, the result of multiple surveys indicates that what the IoT requires more than any technological or architectural advancement is trust: trust between stakeholders and the devices interacting with them, their customers, or on their behalf.

 “As technology and commercial firms look for ways to deploy and secure Internet of Things technologies at scale, blockchain has emerged as a clear favorite for managing issues like identity and transaction security”

Blockchain, a strategic ally to Democratize the IoT

The big advantage of blockchain is that it’s public, so there is no single authority that can approve the transactions or set specific rules to have transactions accepted. Thus, the primary utility the blockchain is a censorship resistant way to exchange value without intermediaries.

Will blockchain disrupt the disrupters?.  In my post “Is it possible to democratize the Internet of Things? How to avoid that a handful of companies can dominate the IoT” I already suggested the use of blockchain to avoid that data-hungry businesses and governments collect data on the behaviour of people and the performance of objects. Blockchain could avoid that Multinational and governments deepening tracking and control of citizen behaviour and attitudes. 

Are IoT Business Models at risks with Blockchain?

IoT Service Providers hope not. There is a risk that the combo of blockchain and the sharing economy trashes some new IoT business models.  Same way that, successful or not as successful platform, companies like Uber and Airbnb, are worried today.

Just think, the success of these and some other platform companies is largely due to people trading assets they own and are paid for, but from which new value could be derived, And they release this value by using platforms to match up sellers of the extra capacity – whatever it may be – with buyers. Further, they collect data about transactions “for further commercial gain”.

Indeed, arguably many of new IoT companies’ main line of business will be data, but, what if blockchain enabled buyers and sellers to work peer-to-peer and cut out the middleman/data aggregator and seller? In that case the secure connectivity could be king not the data.

A question for IoT Platform vendors, if we have a secure, foolproof decentralized system, why do I need your IoT Platform if I and all the communities I belong to can do it for ourselves, without anybody collecting, analyzing and selling data about me?

The convergence of Blockchain and the Internet of Things closer

In my post “Will we be able to build the Internet of Things?” I warned about the Babel tower of Alliance & Consortiums in the Internet of Things.

A blockchain technology industry consortium is emerging from the meeting, New Horizons: Blockchain x IoT Summit,  with the objective of defining the scope and implementation of a smart contracts protocol layer across several major blockchain systems.

In December 2016, representatives from a group of industry-leading startups and innovative Fortune 500 companies met in Berkeley, CA to discuss the challenges facing blockchain and IoT innovation and the potential for a collective effort to address them.  The meeting was the first step towards a collaborative effort to explore and build a shared blockchain-based Internet of Things protocol. Participants in the discussions included blockchain companies Ambisafe, BitSE, Chronicled, ConsenSys, Distributed, Filament, Hashed Health, Ledger, Skuchain, and Slock.it, along with Fortune 500 corporations BNY Mellon, Bosch, Cisco, Gemalto, and Foxconn.

Who is using Blockchain in IoT

The IoT and blockchain combination is already gaining momentum, and is being endorsed by both startups and tech giants. Several companies are already putting blockchain to use to power IoT networks.

Filament, a startup that provides IoT hardware and software for industrial applications such as agriculture, manufacturing, and oil and gas industries. Filament’s wireless sensors, called Taps, create low-power autonomous mesh networks that enable enterprise companies to manage physical mining operations or water flows over agricultural fields without relying on centralized cloud alternatives. Device identification and intercommunication is secured by a bitcoin blockchain that holds the unique identity of each participating node in the network.

Telstra, Australian telecommunication giant Telstra is another company leveraging blockchain technology to secure smart home IoT ecosystems. Cryptographic hashes of device firmware are stored on a private blockchain to minimize verification time and obtain real-time tamper resistance and tamper detection. Since most smart home devices are controlled through mobile apps, Telstra further expands the model and adds user biometric information to the blockchain hashes in order to tie in user identity and prevent compromised mobile devices from taking over the network. This way, the blockchain will be able to verify both the identity of IoT devices and the identity of the people interacting with those devices.

IBM, allows to extend (private) blockchain into cognitive Internet of Things. To illustrate the benefits of blockchain and Internet of Things convergence, IBM gives the example of complex trade lanes and logistics whereby smart contracts can follow (and via blockchain technology register), everything that has happened to individual items and packages. The benefits: audit trails, accountability, new forms of contracts and speed, to name a few.

IBM and Samsung introduced their proof-of-concept system, ADEPT, which uses blockchain to support next-generation IoT ecosystems that will generate hundreds of billions of transactions per day.

Onename are creating the infrastructure for blockchain based identities that can be used for humans and machines. This means the blockchain can act like a phone book that lets machines find each other.

Tierion is being used to collect data from industrial medical devices to build a verifiable record of their usage and maintenance history. Tierion is thrilled to be the first partner to join Philips' Blockchain Lab. Together they are exploring how blockchain technology can be used in healthcare.

ConsenSys working with Innogy (a subsidiary of German utility RWE) are exploring how to enable an energy marketplace fed by distributed solar and other electricity-generating devices, which are run using a decentralized power grid.

21.co, Microsoft, Slock.it, and others are working directly with adopters in manufacturing, supply chain management, energy and utilities, agriculture, and construction; distributed ledgers may further automate, secure, and drive new services for these industries.

Blockchain is not the unique silver bullet for IoT security

Given the importance that Security has to fulfil the promise of the Internet of Things (IoT), I wrote Do not stop asking for security in IoT although I did not talk about how blockchain can help secure the Internet of Things. Now with this post, I hope I have corrected that gap.

