Subscribe to our Newsletter | To Post On IoT Central, Click here


All Posts (907)

When you have the responsibility of ensuring a manufacturing plant is operating at its full potential at all times, talk of “Industry 4.0” and “industrial automation like never before” might be exciting but far-fetched. Industry 4.0 is just an empty phrase used by marketers who want to take your money, right?

Maybe in some cases, but the ideas behind the buzzy terms can actually give you an edge over competitors. Industry 4.0 is not a phase, but it’s also not an obligation that you need to “opt in to” 100% right away.  Industrial automation is a combined result of our greater digital capacities, smarter machines, and improved cross-channel communication that have accompanied the digital age.

In 2019, the technology is here: from decentralized cloud systemsto self-correcting and self-directing machines. However, it’s not everywhere yet, and most plants are simply taking baby steps towards preparing their lines to be as compatible as possible to these new technologies so that they can gradually work their way in. Industry is slowly moving towards a more optimized, efficient, automated structure, but this transition will be happening in the industrial world over the next few decades.

What do those “baby steps” look like? Where should begin to optimize lines in the most cost-effective, long-term ROI benefits?  We have compiled a list of 5 relatively simple ways you can take this year to set your plant up for new “Industry 4.0” industrial automation technologies:

1. Integrate a Single Virtual Server

Managing the IT aspect of your plant is difficult when you need to find cost-effective storage and data processing solutions for your company that also comply with all of the regulations and contingencies of your industry. However, upgrading a server to a virtual option is probably the most important upgrade you can do to get started on the road to future industrial automation applications that use a truly decentralized communication with virtual operating system.

If your plant currently runs exclusively on physical servers, you don’t need to go virtually all at once. The wonderful thing about industry 4.0 is that much of the software integrations available will integrate with your existing hardware. You can invest in one virtual server, and then layer software integrations on to it over time.

By starting with a single server, you can cut costs, maintain a realistic learning/adaptation curve, and try out a virtual server option without committing 100% to a change. There are numerous virtual server options available, so talk to a process automation expert about what server will work best for your plant, and which server to upgrade first.

2. Get Basic Industrial Automation Security – Two-Factor Authentication

With increased adaptability and communication on virtual servers comes increased cyber threats, and unfortunately, there is no way around this. One of the easiest and fastest upgrades you can do for your company is to implement two-factor authentication (2FA) for all employees. A simple password is no longer anywhere near secure enough to protect your employees and your data.

Luckily, everything from Twitter to Cloud servers now offer 2FA options, it’s usually just a question of getting the settings implemented correctly and creating a protocol that requires every employee to use 2FA at all times. It may seem tedious or frustrating at first, but this is a small habit that can make a huge difference in your cyber security and overall functioning of your plant.

3. Make Your Next Machine Purchase a Smart Machine

You probably aren’t yet at the point of having a completely automated assembly line of smart machines that create highly customized orders while communicating with and correcting each other (like the assembly line in this German plant.) However, smart machines do exist, and if you are getting ready to purchase a new machine, finding one that has automation, optimization, and decentralized communication abilities will be a great investment in your plant’s future.

Customizable “smart machines” are virtually independent of a human operator. The ability of these machines to adapt to the demands of individualized production requirements allows for scalable, lean production processes. In other words, with these new machines, you can produce a larger variety of products faster than ever before.

If your current machines are working fine, there is no need to replace them with smart machines right away. But from this point forward, it is a good idea to consider buying a smart machine for your next upgrade. Don’t be afraid to use an automation integrator to advise you on the appropriate machine, technology, and compatibility with existing plant automation systems.

4. Implement Technology Upgrades that Overlay or Automatically Integrate Existing Plant Industrial Automation

Be choosy about the automation products you decide to implement into your current systems moving forward. You want applications that both set your systems up for future technology integrations and help move you away from expiring legacy applications.

This shouldn’t mean replacing all your old applications, programming, and platforms all at once other. Most Industry 4.0 automation tools are created in an “overlay” style, meaning they are created to be able to function on top of your existing processes and are not supposed to disrupt everything you have already built.

Embracing a new software or system should never mean that you have to throw away your existing processes and start from scratch. If this is how you feel when you are getting ready to purchase a new software, machine, or server then it probably isn’t the right product for your company.

Talking to an expert about what products will work best with your current setup is a good idea before making any changes to your industrial automation. At my company, EPIC systems, we've seen the difference that selecting the right product solutions has made for hundreds of process automation projects — it's a key step for any manufacturing plant. No matter who you work with, you don't want to bypass this step.

5. Optimize One of Your Plant’s Processes

Divide and conquer, as they say. Just as it is best to upgrade one server at a time, it is helpful to focus specifically on one plant process at a time when you are looking to optimize and automate your plant.

This could mean focusing on optimizing your shipping procedure or optimizing one assembly process. The important thing to remember is that as you do this “experimental optimization” you are not just looking for an impressive return on investment, you are also looking to get your entire team comfortable with the automation and ready to embrace even more. This is why the “how” is just as important (if not more important) than the “what” when it comes to choosing a process to optimize. Go slow, be transparent, and include everyone in the process so that it is a success all around.

Industry 4.0 is creating a world where employees can delegate mundane tasks to smart machines and rely on highly communicative, agile systems in order to work faster and more effectively than ever before. There is no reason for any manufacturing plant to be left behind in this industrial evolution, with numerous products and services available to help walk you through the industrial automation process gradually and intelligently.

Read more…

Guest post by Jason English, Principal Analyst, Intellyx

Surely you’ve caught some of the excitement about drones for enterprise use. Packages and communications delivered to the world by these ultimately mobile IoT fliers. Heavy VC investment in commercial and supply chain drone applications could drive this sector to be worth as much as $13 billion by 2020.

We all remember Amazon teasing a drone-delivery future in this now-famous ad from 5 years ago. But there’s no way the online retailer will corner this game. Expect drone delivery research to advance quickly at leading transportation firms like FedEx, UPS and DHL. Uber Eats might even have drones fly over some sushi for engineers too busy for lunch.

But could drones possibly become passé for widespread business use before they can even get out of the hangar?

Drones are the ultimate IoT play for enterprise

Of all the interesting ‘things’ in the commercial IoT continuum, from geo-location tags in trucks and packages, to remote cameras, factory robots, smart sensors and controls, power meters, wearables and medical devices, nothing captures our imagination quite like a drone.

In a sense, drones can let our productive work ‘slip the surly bonds of earth,’ with the ability to move anything, and see anything, almost anywhere in the world. It gives businesses a flock of birds to command, rather than the two-dimensional constraints of surface dwelling gadgets and robots.

Take the telecommunications industry. The ability to dispatch a maintenance drone to inspect and verify the equipment on a relay tower can save a human technician a risky and time-consuming day trip up the pole for a visual inspection, improving service efficiency while reducing insurance premiums.

In many cases, the drones are even replacing telco network infrastructure themselves, maintaining a tethered position to provide communication services or wi-fi coverage services to the ground below, especially in emergency outage conditions. Facebook killed its ambitious Aquila project to expand global internet access last year, but that isn’t stopping other regional and private drone network programs.

For oil and gas, or just about any industry that involves surveying or inspection, the value of drones with advanced cameras is self-evident. Real estate firms now commonly provide dramatic flyover footage of for-sale properties, for epic establishing shots, without the epic budget.

Big agriculture is getting in on the game, exploring inspecting, seeding and possibly even spraying or weeding large crop fields with unmanned farmer drones.

And of course, for logistics and delivery services, the needle is moving. A UPS pilot program employed drones atop trucks to more efficiently handle actual doorstep delivery of packages, potentially saving the cost of untold hours of truck drivers stopping and getting out of their brown van for each package.

No drone zone - Sedona AZAre drones a nuisance, or a security menace?

I recall swimming on the serene shores of Lake Kachess here in Washington a few years ago with family and friends, miles from civilization and its accompanying noises, when an electric-razor whirring sound broke the spell of nature. A hobbyist from another campsite was buzzing us.

The kids thought it was pretty cool, but I didn’t appreciate it. What if it runs out of batteries, or flies out of range of the controller while overhead?

As drones started dropping to consumer-friendly price points, I started seeing ‘No Drones Allowed’ signs in National Park sites like Sedona, Arizona, Crater Lake, Oregon, and at Snoqualmie Falls near my house (the site famous for the ‘Twin Peaks’ show exteriors). Certainly a few disruptive drone hobbyists caused such a response.

In entertainment, drones are often associated with less-than-desirable government uses of military and surveillance activity. Hollywood films often place spy drones in the employ of authoritarian antagonists and put killer drones under the joystick of covert operations teams.

With the miniaturization of electronics and ever-improving transmitter capabilities in a lightweight package, many drones have also proven easily hackable, and detailed specifications and software mods are readily available on the Dark Web for the mischievous.

Drones are also quite effective as mobile hacking platforms — in essence they are flying laptops after all. Drones can remotely sniff for network packets without a hacker needing to step onto the target’s corporate campus.

Not the best PR for this category of IoT devices.

