Subscribe to our Newsletter | To Post On IoT Central, Click here


research (4)

As businesses are trying to leverage every opportunity regarding IoT by trying to find ways to partner with top universities and research centers, here is a list of the Top 20 co-occurring topics of the Top 500 Internet of Things Authors in the academic field. This gives an idea of research frontiers of the leaders.
Read more…

Editors Note: Members of IoT Central are encouraged to participate in Ventana Research's study. The author of the blog shares details below.

The emerging Internet of Things (IoT) is an extension of digital connectivity to devices and sensors in homes, businesses, vehicles and potentially almost anywhere. This innovation means that virtually any device can generate and transmit data about its operations – data to which analytics can be applied to facilitate monitoring and a range of automatic functions. To do these tasks IoT requires what Ventana Research calls operational intelligence (OI), a discipline that has evolved from the capture and analysis of instrumentation, networking and machine-to-machine interactions of many types. We define operational intelligence as a set of event-centered information and analytic processes operating across an organization that enable people to use that event information to take effective actions and make optimal decisions. Ventana Research first began covering operational intelligence over a decade ago.

In many industries, organizations can gain competitive advantage if they reduce the elapsed time between an event occurring and actions taken or decisions made in response to it. Existing business intelligence (BI) tools provide useful analysis of and reporting on data drawn from previously recorded transactions, but to improve competitiveness and maximize efficiencies organizations are concluding that employees and processes in IT, business operations and front-line customer sales, service and support also need to be able to detect and respond to events as they happen.

Both business objectives and regulations are driving demand for new operational intelligence technology and practices. By using them many activities can be managed better, among them manufacturing, customer engagement processes, algorithmic trading, dynamic pricing, yield management, risk management, security, fraud detection, surveillance, supply chain and call center optimization, online commerce and gaming. Success in efforts to combat money laundering, terrorism or other criminal behavior also depends on reducing information latency through the application of new techniques.

The evolution of operational intelligence, especially in conjunction with IoT, is encouraging companies to revisit their priorities and spending for information technology and application management. However, sorting out the range of options poses a challenge for both business and IT leaders. Some see potential value in expanding their network infrastructure to support OI. Others are implementing event processing (EP) systems that employ new technology to detect meaningful patterns, anomalies and relationships among events. Increasingly, organizations are using dashboards, visualization and modeling to notify nontechnical people of events and enable them to understand their significance and take appropriate and immediate action.

As with any innovation, using OI for IoT may require substantial changes to organizations. These are among the challenges they face as they consider adopting this evolving operational intelligence:

  • They find it difficult to evaluate the business value of enabling real-time sensing of data and event streams using radio frequency identification (RFID) tags, agents and other systems embedded not only in physical locations like warehouses but also in business processes, networks, mobile devices, data appliances and other technologies.
  • They lack an IT architecture that can support and integrate these systems as the volume, variety and frequency of information increase. In addition, our previous operational intelligence research shows that these data sources are incomplete or inadequate in nearly two out of five organizations.
  • They are uncertain how to set reasonable business and IT expectations, priorities and implementation plans for important technologies that may conflict or overlap. These can include BI, event processing, business process management, rules management, network upgrades, and new or modified applications and databases.
  • They don’t understand how to create a personalized user experience that enables nontechnical employees in different roles to monitor data or event streams, identify significant changes, quickly understand the correlation between events and develop a context adequate to enable determining the right decisions or actions to take.

Today’s fast-paced, 24-by-7 world has forced organizations to reduce the latency between when transactions and other data are recorded and when applications and BI systems are made aware of them and thus can take action. Furthermore, the introduction of low-cost sensors and the instrumentation of devices ranging from appliances and airline engines to crop management and animal feeding systems creates opportunities that have never before existed. Technological developments such as smart utility meters, RFID and embedded computing devices for environmental monitoring, surveillance and other tasks also are creating demand for tools that can provide insights in real time from continuous streams of event data.

As organizations expand business intelligence to serve operational needs by deploying dashboards and other portals, they are recognizing the need to implement technology and develop practices that collect events, correlate them into meaningful patterns and use workflow, rules and analytics to guide how employees and automated processes should react. In financial services, online commerce and other industries, for example, some organizations have built proprietary systems or have gone offshore to employ large teams of technicians at outsourcing providers to monitor transactions and event streams for specific patterns and anomalies. To reduce the cost, complexity and imperfections in these procedures, organizations now are seeking technology that can standardize and automate event processing and notify appropriate personnel of significant events in real time.

Conventional database systems are geared to manage discrete sets of data for standard BI queries, but event streams from sources such as sensing devices typically are continuous, and their analysis requires tools designed to enable users to understand causality, patterns, time relationships and other factors. These requirements have led to innovation in event stream processing, event modeling, visualization and analytics. More recently the advent of open source and Hadoop-related big data technologies such as Flume, Kafka, Spark and Storm are enabling a new foundation for operational intelligence. Innovation in the past few years has occurred in both the open source community and proprietary implementations.

