Subscribe to our Newsletter | To Post On IoT Central, Click here


use cases (2)

The Internet of Things is now widely used in a wide array of business verticals like manufacturing, healthcare, logistics, and more. According to the latest research data, the number of IoT connected devices, which made up ~4,9 million things in 2015, reached the point of ~3,9 billion in 2016.

Concerning AR, Statista predicts at least three various scenarios of AR/VR growth, but they all forecast the economic impact amounting ~$29,5 billion in 2020. Having reached the decision of developing your own IoT or AR software, you need to get heads up about the pitfalls of starting this new business solution development.

Major AR and IoT solutions’ programming challenges.

Challenges may be divided into several categories: high-level business obstacles and application development problems along with the solution’s further maintenance and enhancement. The first group may include the following issues:

  • Unclear business benefits;
  • Insufficient funding;
  • A poor go-to-market strategy, and more;

While it’s quite clear how to avoid business-level problems, it’s also worth taking into account the challenges which arise during the software development process itself. The average IoT obstacles may include:

  • Infrastructure problems (devices, gateways, platforms);
  • Security concern;
  • Cross-platform compatibility;
  • Lack of support, and more.

AR development challenges encompass:

  • AR hardware;
  • Generated content;
  • Security issues, and more;

With reference to the latest Cisco’s survey, only 26% of IoT projects considered as successful by their developers, whereas more than 50% reach the jumping-off place at the strategy crafting stage. One of the key AR challenges is to correlate virtual data with the real environment, which can bring even a leading vendor to a screwjob. For this very reason, it’s critically important to have an idea of technology development nuances.

Nevertheless, the latest statistics on the number of the internet connected devices and the AR technology in various spheres shows that a business owner is a targeted consumer for the outputs. This gives extra room for the IoT and AR initiatives:

Statistics reveals the amount of investment made worldwide in IoT by sectors during 2015-2020.


Statistics shows AR technology’s market share by business spheres.

2 notable IoT/AR use cases

In the context of solving the task, below are the two living examples of successful solutions to take into account while initiating your own development project.

E.g.: IoT mobile app for smart buildings and yachts management:

The idea was to develop a highly customizable system allowing to manage numerous connected devices in smart buildings/yachts.

Challenge:

A necessity to run a proprietary protocol in remoteness from real devices.

Solution:

Multiple devices installed within a building/yacht were united into a single smart system. A proprietary text protocol which provided smooth communication between the user interface and the backend was applied for infrastructure visualization configuration, gateways, and IR-gateways communication. This permitted cutting down on customizing the part of UI for each client.

The developed IoT application allowed for managing a chain of devices, including surveillance cameras (change the angles, zoom in/out), lighting, media systems, smart locks, and more via an Android-based mobile app. This led to essential energy and budget economy. The product is now being enhanced by integrating more smart devices into the system. A similar solution may be implemented in any smart home, hotel, or yacht to introduce automation and analysis to the existing infrastructure.

E.g.: Equipment maintenance and service mobile app with augmented reality

The idea was to develop a mobile app compatible with numerous platforms, which would give a possibility to maintain complex industrial equipment single-handedly.

Challenge:

A necessity to ensure image recognition with absolute accuracy.

Solution:

To create a repair or service guide, a user takes a photo of the equipment as a first step. Then the image is processed by Metaio SDK, which is a basis for its further recognition by the app. The built-in image recognition helps to save on painstaking programming and therefore additional investments on the part of the user.

Afterward, each of the required equipment part scenes is supplied with a step-by-step guide by means of animated, drag-and-drop 3D objects, such as a nut, a screwdriver, etc. The system allows to include text information, as well as images and videos in the instructions. Finally, the app’s user gets the complete instructions by simply pointing the device’s camera at the equipment that needs repair. A similar solution may be applicable to any industrial enterprise, healthcare organization, or any other vertical which requires urgent fixes and updates.

The bottom line

Any AR and IoT application development challenges may be addressed with a well-thought-out plan for development, implementation, and further maintenance and enhancement. The quantity of IoT and AR applications is skyrocketing and the above examples are a living proof of the system’s effectiveness in different business spheres.

Read more…

Top 5 Industrial IoT use cases

The industrial IoT has already proven its versatility with deployments going live in a number of enterprises, showing off dozens of different use cases. But a few key uses consistently present themselves within the same trade, and even throughout different industries.

Top 5 industrial IoT use cases

It’s important to note that IoT use cases will likely expand in the next few years. That being said, we have compiled the top five industrial IoT use cases of today:

Predictive maintenance

Keeping assets up and running has the potential to significantly decreasing operational expenditures (opex), and save companies millions of dollars. With the use of sensors, cameras and data analytics, managers in a range of industries are able to determine when a piece of equipment will fail before it ever does. These IoT-enabled systems can sense signs of warning, use data to create a maintenance timeline and preemptively service equipment before problems occur.

By leveraging streaming data from sensors and devices to quickly assess current conditions, recognize warning signs, deliver alerts and automatically trigger appropriate maintenance processes, IoT turns maintenance into a dynamic, rapid and automated task.

This approach promises cost savings over routine or time-based preventive maintenance, because tasks are performed only when they are needed. The key is to get the right information in the right time. This will allow managers to know which equipment needs maintenance, maintenance work can be better planned and systems remain online while workers stay on task. Other potential advantages include increased equipment lifetime, increased plant safety and fewer accidents with negative impact on environment.

Smart metering

A smart meter is an internet-capable device that measures energy, water or natural gas consumption of a building or home, according to Silicon Labs.

Traditional meters only measure total consumption, whereas smart meters record when and how much of a resource is consumed. Power companies are deploying smart meters to monitor consumer usage and adjust prices according to the time of day and season.

Smart metering benefits utilities by improving customer satisfaction with faster interaction, giving consumers more control of their energy usage to save money and reduce carbon emissions. Smart meters also give visibility of power consumption all the way to the meter so utilities can optimize energy distribution and take action to shift demand loads.

According to Sierra Wireless, smart metering helps utilities to:

  • Reduce operating expenses by managing manual operations remotely
  • Improve forecasting and streamline power-consumption
  • Improve customer service through profiling and segmentation
  • Reduce energy theft
  • Simplify micro-generation monitoring and track renewable power

Asset tracking

A study on the maturity of asset efficiency practices from Infosys and the Institute for Industrial Management (FIR) at Aachen University revealed that 85% of manufacturing companies globally are aware of asset efficiency, but only 15% of the surveyed firms have implemented it at a systematic level.

source: Actsoft
source: Actsoft

Infosys and other supporting companies including Bosch, GE, IBM, Intel, National Instruments and PTC have launched a testbed with the main goal of collecting asset information efficiently and accurately in real-time and running analytics to allow the firms to make the best decisions.

The goal of asset tracking is to allow an enterprise to easily locate and monitor key assets (e.g. raw materials, final products, and containers) and to optimize logistics, maintain inventory levels, prevent quality issues and detect theft.

One industry that heavily relies on asset tracking is maritime shipping. On a large scale, sensors help track the location of a ship at sea, and on a smaller scale they are able to provide the status and temperature of individual cargo containers. One benefit is real-time metrics on refrigerated containers. These containers must be stored at constant temperatures so that perishable goods remain fresh.

Each refrigerated container needs to be equipped with temperature sensors, a processing unit and a mobile transmitter.

To continue reading, please visit the full article on Industrial IoT & 5G

 

Read more…

Upcoming IoT Events

More IoT News

IoT Career Opportunities