Flying through FAA guidelines

Fortunately, the FAA has been closely regulating and tracking the use of drones (or UAS – ‘Unmanned Aircraft Systems’ as they call them) from the start, and have implemented measures such as a 5-mile ‘no fly zone’ for drones around sites such as airports, and requiring any operator of a drone more than 0.55 pounds (most of them) get a specific license to fly.

Clearer guidelines certainly help, and lead to more responsible use of the technology. For their part, the FAA says they don’t want to inhibit innovation and commercial use of UAS, and based on news in drone industry journals like InterDrone, the agency is partnering with business operators to consider input on guidelines for situations such as night flight and flying over people.

Who’s Taking Down Drones?

I didn’t know this before I started writing this story, but it is actually illegal to shoot down drones in the United States — even if they venture onto private property — as much as I would expect some sort of ‘Castle Law’ to allow it in this gun-lobby-controlled nation. Drones are afforded the protections due any other commercial aircraft under Federal law.

So, short of the shotgun approach, who is taking down drones today?

  • Regulators. Most democratic nations seem to be fast-tracking commercial use approvals, in order to encourage additional innovation in the space and stay up to speed with the rest of the world. That said, expect new rules and licensing guidelines to develop.
  • Hackers. Certainly the strongest threat to commercial use of drones lies in the ability for determined saboteurs to intercept or interrupt control of these devices, which are optimized for performance and range, rather than encryption and security.
  • Organized Labor. Remember that UPS drone pilot program? Well-organized workers took issue with having much of their work automated by drones. Companies will need to consider the human side of their existing business when implementing drone programs.
  • Eagles. Yes, Dutch law enforcement officials developed a program to use the actual birds of prey, not the classic rock band, to snatch suspicious drones right out of the sky and ground them. How cool is that?

The Intellyx Take

Setting all the fun toys, military stigma, and regulation uncertainty aside, I expect commercial drones to become rather commonplace in the next five years, working alongside us — or, above us.

As drone technology improves, production costs will come down, while better sensors, IoT cybersecurity measures, and even onboard AI will come into play to make them a safer and situationally aware part of the automated fabric of many companies.

They’ll never be right for every kind of work though. Drones will need to expand and enhance the abilities of our human workforce to maintain strong support in the enterprise. In the end, businesses will still need to perform an objective cost-benefit analysis to determine where drones are best fit for purpose.

Then, let ‘em fly. Just don’t tell Rambo the Drone-Killing Ram.

©2019 Intellyx LLC. Sharing or reprint of this work, edited for length with attribution is authorized, under a Creative Commons Attribution-NoDerivatives 4.0 International License. At the time of this writing, none of the companies mentioned above are Intellyx customers. Image credits: No Drone Zone, Cococino National Forest; Drone, Witolt Wacshut; CC 2.0 license, Flickr.

Read more…

There is no overstatement in the saying that that Internet of Things (IoT) is reshaping business processes and workplaces in a never-before way. Connected devices are increasingly pushing the boundary of innovation for the enterprises and industries of all niches. Thanks to these connected devices and a huge upsurge of IOT mobile app development, consumers are being benefited most through frictionless user experience.

No wonder in the fact that the IoT software development is exploding with all possibilities and promises. Just like ever before, the market is brimming with a whole array of scalable, feature-rich, secure and user-optimized connected solutions that are transforming the way we interact with devices and use software solutions at the workplace.

In spite of such huge promise and possibilities, IOT software and app development faces some hefty and crucial challenges that developers of the present-day need to be aware of. Here we are going to explain some of these challenges in brief.

  • Operating System (OS) Considerations

The first technical challenge and pulling factor that IOT app development companies need to deal with is the consideration of the operating system of the devices. Since IOT devices have mostly shorter memory capacity and a single track operational capacity, developers need to approach the development challenges for such devices in a different way than with the desktop solutions. The developers need to pick an OS that perfectly fits the device capability and the objective of the application.

As of now, most of the IOT developers surveyed for their OS preferences have clearly chosen Linux. Linux according to most IOT developers, offers the perfect OS for IOT devices with a lot of memory constraints, microcontrollers, and IOT gateways.

  • Selecting the Gateways

The gateways in the IOT landscape plays the most critical role by connecting almost all the constituent elements ranging from connectivity protocols like Wi-Fi or Bluetooth, ports, IOT sensors, cloud systems, etc. Naturally, for the whole IOT ecosystem gateways really play the mission-critical role. 

When it comes to the choice of appropriate gateways for your IOT application, you have several well-known choices from renowned technology companies like Dell, Nexcom, Intel, etc. These gateway providers as if now are proved to be highly effective for end number of applications. Some of the key aspects that you need to consider in gateways include the particular specifications for the network, supporting development environment, power rating, memory capacity, etc.

  • Security & Privacy

One of the key aspects that IOT app developers should give utmost priority is the app security and privacy. The security here not just refers to the network security but practically security of every different component. As IOT devices penetrate the personal spaces of the users, they are often vulnerable to misuse and breaching of data security through cyber-attacks.

Maintaining optimum data security and safeguarding privacy are two aspects that always remained to be the contentious areas for the IOT app developers worldwide. Let us have a closer look at various security aspects of an IOT app.

  • Data Exchange Security: The data generated through an IOT app through the IoT sensors and devices pass through the gateway and is finally stored at the cloud server. To ensure optimum security to this data it is important to use encryption for safeguarding the data.
  • Physical Security: The IoT devices unlike other computing devices are normally used in private and remain unattended most of the times. This is why they remain vulnerable to a lot of security threats from hackers at the device level.
  • Cloud Storage Security: A cloud storage solution normally remains secure from threats and intrusions. Even then, the developers of the IOT apps need to make sure that the data in cloud storage remain safe and secure.
  • Privacy Updates: To protect the privacy of the user data processed and fetched by IoT devices, there need to be certain compliance rules. For instance, all fitness tracker devices collect user data on the basis of HIPAA guidelines. Such regulations and compliance standards basically safeguard the privacy of the user data.
  • Network Connectivity

The quintessential aspect of IOT app development is the fast and real-time data transmission between the device and the IOT gateway and the gateway to the cloud server. Poor connectivity will only render most of the critical app features to be ineffective. The connectivity issues and server breakdown still remain to be the major problems for too many IOT devices.

Actually, connectivity remains to be the first and foremost area of importance for connected devices that work hand in hand with gateways and cloud platforms. For meeting this challenge corresponding to connectivity with appropriate measures, the app design and device app environment play an important role. The connectivity solution should be considered as per the device constraints and capacities.

  • User-Optimized App Design

Another major focus area for IOT app development should be on the app design. The app design should be thoroughly intuitive and user-focused so that the users do not need to study manuals for using an IOT device. Even for industrial IOT devices, simple and clean design is extremely important to ensure faster decision making and visualization of the data. In this respect, close and mutually reciprocating cooperation between the developers and designers is a must for building IOT apps. Some of the key attributes that design inputs should ensure include the following.

  • Safe and secure user authentication
  • Frictionless transition across devices and applications
  • Personalized user experience based on user behavior and preferences
  • A consolidated IOT environment comprising all the elements in the pipeline.

 

  • Cross-Platform Deployment

Last but not least of all the major challenges that IOT app developers must deal with is deploying the app across multiple OS platforms. Since the IOT ecosystem comprises of a variety of device architectures, protocols, and operating systems, the app should be built to fit with all these variables for a seamless and efficient performance. This is why experts of international organizations such as the Engineering Task Force (IETF) and the Institute for Electrical and Electronic Engineers (IEEE) have already come up with explicit cross-platform development standards and architecture models to help smooth deployment across multiple OS platforms.

Conclusion

In spite of the overwhelming growth of the IOT applications and the ecosystem of connected devices, there is a multitude of challenges that the IOT app developers need to encounter regularly. By focusing on these challenges beforehand, they can at least take appropriate precautionary steps to ensure optimum quality and efficient output.

 

Read more…

In 2016 in my article “ The future of “The Internet of Olympic Games”, I considered Rio as the first Internet of Things (IoT) Olympic games. In Rio we could see how athletes, coaches, judges, fans, stadiums and cities benefited from IoT technology and IoT solutions and somehow changed the way we see and experience sports. Next year we will have opportunity to verify if my predictions for Tokyo 2020 will become a reality and we will name Tokyo as the first Artificial Intelligent (AI) Olympic Games.

During my presentation in Dubai, I explained the audience the incredible way IoT and AI technologies are impacting sports. I dedicated some time explaining how IoT and AI are playing an increasingly significant role in boosting talent, managing health and improving coaching and training. Today these technologies are already enabling athletes to improve performance, coaches to better prepare games, judges to fail less, fans enjoyed with new excited experiences. I also remarked the importance that teams clubs and cities collaborate to make the stadiums more secure and more exciting for fans.

I emphasized how we are creating smart things, the importance of use AI and IoT to make every thousandth of a second count for athletes and coaches and how AI and IoT are used to predict the future of a race, a match or a bet.

I introduced different examples how all sports are using IoT and AI, and of course I share my vision in 10-15 years from now. Can you imagine integrated virtual and real world for sports? Can you imagine mixed teams of robots and humans or super-humans playing new games?

