Join IoT Central | Join our LinkedIn Group | Post on IoT Central


smart manufacturing (3)

3561221589?profile=RESIZE_710x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The term Digital Transformation means different things for different people. Some people might think of it as switching from manual processes to autonomous processes, while for others it might be about the insights that the data brings, which can help in making business decisions. What can Digital Transformation or moving towards Industry 4.0 do for the manufacturing sector? It can lead to enhanced production cycles, increased customization, a focus on reinforced products and better access to information for employees.

Read more…

 

From smart devices and home automation systems to smart cars and smart buildings, the Internet of Things brings important innovations in our life. In the next years, IoT solutions will continue to take the center stage in the tech environment.

With huge investment in this technology, the global IoT spending is expected to reach $1.29 trillion by 2020 and $1.4 trillion by 2021 (IDC report).

For now, manufacturing industry is still the main investor in the Internet of Things. According to recent surveys, 66% of manufacturers say that the use of IoT solutions is essential for staying competitive and resolving various issues.


 

Smart factories

 

Capgemini research reported that smart factories are going to add $500 billion to $1.5 trillion in value added to the global economy in 5 years. By now, 56% of manufacturing companies have already invested $100M in smart factory initiatives.

Today the creation of smart factories with the Internet of Things is gaining momentum and so far, only 6% of manufacturers can be designated to “Digital Masters”, an advanced stage in digitizing various production operations with a strong foundation of smart management, process automation, and employee skills.

Analysts expect smart factories to revolutionize the industry by providing a 7X increase in overall productivity by 2022. Among the most interesting findings, Capgemini reports smart factories will be able to speed up on-time delivery of finished products by 13 times, with the enhancement of quality indicators at more than 12 times the rate of improvement since 1990.

Also, Capital Expense & inventory costs will be rationalized 12 times and material, logistics and transportation costs are predicted to be optimized at 11 times the rate of improvement since 1990.

On the graphic below you can see a comparison of manufacturer’s annual gains since 1990 versus expected annual gains referred to smart factory technologies in the next 5 years.

 

Besides the Internet of Things, contributing technologies to smart factories also involve Big Data Analytics, machine learning, advanced robotics, and 3D printing, while cloud computing platforms unify all of these technologies together, leading to more rapid smart factory adaptation and bringing revolution in the industry.

 

IoT use cases in manufacturing

 

With smart connections of multiple devices, equipment, and production processes, manufacturers get such benefits as minimized human intervention, remote machinery maintenance, employee safety, production automation, and reduced operational costs.

 

The main IoT applications include:

 

  • Production flow monitoring - leads to flow optimization, minimize waste, and reduced labor and operational costs.
  • Remote equipment monitoring & management - Results in saved energy and reduced costs. Predictive analytics allows repairs and replacements to be automatically ordered even before something breaks.
  • Condition-based maintenance notifications - enables to successfully maintain machinery health and increase throughput.
  • Supply chain management

    with the help of vehicle and asset tracking, you improve the efficiency of manufacturing and supply chain operations.

     

     

 

There is a plenty of other successful IoT use cases in manufacturing: equipment predictive maintenance, vehicle and asset tracking, temperature/energy conservation/air quality control, facility management, smart ventilation, production flow monitoring, and smart radiation monitoring and measurement.

By integrating a smart factory initiative, you can connect all production stages, accelerate production, enhance various management processes, ensure working safety, reduce operational costs, and improve the entire company performance.

Read more…

Manufacturers seek quantifiable ROI before making leap to IIoT implementation

By now, most manufacturers have heard of the promise of the Industrial Internet of Things (IIoT).

In this bold new future of manufacturing, newly installed sensors will collect previously unavailable data on equipment, parts, inventory and even personnel that will then be shared with existing systems in an interconnected “smart” system where machines learn from other machines and executives can analyze reports based on the accumulated data.

By doing so, manufacturers can stamp out inefficiencies, eliminate bottlenecks and ultimately streamline operations to become more competitive and profitable.

However, despite the tremendous potential, there is a palpable hesitation by some in the industry to jump into the deep end of the IIoT pool.

When asked, this hesitation stems from one primary concern: If we invest in IIoT, what specific ROI can we expect and when? How will it streamline my process such that it translates into greater efficiencies and actual revenue in the short and long term?

Although it may come as a surprise, the potential return can actually be identified and quantified prior to any implementation. Furthermore, implementations can be scalable for those that want to start with “baby steps.”

In many cases, this is being facilitated by a new breed of managed service providers dedicated to IIoT that have the expertise to conduct in-plant evaluations that pinpoint a specific, achievable ROI.