Many of the early adopters of operational intelligence technologies were in financial services and intelligence, online services and security. However, as organizations across a range of other industries seek new competitive advantages from information or require real-time insight for risk management and regulatory compliance, demand is increasing broadly for OI technologies. Organizations are considering how to incorporate event-driven architectures, monitor network activity for significant event patterns and bring event notification and insight to users through both existing and new dashboards and portals.

To help understand how organizations are tackling these changes Ventana Research is conducting benchmark research on The Internet of Things and Operational Intelligence. The research will explore how organizations are aligning themselves to take advantage of trends in operational intelligence and IoT. Such alignment involves not just information and technology, but people andprocesses as well. For instance, IoT can have a major impact on business processes, but only if organizations can realign IT systems to a discover-and-adapt rather than a model-and-apply paradigm. For instance, business processes are often outlined in PDF documents or through business process systems. However, these processes are often carried out in an uneven fashion different from the way the model was conceived. As more process flows are directly instrumented and some processes carried out by machines, the ability to model directly based on the discovery of those event flows and to adapt to them (either through human learning or machine learning) becomes key to successful organizational processes.

By determining how organizations are addressing the challenges of implementing these technologies and aligning them with business priorities, this research will explore a number of key issues, the following among them:

  • What is the nature of the evolving market opportunity? What industries and LOBs are most likely to adopt OI for IoT?
  • What is the current thinking of business and IT management about the potential of improving processes, practices and people resources through implementation of these technologies?
  • How far along are organizations in articulating operational intelligence and IoT objectives and implementing technologies, including event processing?
  • Compared to IT management, what influence do various business functions, including finance and operations management, have on the process of acquiring and deploying these event-centered technologies?
  • What suppliers are organizations evaluating to support operational intelligence and IoT, including for complex event processing, event modeling, visualization, activity monitoring, and workflow, process and rules management?
  • Who are the key decision-makers and influencers within organizations?

Please join us in this research. Fill out the survey to share your organization’s existing and planned investments in the Internet of Things and operational intelligence. Watch this space for a report of the findings when the research is completed.

Regards,

David Menninger

SVP & Research Director

Read more…

IoT Security - Hacking Things with the Ridiculous

In the 1996 sci-fi blockbuster movie “Independence Day”, there is a comical seen near the end where actor Jeff Goldblum, playing computer expert David Levinson, writes a virus on his Macintosh PowerBook that disables an entire fleet of technologically advanced alien spaceships. The PowerBook 5300 used in the movie had 8 MB of RAM. How could this be?

Putting aside Apple paying for product placement, we’re not going to stop advanced alien life who are apparently Mac-compatible.

I cite the ridiculous Independence Day ending because I was recently reading through a number of IoT security stories and began thinking about the implications of connecting all these things to the network. How much computing power does one actually need to hack something of significance? Could a 1997 IBM Thinkpad running Windows 95 take down the power grid in the eastern United States? Far fetching, yes, but not ridiculous.

Car hacks seem to be in the news recently. Recall last month’s Jeep hack and hijack. Yesterday, stories came out about hackers using small black dongles connected to a Corvette’s diagnostic ports to control many parts of the car through, wait for it, text messages!

Beyond cars and numerous other consumer devices, IoT security has to reach hospitals, intelligent buildings, power grids, airlines, oil and gas exploration as well as every industry listed in the IRS tax code.

IBM’s X-Force Threat Intelligence Quarterly, 4Q 2014 notes that IoT will drag in its wake a host of unknown security threats. Even IBM, a powerful force in driving IoT forward, says that their model for IoT security is still a work in progress since IoT, as a whole, is still evolving. They do suggest however five security building blocks: secure operating systems, unique identifiers for each device, data privacy protection, strong application security, strong authentication and access control.

In the end, it will be up to manufacturers to build security from the ground up and continual work with the industry to make everything more secure. As we coalesce around an ever evolving threat landscape, it will be the responsibility of smaller manufacturers, giants like IBM and industry organizations like the Industrial Internet Consortium and Online Trust Alliance’s IoT Trust Framework to help prevent the ridiculous from happening.

 

Read more…

Upcoming IoT Events

More IoT News

How wireless charging works

Wireless charging technology has been around for over 100 years, but it has only recently found mainstream practical use for powering electronic devices like smartphones. Learn how this technology works and what advancements we may see in the future.

How wearables can improve healthcare | TECH(talk)

Wearable tech can help users track their fitness goals, but these devices can also give wearers ownership of their electronic health records. TECH(talk)'s Juliet Beauchamp and Computerworld's Lucas Mearian take a look at how wearable health tech can… Continue

IoT Career Opportunities