I did not forget to talk about the challenges involved in building machine learning models in sports and the challenges that IoT and AI still have.

I used my speech to raise awareness to the attendants that there is also a dark side in these technologies. We cannot forget that Sport is also a business and therefore enterprises, Governments and individuals can make a wrong use of these technologies.

In summary, it was a great session in which I shared my point of view about:

  • How we want IoT and AI transform coaches, athletes, judges and fans.
  • How we want IoT and AI continue attracting people to the stadiums
  • How we want IoT and AI transform Sport Business.
  • How AI is changing the future of sport betting?

How we want IoT and AI transform athletes, coaches, judges and fans?

Athletes

While the true essence of sport still lies in the talent and perseverance of athletes, it is often no longer enough. Therefore athletes will continue demanding increasingly sophisticated technologies and more advanced training techniques to improve performance. For instance, biomechanical machine learning models of players will predict and prevent potential career-threatening physical and mental injuries or can even detect early signs of fatigue or stress-induced injuries. It can also be used to estimate players’ market values to make the right offers while acquiring new talent.

Coaches

Coaches are using AI to identify patterns in opponents’ tactics, strengths and weaknesses while preparing for games. This helps coaches to devise detailed gamelans based on their assessment of the opposition and maximize the likelihood of victory. In many leading teams, AI systems are used to constantly analyze the stream of data collected by wearables to identify the signs that are indicative of players developing musculoskeletal or cardiovascular problems. This will enable sports teams to maintain their most valuable assets in prime condition through long competitive seasons.

Judges

We tend to think that technology helps make the sport more just when we are victims or witnessed of unjust decision. That´s why we approve inventions like Paul Hawkins - creator of Hawk-Eye, a technology that is now an integral part of the spectator experience when watching sport live or more recently VAR in soccer.

The use of technology allows watch in real time multiple cameras, with aggregated info from sensors (stadiums, things and athletes) to make their decisions more accurate and objective.

We as spectators or fans need more transparency about the exercise’s difficulty, degree of compliance and final score. And we have the technology to do it.

The IoT and AI technology doesn't claim to be infallible - just very, very reliable and Judges also need to be adapted to new technologies.

Fans

Without fans, sports would find it difficult to exist. It is understandable companies are also targeting fans with IoT and artificial intelligence to keep them engaged whether in the stadium or at home.

How we want IoT and AI continue attracting people to the stadiums?

Within the stadiums, sports clubs and many leagues across the globe are incorporating inside and outside the stadium technologies to boost fans unique experiences for fans and not only the 90 minutes.

The challenge is how to combine what the oldest and newest supporters are looking to attend to the stadiums?

How will the stadiums of the future be? I read numerous initiatives of big clubs and leagues, but I am exciting about the future stadium of Real Madrid. I wish the club would allow me to advise them how to create a smart intelligent Global environment to provide each fan with an individual experience, know who is in the crowd, learn fan behaviors to anticipate their needs

How we want IoT and AI transform Sport Business.

“As long as sports remain a fascination for the masses, businesses will always have the opportunity to profit from it. As long as there is profiting to be gained from the world of sports, the investment in and incorporation of technology for sports will continue.”

I read an article warning about the new entirely new world order that is being formed right now. The author explained how 9 companies are responsible for the future of AI. Three of the companies are Chinese (Baidu, Alibaba and Tencent, often collectively referred to as BAT), while the other six are American (Google, Amazon, IBM, Facebook, Apple and Microsoft, often referred as the G.Mafia). The reason is obvious, as far as AI is about optimization using the data that’s available, these 9 companies will manage more of the sport data generated in the world.

Collaboration is needed now to stop this danger and to address the democratization of AI in sports. It is urgent companies and governments around the globe to work together to create guiding principles for the development and use of AI and not only in Sports. This mean we need regulating it but in a different way. We do not want AI becomes in the hands of a group of lawmakers, who are very well read and very smart people but overwhelmingly lack degrees in AI and IoT.

Will AI change the future of sport betting?

The impact of technology on sports cannot be specifically measured, but some technological innovations do raise questions about fairness. Are we still comparing apples with apples? Is it right to compare the speed of an athlete wearing high-tech running shoes to one without?

Whether we like it or not, technology will continue to enhance athlete performance. And at some point we will have to put specific rules and regulations in place about which tech enhancements are allowed.

There is a downside to advanced technology being introduced to sports. Machine Learning models are now used routinely to predict the results of games. Sport betting is a competitive sport itself among fans, but AI can substantially tilt that playing field.

I analyzed many IoT and AI companies for Sports in order to prepare my session. I am scare about the game result predictions capabilities but more scare about the manipulation of competition using AI algorithms with the Terabytes of data collected daily from IoT devices and other sources like social media networks, without the permission of the users.

The sport business market is generating billions of US$ every year but without control and education we could find future generation of ludopaths and a small number of Sports Service Providers controlling the Sports.

Read more…

Do you know that the number of internet connected things will reach 75 billion in the year 2025 as per the reports released by Statista? Well, the report is not astonishing because we are well familiar with our day-to-day dependability on internet and technology.

 

Source: Statista

It is definitely not a sham that we can actually set the temperature of the air conditioner before actually entering the room. Or, can switch on or off the fan or other electronic devices through our smartphone. Things that were dreamt earlier now turned into reality and it is all possible with the Internet of Things or simply IoT.

What are Future Possibilities of IoT?

‘What is IoT’ is the most asked questions about the technology. It is the use of network sensors in physical devices to allow for remote monitoring and controlling. It has achieved massive grip in various fields like healthcare, banking, retail, manufacturing, consumer goods, etc. Businesses all over the world are looking for possible applications of IoT. Report by CSG quotes that ‘94% of businesses that have invested in IoT have already seen the return’. The report itself expounds the present and future of IoT.  

There is one very astonishing report about IoT by GSMA . It states that the US market doesn’t dominate IoT. China and Europe are ahead of the USA in global machine-to-machine connection (M2M) with 19% in total share. USA market and investors still have a great scope for IOT solutions.

Common Myths that are Veiling IoT

#1 IoT is About Consumer Devices and Connected Homes

User’s mobile being connected with the refrigerator or air conditioner can be one assumption when we say IoT but the reality is far away from this. Definitely, IoT has solved many daily purposes but B2B IoT is the desire of technology. Analytical prediction by Bian.com tells that B2B IoT segment will generate more than $300 billion by 2020 as compared to $150 billion of consumer applications.

#2 All IoT Devices Work Together

Devices that are connected with IoT works as per vendor protocols. Some vendors may allow direct access to the device whereas some may provide access to the information through a cloud interface. As a result, there is not always a surety that all connected devices will work together.

#3 IoT Provides Continuous Transition to Mobile Apps

As IoT runs on cloud there is a myth that there is limitless scope for the developers. IoT is the combination of cloud, big data, and connected devices. Still, more than 90% of big data is in a scattered form that makes the overall transition complex.

#4 IoT Will Lead to Rise in Machines

Whether it is the movie Terminator or any other sci-fi movie, they always targeted technologies like IoT. People have generated the mind-set that IoT has increased the dependence of machine in human life. But the reality is IoT is making the devices smarter. It just adds like the fuel in the fire. It provides the capability of devices to take the decision on their own. For example, a device that will examine the field and would detect the area where watering is required is one thing. But, the same device watering the required area is the specialized feature. This is the impact of technology.

#5 IoT is Not Safe to Use

The safety concern is another big myth that surrounds the world of IoT technology. There are people who believe that the connected devices would enhance security concerns as they have access to the complete database. This is wrong because IoT aims in making the life of users simple by delivering faster results with cognitive computing. So there is nothing like sharing database.

#6 IoT is All about Sensors

People have the belief that it is all about sensors and things. But the reality is that it is beyond that. There are gateways, hubs, repeaters, cloud, application, software that is managed and supported by IoT. So, the world of IoT is bigger than what people think of it.

#7 IoT Device can be Hacked Remotely

Not locally nor remotely the IoT device can be hacked. Apart from SSL and encryption of data, there are countless other services on which the connected devices work. Not everything in IoT solutions can be hacked. Only a few vulnerabilities are there to work on.  

#8 IoT Solution can be Delivered Easily

As there are open source tools used in IoT people believe that the solution can be delivered very easily. There are many vendors that are selling IoT solutions. Providing solutions and services are two different things. Creating an app and creating complete IoT solution are two different things. There are different critical stages to deliver a meaningful solution that would be business viable, technically feasible and would make sense for customers.

#9 IoT Devices Must-Have Wireless Security

In order to connect with the host in the cloud, router or peer IoT device need some level of connectivity. But, it is not always necessary that the device should be wireless. It can be connected through Ethernet or USB whatever the device supports.

Business Tips for Investors Looking forward to Capitalise in IoT Technology

Technology that creates buzz one day becomes redundant. Businesses that are looking forward to investing in IoT must know about the challenges that they can face. Here are the few best tips that will help investors to make the right selection.