The existing security technologies will play a role in mitigating IoT risks but they are not enough. Cryptographic algorithms used by blockchain technologies could perhaps be a silver bullet needed by the IoT industry to create a more resilient ecosystem for devices to run on and to make consumer data more private. But blockchain should not be viewed as the unique silver bullet to all IoT security issues considering that today’s blockchain space is even more nascent than the IoT.

Manufacturers, legislators, IoT hardware and software vendors, IoT Service Providers, System Integrators, analyst, and end users, must be aware of the IoT security challenges and focus on increase security efforts to reduce the risk inherent to the fragmented Internet of Things so among all we can accelerate adoption.

In the long term, we should keep dreaming in a fully decentralized and secure IoT using a standardized secure communication model. We must trust this dream will be possible, if worldwide, engineering talent, startups, large companies, and governments increase the investment in time, energy, and money to innovate in solutions that address the IoT’s and blockchain’s shared problems.

Read more…

It's 2017 and IoT continues to be a buzz. Appearing more frequently in almost every news articles regarding technology trends, digital transformation and the next "industrial revolution". However, behind the seemingly robust industry boom, rates of IoT adoption across Southeast Asia seems to be at a more conservative level.

Enterprises and organisations are cautious of adopting IoT for various reasons, and it is important for solution providers to understand these gaps in order to address enterprises' challenges and bring IoT to a wider reach.

1. Security

Arguably the second-most popular buzzword, security issues have been the top concerns of any digital, connected projects out there. 2016 was a "year of hack" around the world, from the (alleged) hacking of the US electionsUS $81 million stolen from Bangladesh Bank, and hacking of airports and banks in Vietnam. All these issues raise the concern of the security of enterprises putting up sensitive information about their business in the cloud, where IoT devices without basic security functions can be hacked within minutes.

Ensuring cyber security is crucial for businesses when they decide whether or not to migrate into the cloud and rely on technologies for operations and sensitive information.

2. Co$t

Cost is another big concern for enterprise IoT adoption, especially in the Small and Medium Enterprises (SMEs) in Southeast Asia. Many of the IoT product offerings currently pose a challenge for SMEs to adopt, especially when the benefits are usually seen in the long run rather than short-term. This is especially apparent in emerging economies like Myanmar, where despite the high potential for enterprise ICT/IoT adoption, the high cost of digital products still poses a challenge to the local companies, prompting them to either seek foreign investments, collaborate, or find localised products that are more affordable - prompting local system integrators and distributors to be active in helping to grow the local markets.

This also prompts another important issue of having a strategic planning when it comes to digitisation and using IoT, in order to cut upfront costs while still benefiting from the new technologies.

3. Sustainable investments & developments

As the IoT buzz continues to ride the waves of publicity, especially from big names like Hewlett Packard Enterprise, IBM, Oracle, Microsoft and Google, enterprises should avoid jumping on the bandwagon without understanding the actual benefits and what IoT can bring to the table. A Bain & Company survey found that 59% of global companies believe they lack the capabilities to generate meaningful business insights from data, while another survey had 85% of respondents saying that they will require substantial investments to update their existing data platform - which can be costly and time-consuming.

Understanding the challenges that the businesses and enterprises face will be crucial for solution providers to offer not only products for the sake of having products, but also be able to offer their clients advice on strategies and plans of how to apply IoT successfully and strategically - depending on each company's needs and requirements.

Businesses in Southeast Asia comprise of many young, robust and innovative enterprises hoping to use technologies to differentiate, expand and produce with high efficiency and productivity. Addressing the pain points and challenges of technologies will allow solution providers and businesses to have better understandings of each other, and help the Southeast Asian IoT market reach new heights.

What is the top challenge that your company is facing with regards to technologies/IoT adoption? Let me know in the comments section.

If you are interested in learning more about Southeast Asia's enterprise IoT markets and connect with businesses across the region about your solutions, drop me a note at [email protected] Looking forward to speaking with you!

Read more…

A Fresh Approach to Remote IoT Connectivity

The IoT market has changed in many ways throughout the years, and since it’s a growing industry, there’s an estimated 32.6% CAGR increase in the next five years.

 

As an industry predicted to spend trillions in solutions, IoT’s trends need to be carefully observed and examined in order for implications and applications to be future-proofed.

 

How do you go about doing this? By simply analyzing how IoT is being used, as well as identifying which sectors are showing potential growth. Right now, a lot of focus is given to consumer applications such as Amazon’s dash buttons and smart home appliances. However, there are many opportunities in remote IoT. This covers industries like industrial, transportation, healthcare, etc.

 

One challenge that needs to be dealt with is how connectivity is approached right now. As more IoT and M2M devices would be deployed in rural areas and places with limited connectivity, applications and machines would need an improved infrastructure in order to carry out their purpose in areas with little connectivity.

 

Additionally, the increase of transportation and emergency-related applications would require not only ways to deals with low connectivity but also call for a system that can access multiple networks depending on availability and location.

 

Another challenge is how current devices will handle the developments in IoT and M2M technologies in the next five years. The 2G sunset is just one-way communication companies are affecting the industry.

 

Don’t fret, though, as there are several ways to resolve this and many opportunities left to explore to get ready for IoT’s evolution in the coming years.

 

Want to learn more about the possibilities remote IoT connectivity presents and how you can prepare for them? Check out the following infographic from Communications Solutions Company, Podsystem, and start future-proofing your IoT and M2M applications.

Read more…

Upcoming IoT Events

More IoT News

IoT Career Opportunities