These managed service providers can then implement and manage all aspects from end-to-end so manufacturers can focus on core competencies and not becoming IIoT experts. Like their IT counterparts, this can often be done on a monthly fee schedule that minimizes, or eliminates, up-front capital investment costs.


DEFINING IIOT

Despite all the fanfare for the Internet of Things, the truth is many manufacturers still have a less-than-complete understanding of what it is and how it applies to industry.

While it might appear complicated from the outside looking in, IIoT is merely a logical extension of the increasing automation and connectivity that has been a part of the plant environment for decades.

In fact, in some ways many of the component parts and pieces required already exist in a plant or are collected by more manual methods.

However, a core principle of the Industrial “Internet of Things” is to vastly supplement and improve upon the data collected through the integration of sensors in items such as products, equipment, and containers that are integral parts of the process.

In many cases, these sensors provide a tremendous wealth of critical information required to increase efficiency and streamline operations.

Armed with this new information, IIoT then seeks to facilitate machine-to-machine intelligence and interaction so that the system can learn to become more efficient based on the available data points and traffic patterns. In this way, the proverbial “left hand” now knows what the “right hand” is doing.

In addition, the mass of data collected can then be turned into reports that can be analyzed by top executives and operations personnel to provide further insights on ways to increase operational savings and revenue opportunities.

In manufacturing, the net result can impact quality control, predictive maintenance, supply chain traceability and efficiency, sustainable and green practices and even customer service.


BRINGING IT ALL TOGETHER

The difficulty, however, comes from bridging the gap between “here” and “there.”

Organizations need to do more than just collect data; it must be turned into actionable insights that increase productivity, generate savings, or uncover new income streams.

For Pacesetter, a national processor and distributor of flat rolled steel that operates processing facilities in Atlanta, Chicago and Houston, IIoT holds great promise.

“At Pacesetter, there are so many ways we can use sensors to streamline our operation, says CEO Aviva Leebow Wolmer. “I believe we need to be constantly investigating new technologies and figuring out how to integrate them into our business.”

Pacesetter has always been a trendsetter in the industry. Despite offering a commodity product, the company often takes an active role in helping its customers identify ways to streamline operations as well.

The company is currently working with Industrial Intelligence, a managed service provider that offers full, turnkey end-to-end installed IIoT solutions, to install sensors in each of its facilities to increase efficiency by using dashboards that allow management to view information in real time.

“Having access to real-time data from the sensors and being able to log in and see it to figure out the answer to a problem or question so you can make a better decision – that type of access is incredible,” says Leebow Wolmer.

She also appreciates the perspective that an outsider can bring to the table.

“Industrial Intelligence is in so many different manufacturing plants in a given year and they see different things,” explains Leebow Wolmer. “They see what works, what doesn’t, and can provide a better overall solution not just from the IIoT perspective but even best practices.”

For Pacesetter, the move to IIoT has already yielded significant returns.

In a recently completed project, Industrial Intelligence installed sensors designed to track production schedules throughout the plant. The information revealed two bottlenecks: one in which coils were not immediately ready for processing – slowing production – and another where the skids on which they are placed for shipping were often not ready.

By making the status of both coil and skids available for real time monitoring and alerting key personnel when production slowed, Pacesetter was able to push the production schedule through the existing ERP system.

This increased productivity at the Atlanta plant by 30%. Similar implementations in the other two facilities yielded similar increases in productivity.


TAKING THE FIRST STEP

According to Darren Tessitore, COO of Industrial Intelligence, the process of examining the possible ROI begins with a factory walk-through with trained expertise in manufacturing process improvement and IoT engineers that understand the back-end technologies.

A detailed analysis is then prepared, outlining the scope of the recommended IIoT implementation, exact areas and opportunities for improvement and the location of new sensors.

“The analysis gives us the ability to build the ROI,” says Tessitore. “We’re going to know exactly how much money this will make by making the changes. This takes much of the risk out of it so executives are not guessing how it might help.”

Once completed, a company like Industrial Intelligence can then provide a turnkey, end-to-end-solution.

According to Tessitore, this covers the entire gamut: all hardware and software, station monitors, etc.; the building of real-time alerts, reports & analytics; training management on how to use data points to increase profits; and even continuously monitoring and improving the system as needed.

“Unless you’re a huge company, you really don’t have somebody who can come in and guide you and create a cost effective solution to help you compete with the larger players in the space,” says Pacesetter’s Leebow Wolmer. “I think that’s what Industrial Intelligence offers that can’t be created on your own.”

“It’s not a one-size-fits-all approach,” she adds. “They have some things that can give you a little bit of IIoT or they can take an entire factory to a whole new level. By doing this they can be cost effective for a variety of sizes of organizations.”

Read more…

Sponsor