Choose Mode of Connection Wisely: Depending on the specific requirement businesses need to decide on the mode of connection that would be used. Whether it is Bluetooth technology or Wi-Fi choose the one that solves your purpose of technology.

Hardware Compatibility with Technology: Hardware compatibility issues happen frequently with IoT technology. It is necessary to find out if the technology is compatible with the hardware you are selecting or not.

Platform: In functionality and concerns both Apple and Google differ from each other. You should have a clear line of sight before you finalize a platform and should know well about the compatibility of the technology with the platform.

IoT Framework: There are many security aspects of IoT that came into existence till date. In order to avoid any kind of plights, it is suggested that building a framework from scratch is the best possible solution. Doing so one may skip the security issues as faced in the previous framework if any.

The Bottom Line

Businesses are looking forward to  iot development because they are aware of the bright future of technology. But, there are myths that block their path. Definitely, the debunked myths will aid the investors to make the right decision. Many software development companies provide 30 minutes of free consultation for those who are keen on the tech. Users can contact them and clear all their doubts regarding the technology.

Read more…

E-commerce, much like every product of technological evolution, has made headway at a mind-boggling pace. Here are some stats that will help you gain a better perspective on this industry: e-commerce sales stood at $1.86 trillion in 2016. Also, researchers believe that this figure will grow up to $4.48 trillion in two more years, i.e., by 2021. While multiple factors contribute and continue to drive this fast-paced growth, there is no one that not many people pay close attention to the Internet of Things.

IoT has quietly revolutionized the e-commerce market by facilitating significantly better logistics as well as an enhanced user experience. It isn't surprising though -- especially when you consider the fact that over 30 billion devices are set to become 'connected' by next year. A constantly growing network of such devices means IoT has helped e-commerce businesses to not only deliver better products and services but also achieve better outcomes with their marketing initiatives and enhance customer's overall experience among other things.

Here's a closer look at what IoT means for e-commerce and how it enables companies in this sector to achieve robust growth.
1. Better inventory management: Managing inventory is an understandably challenging task when there are multiple warehouses involved. IoT has tackled that issue with the provision of things such as 'smart' shelves, which track the products sold and automatically place orders when products, especially high-performing ones, are about to go out of stock. It, in turn, boosts the levels of customer satisfaction.

2. Transformed consumer experience: IoT allows companies to leverage devices such as smart mirrors to allow clients to try out their products from the comfort of their home, thus delivering completely novel and distinctive customer experience. IoT can also be used to glean insights from social media platforms to understand which of the company's products are preferred and if there are any issues customers face. Implementing such data facilitates a deep shopping experience, resulting in better customer engagement as well as satisfaction.

3. Enhanced product ecosystem: Sensors, a crucial part of the phenomenon that is IoT, can be utilized to foster new opportunities for better product ecosystems. Furthermore, it can be used to provide customers with access to maintenance services or perhaps even recommending related products and services once the sale has been made.

4. Seamless delivery: Bigwigs from a broad variety of industries, including Amazon, are already using IoT to streamline their delivery processes. How? For starters, there are autonomous warehouse robots, which can be integrated with the business' warehouse management systems and then used to enhance order picking throughput, improve the warehouse's inventory density, and cut down labor costs among other things. All of these factors, together, help ensure a substantially more organized delivery system.

While IoT has already changed the face of the e-commerce industry, in the future it will further enable companies to better their marketing efforts, deliver better support to customers, and more, resulting in superior experiences for customers. So if you too want to jump on this bandwagon, we suggest you select a trusted e-commerce websites development company at the earliest possible.

Read more…

At differnet layers, IoT and connected devices uses different communication and messaging protocols. While developing an IoT device, the selection of the protocol largely depends on the type, layer and function to be performed by the device. 

In today’s time, networking with smart devices and IoT is increasing largely due to the ongoing technological revolution across the globe. People are increasingly using IoT and connected devices to automate industrial operations, control city traffic, track health, control home appliances, manage the fleet of vehicles, etc. Smart devices like phones, wearable devices, kiosks, appliances, and automobiles use the internet to connect with other devices and exchange information and data with servers to perform different operations.

There are two ways these devices can connect to the internet. Some devices may connect through a gateway, while others may have network capability built into the devices itself. It is interesting to note here that for establishing the connection with the internet, these devices use messaging and communication protocols at each layer of the Open Systems Interconnection (OSI) model. Depending on the function of the device, the communication protocol at each layer varies.

When it comes to selecting a protocol for the application layer of the IoT system, there are several protocols available. However, the most common types of IoT application protocols include, MQTT, XMPP, DDS, AMQP, and CoAP.

MQTT (Message Queue Telemetry Transport)

MQTT is a machine-to-machine (M2M) protocol. It is a publish-subscribe-based messaging protocol, used to communicate device data to the servers. The main purpose of MQTT is to manage IoT devices remotely. It is mainly used when a huge network of small devices needs to be monitored or managed via Internet i.e. parking sensors, underwater lines, energy grid, etc.

It should be noted that not all control packets have the variable headers and payload. A payload can be up to 256 MB. The small header overhead in MQTT makes this protocol appropriate for IoT.

Pros:

  • Lightweight for constrained networks
  • Flexibility to choose Quality of Services with the given functionality
  • Standardized by OASIS Technical Committee
  • Easy and quick to implement

Cons:

  • High power consumption due to the TCP-based connection
  • Lack of encryption

Use Case:

A parking lot where there are a number of parking sensors installed to identify the number and location of empty or vacant parking spots.

XMPP (Extensible Messaging and Presence Protocol)

XMPP was originally developed as a messaging protocol known as Jabber. It uses an XML format for messaging. The main feature of this protocol is its addressing mechanism. It identifies the devices/nodes in the IoT network using the address known as Jabber ID (JID). JID follows the standard i.e. [email protected] This addressing mechanism enables two nodes to exchange information, regardless of how far the nodes are in the network.

XMPP messages are usually transmitted over the underlying TCP connection. It uses a polling mechanism to identify the destination of the message. XMPP is implemented using a client-server architecture. The client starts an XML stream by sending an opening <stream> tag. The server then replies with an XML stream back to the client. Since XMPP is an open protocol, anyone can have their own XMPP server in their network without necessarily connecting to the internet.

 

Pros:

  • Addressing scheme to identify devices on the network
  • Client-server architecture

Cons:

  • Text-based messaging, no end-to-end encryption provision
  • No Quality of Service provision

Use Case:

  • A smart thermostat that can be accessed from a smartphone via a web server.
  • A gaming console with instant messaging between the two online players.

DDS (Data Distribution Service)

DDS is also based on a publish-subscribe model. DDS connects the devices directly, unlike MQTT, which connects them to the server. This is why DDS is faster than MQTT. Apparently, it can deliver millions of messages to a number of different receivers in seconds as it eliminates the communication with the server. DDS can be utilized for providing device-to-device communication over the data bus.

It provides detailed Quality of Service and reliability.

Pros:

  • Based on a simple “publish-subscribe” communication paradigm
  • Flexible and adaptable architecture that supports “auto-discovery” of new or stale endpoint applications
  • Low overhead — can be used with high-performance systems
  • Deterministic data delivery
  • Dynamically scalable
  • Efficient use of transport bandwidth

 Use Case:

Military systems, wind farms, hospital integration, medical imaging, asset-tracking systems and automotive test and safety.

 

AMQP (Advanced Message Queuing Protocol)

Advanced Message Queuing Protocol (AMQP) is an open standard application layer protocol for sending transactional messages between servers. As a message-centric middleware, it can process thousands of reliable queued transactions.

AMQP is focused on not losing messages as messages can be transferred using TCP or UDP. The use of TCP provides a reliable point-to-point connection. Further, endpoints must acknowledge the acceptance of each message. The standard also describes an optional transaction mode with a formal multiphase commit sequence. True to its origins in the banking industry, AMQP focuses on tracking messages and ensuring each message is delivered as intended, regardless of failures or reboots.

Pros:

  • Messages can be sent over TCP and UDP
  • Provides end-to-end encryption

Cons:

  • Relatively high resource utilization i.e. power and memory usage

Use Case:

AMQP is mostly used in business messaging. It usually defines devices like mobile handsets, communicating with back-office data centers.

CoAP (Constrained Application Protocol)

CoAP is an application layer protocol with a client-server architecture. It is a document transfer protocol, which runs over UDP (User Datagram Protocol). It is specifically developed for the resource-constrained devices. Clients and servers communicate through connectionless datagrams. It is useful in low power application as it uses minimal resources. DTLS (derivation of SSL protocol) can be used for security of the messages.

 

Pros:

  • Use of DTLS for security
  • Fast device-to-device communication
  • Smaller packet size
  • Well-designed protocol

Cons:

  • No broadcast message facility as it is a one-to-one protocol
  • Reliability is application’s responsibility

Use Case:

Smart energy grids and smart homes.

Conclusion

All the above-listed protocols are uniquely applicable to different operating scenarios. Any protocol can be handpicked based on their pros and cons for IoT application development. The main factors to consider while choosing any one of them for your application is quality of service, security, and reliability your application requires.

Read more…

 

A new wave of technologies, such as the Internet of Things (IoT), blockchain and artificial intelligence (AI), is transforming cities into smart cities. Many of these cities are building innovation labs and zones as part of their new civic landscape. Smart city innovation labs are vital components of the smart city ecosystem (Figure One). They provide an organized structure for cities, communities, experts, and vendors to come together to create solutions. Successful solutions piloted in smart city innovation labs are then scaled and deployed into a city’s operations and infrastructure.

Figure One. Strategy of Things Smart City Ecosystem Framework.

 
Many municipalities are considering and planning smart city innovation labs today. Over the past year, we helped to create, launch and operationalize San Mateo County’s Smart Region innovation lab (SMC Labs). From this experience, we share ten best practices for civic innovation leaders and smart city planners.
 
 
Ten Smart City Innovation Lab Best Practices
 

Develop a well defined innovation sandbox. Every smart city innovation lab has an unique mission. That mission is specific to its community, capabilities, priorities, and surrounding ecosystem. However, it is easy to get distracted and work on the “next shiny object”, vanity projects and “me too” innovation pilots. These projects don’t add value, but take resources and focus away from the problems the lab was created to address.

Build innovation discipline and focus by defining a “sandbox” from the start and updating it annually. The innovation sandbox defines clearly what types of projects are in-scope and which ones are not. The criteria includes alignment with city or department priorities, problem set type, problem owner(s) or sponsors, budget availability, cost, resource requirements, and organizational jurisdiction.

 

Create procurement policies and processes for innovation projects. Innovation pilots fall outside the “sandbox” municipal procurement processes and policies operate in. These pilots may work with start-ups with limited operating history, use immature and evolving technology, or bought in non-traditional ways (“as a service”, loans, etc.). This mismatch leads to higher risks, extra work and long sourcing times. Due to this, many vendors choose not to work with cities.

Effective smart city innovation labs are agile and responsive. They employ new procurement policies and practices designed specifically for the unique needs of innovation projects. This includes simplified processes and compliance requirements, new risk management approaches, faster payment cycles and onboarding models.

 

Build a well defined plan for every innovation project. Many innovation pilots are “successful” during the pilot phase, but fail during the scaling phase. This is because the pilots were not fully thought out at the start. Some test a specific technology or solution, and not the approaches. Others test the wrong things (or not enough of the right things). Some are tested in conditions that are not truly reflective of the environment it will be deployed into. Still others don’t test extensively enough, or over a sufficient range of conditions.

Successful projects in smart city innovation labs involve extensive planning, cross-department collaboration, and a comprehensive review process throughout its lifecycle. They have well defined problem statements. They define a targeted and measurable outcome, a detailed set of test requirements and specific success criteria. While innovation projects contain uncertainty, minimize project execution uncertainties with “tried and true” project management plans and processes.

 

Continuously drive broad support for the lab. A successful civic innovation lab thrives on active support, collaboration and engagement from stakeholders across the civic ecosystem. However, many city departments and agencies operate in silos. Launching and having an innovation lab doesn’t mean that everyone knows about it, actively funnel projects to it, or support and engage with it.

Successful smart city innovation labs proactively drive awareness, interest and support from city leaders, agencies, and the community. This includes success stories, progress updates, technology briefings and demonstrations, project solicitations, and trainings. They engage with city and agency leaders regularly, host lab open houses and community tours. They conduct press and social media awareness campaigns. Regardless of the “who, how and what” of the outreach, the key is to do it regularly internally and externally.

 

Measure the things that matter - outcomes. There are many metrics that an innovation lab can be measured on. These range from the number of projects completed, organizations engaged, number of partnerships, investments and expenses, and so on. Ultimately, the only innovation lab metric that truly matters is to be able to answer the following question - “what real world difference has the lab made that justifies its continuing existence and funding?”.

All innovation lab projects focus on solving the problem at hand. It must quantify the impact of any solutions created. For example, many cities are monitoring air quality. A people counting sensor, mounted alongside an air quality sensor, quantifies the number of people impacted. Any corrective measures developed as a result of this project can now point to a quantifiable outcome.

 

Build an innovation partner ecosystem. A smart city innovation lab cannot address the city’s innovation needs by itself. A city is a complex ecosystem comprising multiple and diverse domains. Technologies are emerging and evolving rapidly. New digital skills, from software programming to data science, are required to build and operate the new smart city.

Successful smart city innovation labs complement their internal capabilities and resources by building an ecosystem of strategic and specialist partners and solutions providers, and subject matter experts. These partners are identified ahead of time, onboarded and then brought in on an as-needed basis to support projects and activities as needed. This model requires the lab to build strong partnership competence, processes, policies and the appropriate contract vehicles. In addition, the lab must continuously scan the innovation ecosystem, identify and recruit new partners ahead of the need.

 

Test approaches, not vendors or solutions. Real world city problems are complex. There is no magic “one size fits all” solution. For example, smart parking systems use sensor based and camera based approaches. In some cases, both approaches work equally well. In other cases, one or the other will work better. A common innovation mistake is to only test one approach or fall in love with a specific vendor solution and draw a generalized conclusion.

Effective innovation lab projects focus on testing various approaches (not vendors) in order to solve problems effectively. Given the rapid pace of technology evolution, take the time to identify, test and characterize the various solution approaches instead.

 

Employ a multi-connectivity smart city strategy. There are many options for smart city connectivity. These include, but not limited to cellular 3G/4G, Wi-Fi, LoRaWAN, SigFox, NB-IoT and Bluetooth, and so on. Use cases and solutions are now emerging to support these options. However, some smart city technologies in the marketplace work on one, while others work on more. There is no “one size fits all” connectivity method that works everywhere, every time, with everything.

To be effective, smart city innovation labs need to support several of these options. The reality is that there is not enough information to know which options work best for what applications, and when. What works in one city or region, may not work in another. Pilot projects test a possible solution, as well as the connectivity approach to that solution.

 

Make small innovation investments and spread them around. Open an innovation lab and a long line of solutions vendors will show up. Everyone has a potential solution that will solve a particular problem. Some of these solutions may even work. Unfortunately, there is not enough budget to look at every solution and solve every problem.

Focus on making smaller, but more investments around several areas. Overinvesting in one vendor or one approach, in a market where technologies are immature and still evolving, is not wise. Invest enough to confirm the pilot outcomes. A more detailed evaluation of the various solutions and vendors should be made when the pilot moves out of the innovation lab and into a formal procurement and RFP phase.

 

Simplify administrative and non-innovation workloads. While innovation pilot projects are challenging, interesting and even fun, administering and managing the projects are not. These unavoidable tasks range include managing inbound requests, proposals and ongoing projects. These tasks increasingly consume time and resources away from the core innovation activities.

Effective smart city innovation labs get ahead of this by organizing, simplifying and automating administrative activities right from the start. For example, SMC Labs reviews inbound proposals once a week and organizes follow up calls and meetings on a specific day once every two weeks. In addition, the lab uses a tracking and pilot management tool (Urban Leap) to track innovation projects. Administrative and management activities are unavoidable. However, advanced planning and tools help reduce the burden to keep the lab's focus on innovation.

 

Benson Chan is an innovation catalyst at Strategy of Things, helping cities become smarter and more responsive through its innovation laboratory, research and intelligence, consulting and acceleration (execution) services. He has over 25 years of scaling innovative businesses and bringing innovations to market for Fortune 500 and start-up companies. Benson shares his deep experiences in strategy, business development, marketing, product management, engineering and operations management to help IoTCentral readers address strategic and practical IoT issues.

Read more…

Studies that by next year, we will have more than 20 billion IoT devices connected to the internet. Also, that's not just limited to, say, mobile devices or even household device. The evolution of IoT has come to the point that we now also have vehicles that are connected to the internet, as carmakers strive to give their customers better creature comforts and conveniences within their automobiles. So, you can see, that the Internet of Things (IoT) offers immense possibilities for web development as more and more such devices come online.


How? It is quite simple. First, the nexus of IoT devices depends on web servers. Then there's also the data gathered from the sensors, which is saved in the cloud. So how do you think the connected devices communicate with each other? They rely on experimental messaging protocols. Finally, users need a UI to engage with the connected devices. Long story short, web development is a critical part of IoT.


Now, let's get into the details of how IoT has already and continues to revolutionize web development.
1. Data collection: One of the essential elements of IoT devices is the massive amounts of data they work with. The tools gather real-time data from sensors, then filter and process them, before relaying it to the cloud and back again. In the context of web development, this data can be leveraged to fine-tune the web development project, allowing companies to offer products and services that improve with time.
2. User interface: Since IoT devices depend on dynamic UIs to serve the individual needs of various users means that web developers must now take an entirely new approach to design UI. The micromanagement of the UI necessary for correctly displaying all types of data results in IoT devices offering multitasking abilities and overall versatility to users.
3. Enhanced focus on security: While it is miserable to realize, the truth remains that IoT devices, despite their prevalence, suffer at the hands of lack of robust security. It is one of the biggest reasons why users are still reluctant to embrace them. Thankfully, the solution to this conundrum is found in web development. Developers can help fortify IoT devices by integrating certain security features in their code. It can include user identification, identity verification, access management and more.
4. Hybridization of development teams: Ask any developer and will tell you that a hybrid team is practically a death knell for the development project. Nonetheless, work requires completion when IoT is involved. To deliver successful IoT web app development projects, web designers must work together with experts proficient in IoT. It will allow them to concatenate code with the data.


One may be inclined to deem the impact of IoT on web app development as damaging, but you still can't deny that every time such integrated event occurs, it eventually leads to ultra-modern technologies that profoundly affect and transform our way of life even further.

Read more…
With a surge in counterfeit medicines, technological protection is crucial to securing supply chain integrity and access to safe & authentic medicines & medical devices.
Read more…

We’ve heard a great deal about the Internet of Things (IoT) and how it’s going to change the face of business as we know it. However, the Industrial Internet of Things (IIoT) goes a step further, particularly with reference to how smart sensors and actuators can enhance and improve the manufacturing and industrial processes. So, what exactly is the IIoT and how will it really change every business? Read on to find out more.

 

What is Industrial IoT?

To put it simply, the IIoT aims to dramatically improve efficiency and productivity within the industrial industry. It leverages the power of smart machines and sensors to take advantage of the data that machines have produced in industrial settings since they began. The combination of real-time analytics and smart machines is not only better than humans at capturing data, but it’s also more accurate in reporting the information.

How it Works

Though it sounds rather complicated, in practice, it’s really quite simple. This network of intelligent devices will work together to monitor, collect and analyse data. It works like so:

  • The intelligent devices gather information
  • They then transmit this to the data communications infrastructure
  • It’s converted into actionable information for humans
  • This can be used for routine maintenance as well as optimising business processes

 

IIoT vs IoT – What’s the Difference?

IIoT and IoT undoubtedly have plenty in common, from cloud platforms, sensors and connectivity to machine communication and analytics. However, there are a few differentiating factors. For example, IoT applications connect devices across multiple fields – between healthcare, agriculture and enterprise for instance. IIoT, on the other hand, only connects machines and devices within specific industries such as oil, gas and manufacturing.



What Are the Benefits?

Though the technology has received inordinate amounts of funding, technical due diligence is still frequently required from some sceptics. On the whole, however, there are many positives that investors simply cannot ignore.

One of the main benefits is the aforementioned predictive maintenance. This will almost allow industrial businesses to operate like clock-work. It will predict faults in machinery before they actually happen, allowing for swift work in fixing any issues. This prevents losing any time from production due to a defective machine which may have previously cost the business money.

A further benefit is asset tracking. Now, suppliers, manufacturers and even customers can use asset management systems to monitor the location and status of products throughout their life cycle. This will include everything from manufacturing to dispatch. It can send alerts to various stakeholders if it’s thought that the product might be damaged, allowing them to take preventative action before it’s too late.

What is the Future of IIoT

Interestingly, the top three industries investing in IIoT are transportation, manufacturing and utilities. Where some businesses may be reluctant to adopt new technology, it seems that the IIoT is different. It’s an exciting prospect, which continues to accumulate more appeal across the globe as it develops. Time will tell just how quickly this technology will change the way many industries operate.



Read more…

According to global management consulting firm Bain & Company, long-term prospects for the industrial Internet of Things remain ambitious. However, many executives are resetting timeline expectations for reaching scale due to early adoption struggles. Notably, certain “darlings of IoT” like predictive maintenance have not lived up to the hype. And while Bain’s survey of 600 industrial customers shows increasing traction with ‘workhorse’ scenarios like remote monitoring and asset tracking, it exposes areas where many teams and vendors are struggling to deliver the goods. In the end, an iterative strategy focused on specific business outcomes remains critical.

Notably, Bain’s survey finds increasing concerns around integration with existing enterprise systems and data portability. Executives worry their visions for digital transformation will be restricted by internal skill gaps and proprietary vendor services. Understandably, they fear losing control of any data not managed by their own enterprise IT departments. Despite this, confidence remains high that an estimated 20 billion devices will be successfully connected by 2020.

Many executives feel the value proposition for industrial IoT is still emerging. For them, the ability to capitalize on this value and achieve better business results remains elusive. To address these challenges, Bain calls for organizations to build a new operating model and position themselves for long-term success in a connected world.

Recommendations for accelerating IoT adoption in the enterprise

First, Bain recommends industrial organizations choose specific, high-value use cases to tackle upfront. Prove out your ability to address security and other valid IT concerns. Then, adopt an iterative approach for demonstrating ROI and ease of enterprise integration.

Second, use experienced partners to address your gaps. Don’t try building everything yourself. Differentiation comes from the combination of acquired data with your industry-specific domain knowledge. We’ve seen manufacturing digital transformation initiatives stall out when internal engineering teams try to build their own IoT infrastructure. Software for collecting data (and system integration services) can be bought. Build your value, not your tools.  

Third, don’t expect overnight success. You’re building up organizational capabilities and working with a new set of specialized partners. Commit to a realistic investment timeline and prepare for change. You’ll likely need to bring in new, more entrepreneurial talent to drive your connected business model. At a minimum, empower your existing teams to think differently. Remember, you’re not rolling out a new CRM application. You’re transforming your enterprise. Act accordingly.

Fourth, industrial IoT revenue starts at the top. Executives must ensure the entire organization is aligned for transition to the new operating model. This requires both vision and clear communication. Unsurprisingly, those responsible for existing products and revenue streams fear cannibalization. Furthermore, IoT initiatives take time to meet traditional P&L requirements. If executives don’t create an environment where the new operating model can take root, prevailing forces will prevent its maturation while competitors move ahead.      

Prepare to scale the business

Eventually companies reach the point on their digital transformation journey where they’ve proven out their connected product technology and business concepts. Now what? Bain concludes with a method for assessing readiness to scale up your industrial IoT efforts.

To begin, how well do you understand the full potential of industrial IoT to your enterprise? IoT can dramatically impact the quality of manufactured products, service offerings, maintenance  procedures, and other areas of your enterprise. But what will this cost, and what will revenue look like once the system is deployed to production and fully commercialized?

Never forget, your competitors aren’t standing still. You can be sure they’re working on their own industrial IoT initiatives. What is your plan to win in this new arena?

Additionally, scaling IoT requires incentives alignment and coordinated execution across the enterprise. Engineering, IT, service, sales, and business teams must work together for organizations to realize the benefits of digital transformation. Make sure everyone understands their part and is rowing in the same direction.

Bain summarizes their last recommendation with a sentiment that we refer to as “strategy over software.” By strategy, we mean not just a plan, but a comprehensive roadmap, organization structure, and business model across the enterprise to support the success of your industrial IoT initiative.

Digital transformation is a journey

As you start your journey, you’re going to need an industrial IoT platform. Whether it makes sense to build your own or buy one depends on a variety of factors. But digital transformation isn’t just about technology. As Bain notes repeatedly, it’s about so much more. Business models and sales strategies, along with clear user stories, team roles, and responsibilities are equally critical to successful IoT initiatives. Beyond a platform, an experienced digital transformation partner can accelerate planning, implementation, and successful commercialization of your connected systems.

 
Read more…

Why need to look for OT-IT Convergence?

IT-OT convergence can deliver a number of benefits, including improved customer experience and better operational efficiency. In order to achieve this convergence, a number of challenges need to be overcome. Most of these challenges arise from the siloed functioning of traditional IT and OT departments in most industries. Organizations that are able to bridge the gap between the two will have a major competitive advantage.

Data is the new currency and organizations that are able to gather and process data intelligently will have the ability to quickly outpace the competition. Understood in context and properly conditioned, data is at the heart of every connected system. However, data collection and processing are just the tip of the iceberg in terms of operational efficiency and business opportunities.

Organizations, today, need to be able to use data effectively to respond quickly to consumer demands as well as manage production, resources, and infrastructure. For this to happen, organizations need to converge their information technology (IT) infrastructure with their traditionally isolated operational technology (OT) networks. Easier said than done, right?

Gartner defines OT as: “The hardware and software that detects or causes a change through the direct monitoring and/or control of physical devices, processes, and events in the enterprise.” For OT, the focus is on establishing and maintaining control over processes with physical impact. The importance of OT continues to grow as more machines and their components are connected.

On the other hand, IT infrastructure is responsible for the creation, transmission, storage and security of data.  IT refers to the range of systems that are used to manage and process electronic data in an organization. This includes the computers, infrastructure, network systems and several other physical devices.

 

IT-OT Convergence Challenges

Despite being aware of the advantages of IT-OT convergence, it would seem surprising that not many businesses are working on integrating the systems. The reason is simple: converging IT and OT is a highly complex and challenging undertaking.

Technical Challenges

    • Compatibility: IT continually updates itself. As a consequence of ever-evolving computing and networking standards, and a rapid rate of innovation, IT places a high value on error-checking, fault-tolerance, and failover capabilities.

OT devices, on the other hand, work as per defined communication parameters. Compatibility is seen as preferable, but 100% compatibility is not possible to achieve in all situations. So, preparedness for mismatched credential exchange is considered a basic cost of doing business.

    • Environmental: OT devices function in all sorts of geographical locations and have evolved with a different set of priorities. They are often subject to extremes in pressure, humidity, and temperature. Also, they are designed to perform highly specific functions; e.g. a temperature sensor is designed to measure temperature only, and with exceedingly high reliability metrics.

IT devices, on the other hand, are usually placed in office spaces which are clean and temperature-and-humidity-controlled, with either failover systems and/or local support staff available to respond quickly to resolve performance issues.

In this context, reliability and integrity are absolutely the primary considerations while discussing OT-IT convergence.

  • Specialized skillset: OT devices are generally older and this leads to the need for engineers with the specific skillset to work with such technologies. IT, on the other hand, need varied and dynamic software skills to keep pace with the continuous advancements in technology. The different skillsets and language specializations among IT and OT professionals add to the complexity in combining these two units.

Organizational Challenges

    • Business Silos: IT infrastructure is owned and managed by the Chief Information Officer (CIO) or the Chief Technology Officer (CTO). OT usually falls under the ambit of Chief Analytics Officer, Executive Vice President of Gas/Electric Operations, and Executive Vice President of Utilities.

While the OT team may have IT personnel as a part of the mix to maintain critical IT systems, they still function as a part of OT and do not have much contact with the core IT team. The separation between the OT and IT staff can often pose a major challenge to an organization’s convergence initiatives.

  • Risk Tolerances: In IT, the loss of data confidentiality impacts corporate reputation, loss of data integrity requires expensive recovery procedures, and loss of data or system availability directly cuts off the flow of money. OT performance directly impacts the corporate’s top and bottom lines. When the systems are integrated, all these factors need to be taken into consideration.

OT-System Integration: Expertise is Essential

Many IT providers lack the ability required to address the challenges of OT integration. Hence OT systems integration specialist and an expert on device connection and management will be required for building a complete IoT solution.

Without the expertise of a proven OT systems integrator, many IoT projects stall or fail owing to connectivity challenges or the lack of qualified resources. When you work with an experienced OT integrator, your devices can talk to your automated systems, you gain the scalability to grow, and you can get your project up and running within weeks, instead of months.

With a versatile portal and a robust set of middleware, it is possible to connect a wide variety of new and legacy devices, sensors, and machines, and streamline secure data transmissions to the cloud. The data can be filtered at the gateway, sensor or cloud level, keeping in mind the organization’s specific needs. This can help streamline analytics down the line.

To get started with OT-IT Convergence, it is necessary to create a customized architecture, because IoT demands both OT and IT capabilities and a wide variety of expertise across multiple technologies and systems. Unfortunately, most system integrators are experts in IT integration and often do not have the skills or depth of knowledge required for OT integration.

When you take into consideration the fact that OT provides the majority of data required to drive informed decision-making across an enterprise, you realize how important such skills are. Without this expertise, you are likely to miss project deadlines, run over budget, and fail to deliver high-quality results.

An experienced OT systems integrator delivers solution architecture and design, incorporating high availability, scalability, security, device management, connectivity management, and more.

Use cases of OT-IT convergence:

1. OT-IT integration for Warehouse Management

Integration of supply chain technology with IT boosts efficiency and speed throughout the supply chain. Here are the benefits of this integration:

  • Maximizing equipment up-time & asset life
  • Predictive maintenance – improve after-sales service and enhance customer delight
  • Reduced downtime
  • Improved operational efficiency – reduce the technician’s trips

2. OT-IT integration for Smart Farming

Agriculture has become more industrialized and technology-driven over the past few decades. By using smart agriculture devices and by integrating Dealer Management and Farmer Management, farmers have gained better control over the process of raising livestock and growing crops, making it more predictable and efficient.

3. OT-IT integration for Smart Home

Smart homes make it possible for users to connect with devices and appliances in their home. OT-IT integration allows the devices to communicate with each other and with the user. The benefits of OT-IT integration for smart home are as below:

  • Improved customer service with automated alerts on system component failure, power disruption, connectivity loss, failure of sensors, security breaches, and with proactive alerts on low backup battery.
  • Cost savings with alerts on energy consumption dashboards from thermostats, lights and other devices
  • Improved security by integrating alarm systems and video monitoring devices into one personalized platform to monitor and protect the home
  • Increases operational efficiency for businesses providing services to homes, which saves significant expenditure.

To create a truly seamless connected IoT system that maximizes business value, there is an impending need to build a strong nexus between OT and IT data. However, harmonizing OT and IT systems come with significant challenges due to differences in business functions, technology stack, and the inherent culture of the departments. 

Read more…

The IoT Brings Smart Cities to Life

Guest article by Richard van Hooijdonk

In around 30 years, planet Earth will be home to almost ten billion people, 68 per cent of which will live in urban areas. And those urban areas will face a torrent of problems, as authorities will have to rely on limited resources to provide public services to a growing number of citizens. Besides traffic congestion and the potential rise in crime rates, rapid urbanization could also lead to a number of environmental problems like air pollution and overwhelmed waste collection systems. To tackle these challenges and make cities more liveable and manageable, governments are increasingly turning to the smart city concept.

At the heart of this approach is the use of technology to improve public services such as transportation, water systems, waste disposal, and many others. And among all the technologies smart cities deploy, the Internet of Things stands out as the most important, as it’s a network of sensors and connected devices that collect data critical for understanding how urban areas function. As Stephen Brobst, the chief technology officer of Teradata, a big data analytics company, says, the IoT enables us to “get a view of the whole city across these different domains of the life of the city as it’s captured in the sensor data.”

The many ways in which the IoT helps smart cities

Investments in smart cities are ramping up across the world and are expected to grow from $80 billion this year to $135 billion by 2021. Part of that money is allocated for IoT projects that help governments and residents to increase energy efficiency, improve traffic flow, reduce pollution, cut costs, and enjoy a number of other benefits. In other words, the IoT helps smart cities to achieve many of their key goals. Take, for example, the problem of traffic congestion in cities, which is in large part caused by drivers looking for parking space. IoT sensors embedded into the city’s streets, as in the case of Barcelona, can detect empty parking spots and alert drivers through a smartphone app. This helps people park their cars faster, saving time and fuel while reducing harmful emissions.

Many smart cities also tend to promote bike-sharing services as a way to reduce pollution and congestion, but bike theft could be an obstacle for that plan. One way IoT tech can help solve this issue is through technology such as Bitlock, a keyless bike lock that’s unlocked by the user’s smartphone and tracks the GPS location of the bike. This will help police potentially track and recover stolen bikes, while also allowing private and public organizations to analyze bike traffic patterns and find ways to improve the service.

IoT technology is also efficient in tracking and analyzing water use in buildings. For instance, Banyan Water, a smart water management company, claims it’s helped customers to save more than seven billion liters of water since its inception in 2011. The way it does this is by placing sensors and ultrasonic meters that track water consumption across the building, using software to analyze the gathered data and find anomalies such as leaks and overspend.

Municipal waste management companies could benefit from the IoT, too, by placing sensors in waste collection sites, and instead of adhering to strict schedules, dispatching haulers only when collection is really needed. This could cut “overhead for waste makers by up to a whopping 60 percent.”

Things to keep in mind when implementing IoT projects
Clearly, IoT technology can improve lives in urban areas in many different ways, but simply implementing the latest tech won’t necessarily make a city ‘smart’. Marc Jadoul, the head of IoT market development at Nokia, explains that even before the first sensor is installed, the authorities must define their future objectives and budget. The next step is to create broadband internet and IoT infrastructure that can sustain increased traffic. Jadoul also suggests that the authorities need to “think big, but start small” and “identify appropriate milestones and metrics” to be able to monitor their progress. Lastly, technology isn’t the goal, but rather an instrument to make people’s lives better and more connected. To that end, the authorities should promote citizens’ engagement in ‘smart’ projects by asking for their feedback and informing them of the progress. After all, “it’s citizens’ acceptance and engagement that will eventually determine success or failure of any smart city initiative,” Jadoul concludes.

Two key challenges for the IoT and smart cities
And while authorities and citizens see smart cities as a way to live better lives, hackers see them as a potential target. The wealth of data and sensitive services that connected devices produce can be abused by bad actors to disrupt a city’s operations. For instance, imagine if cyber-attacks crippled a traffic light system or a water filtration plant and the hackers asked for ransom. This makes cyber-security one of the key priorities of any smart city endeavour. Another challenge for authorities is the need to buy expensive servers, sensors, high-speed internet networks, and a range of other equipment. Many cities struggle to find the money, although IoT projects could lead to cost savings “to the tune of $2.3 trillion in efficiencies created and revenue generated worldwide by 2024.”

Just rolling out the tech won’t be enough
As our planet becomes increasingly crowded and more people flood to cities, authorities will be under pressure to provide public services to an ever-growing number of citizens and offset the negative consequences of urbanization. Technology such as the IoT and the concept of smart cities might be a solution and a way to fight traffic congestion, pollution, inadequate water systems, and a number of other problems. But for this approach to succeed, citizen acceptance and engagement is crucial, as simply rolling out the tech won’t be enough.

Author: Richard van Hooijdonk
International keynote speaker, trend watcher and futurist Richard van Hooijdonk offers inspiring lectures on how technology impacts the way we live, work and do business. Over 420,000 people have already attended his renowned inspiration sessions, in the Netherlands as well as abroad. He works together with RTL television and presents the weekly radio program ‘Mindshift’ on BNR news radio. Van Hooijdonk is also a guest lecturer at Nyenrode and Erasmus Universities. https://www.richardvanhooijdonk.com

 

 

 

 

Sources:

Cover photo by https://www.shutterstock.com/g/yingyaipumi

Azevedo, Mary Ann, https://newsroom.cisco.com/feature-content?type=webcontent&articleId=1868607.

Giarratana, Chris, https://www.trafficsafetystore.com/blog/how-iot-technology-is-creating-the-future-smart-cities/.

Glaeser, Edward and Helen Dempster, https://www.theigc.org/reader/contagion-crime-and-congestion-overcoming-the-downsides-of-density/cities-and-urbanisation-encourage-economic-growth-in-the-developing-world/.

Horwitz, Lauren, https://www.cisco.com/c/en/us/solutions/internet-of-things/smart-city-infrastructure-guide.html.

Ismail, Nick, https://www.information-age.com/smart-city-technology-123473905/.

Jadoul, Marc, https://www.nokia.com/blog/10-recommendations-creating-smart-city/.

Maddox, Teena, https://www.techrepublic.com/article/smart-cities-expected-to-invest-80b-in-technologies-in-2018/.

https://www.nationalgeographic.com/environment/habitats/urban-threats/.

http://www.sensanetworks.com/blog/waste-management-gets-sexy-smart-sensor-tech/

https://www.un.org/development/desa/en/news/population/world-population-prospects-2017.html.

https://www.un.org/development/desa/en/news/population/2018-revision-of-world-urbanization-prospects.html.

 

Read more…

IoT - Adopt or Face Extinction!

IoT platforms, services and solutions have exploded in the recent years. This article is a thought leadership paper written 2 years ago when IoT was beginning to become prevalent. The article made projects that have come to fruition based on IoT's proliferation in the market. And, the thought leadership is still as applicable as it was before.
Read more…
The benefits of using Edge Computing / Machine Learning solutions are very attractive to manufacturers because allows minimize latency, conserve network bandwidth, operate reliably with quick decisions, collect and secure a wide range of data, and move data to the best place for processing with better analysis and insights of local data.
Read more…

What was the last thing you bought online? Why didn’t you go to a store to buy it? Was it for the vast number of items you could scroll through before making a choice or the recommendations that the website or app pulled up for you, remembering your choices and interests from a previous visit, or the ease with which you paid for it with a card whose details were already stored with the website?

The online shopping experience is leaps and bounds ahead of the traditional experience in terms of using data and technology to provide unique and personalized customer experiences. While brick and mortar stores also have their own upsides, the move towards omni-channel retailing today is key.

So what does an omni-channel experience really mean? The term refers to merging of services and features of multiple channels in order to provide a seamless, integrated and consistent experience to users. It means bringing the best of online shopping to the physical store to enrich customer experiences and create new channels for revenue generation.

The reason that e-retailers are able to provide a vast number of superior and personalized features is because of access to a larger volume of data and analytics. Their algorithms are constantly monitoring your every step, from consideration to the point where a sale occurs. Traditional retailers need the same approach and connected products under Internet of Things provide a way to do exactly that. A digital transformation of store assets by connecting them to each other and the internet through means of sensors or digital tags (barcodes, QR codes, Datamatrix codes, NFC & RFID tags) working together with AI and cloud computing, will result in smart connected products at every point within a customer’s journey, collecting and analyzing data.

Many brands already have an online presence as well as applications from where one can directly buy their products. However, a true omni-channel retail experience is one where it works in tandem with, influences and enhances the in-store shopping experience.

A number of leading brands are also coming up with innovations to improve customer engagement and play to their expectations born from online buying habits regarding a seamless and hassle-free shopping experience. Here is a look at the areas within a brick and mortar store that could see incorporation of connected products to facilitate an omni-channel retail experience.

Personalized services
Analytics and personalized services and features go hand in hand together. Brands need to know about their customers in order to curate services for them. Data on a customer’s journey across the store, products they pick up or put back, keeping track of their past purchases and recommending more according to that, and extending coupons and offers specifically for them; feeding data of such nature into algorithms that perform analytics then deliver insights upon which personalized services can then be built.

Kroger has partnered up with Microsoft to roll out EDGE™ Shelves (Enhanced Display for Grocery Environment). Equipped with digital displays, these shelves promise to provide a unique guided customer experience. The solution will also utilize in-store sensors to identify individual shoppers and extend custom recommendations, promotions and offers as well as other personalized content.

Customer’s in-store journey:
The journey of a user buying things online is not too complex; browse, select, pay. If they are a regular customer, chances are the app already knows their delivery points and payment details. A similar journey is far more difficult to emulate inside a retail store. The popularity of Endless Aisles technology is a step in this direction. This technology is based on the observation of how some people fail to find a particular product in their size or colour. No problem! They can simply place an order with their specifications using an endless aisle in the form of an interactive kiosk within the store itself, and the product gets delivered at their doorstep in a couple of days. It’s a win-win situation; customers don’t leave the store unsatisfied and the retailer does not lose out on a sale.

Another feature gaining traction is “click and collect/return”, where customers can place orders through the brand website or mobile app and collect their items from a store at their own convenience.

Consumer Transparency
Smartphones are everywhere and 71% of consumers use theirs to conduct research on products before buying them in-store. Retailers can capitalize on this medium’s ubiquitousness and familiarity to create a similar experience inside retail stores. Modern consumers are also more conscious of how their lifestyle choices, including products they buy and consume, impact the environment and society. Electronic labeling practices incorporating scannable QR codes, RFID tags or NFC stickers, let the customer pull up expanded product information instantly on their smartphones, presenting more than a simple ingredients list, and allowing the brand to display the entire journey of the product from its origin to the shelf. These tags can be further utilized to enrich customer experiences by providing tailor made content for a particular customer such as promotions and offers.

Navigation
In-store navigation services are another example where connected smart products can contribute to unique multi-channel experiences. Retailer Target has installed store fixtures like LED lights which have built-in bluetooth beacons. Their app takes advantage of these beacons to locate users inside the store and guide them to their desired locations by pulling feed from shopping lists stored by the user on it. French Retail giant Carrefour in partnership with Philips has implemented a similar system, however using Visible Light Communication (VLC) technology instead. VLC enabled LEDs emit a code that is readable by any camera on a smartphone, connecting customers to the digital experience provided by the store through their app.

Beating the Queue
Amazon Go is the true embodiment of what a connected retail store of the future will look like. Customers in these cashierless stores need not stand in long queues for checkout as they can just grab what they wish to purchase and walk out. The exit turnstiles trigger an automatic payment from the customer’s credit card, which is already stored on the app, on leaving the store. Not only are these stores getting rid of one of the most annoying bits about shopping in a a brick and mortar store, they are also combining multiple sensors across the store to collect a treasure trove of valuable data. Weight sensors on shelves know exactly when an item is removed from the shelf, or when it is put back. Multiple cameras track and record each customer’s movements within the store. Computer vision along with intelligent algorithms combine to create a unique identification for each customer and separate them from others.

Traditional brick and mortar stores are in an urgent need to innovate in order to maintain a competitive edge by keeping up with consumer expectations and habits, which are constantly evolving thanks to e-commerce. They need to look towards Internet of Things and establish a connected and digital ecosystem within their stores which collect valuable data on their customers, data that can then be converted into smart insights, on the foundation of which smart decisions can be taken to provide sophisticated, delightful and engaging customer experiences.

Read more…

Plenty of companies yearn to integrate cloud computing with their IT infrastructure but feel hesitant to do so due to concerns about data security. A lot of public cloud host service providers make use of the same hardware infrastructure to manage the needs of various clients which can compromise the security of data systems.

 

However, it is possible to hire the expertise of private cloud computing companies as they follow data security methods that can work for HIPAA and PCI-sensitive organizations. By getting private cloud computing solutions, companies can have greater control over their data security needs.

 

Here are 5 handy tips for implementing cloud computing concepts while maintaining the highest levels of security.

  1. The first thing that you need to keep in mind is the location of your data. Unless you know the location of your data, it won’t be possible for you to secure it. While it is still important for you to use technologies like firewall, data encryption, and intrusion detection methods, knowing your data’s location allow you to prevent security breaches when the cloud system stops working. You should be able to use dedicated hardware to implement stringent security parameters for your data that you share through cloud computing.
  2. Make sure that you keep your data perfectly backed up. When you take backups of your data, you can be sure of the fact that your data is safe against any kind of losses. This can also help you secure all important information about your business and provide you with the peace of mind that you seek.
  3. The data centers that you choose to work with for your company should always take data security in a serious manner. They should be able to implement the best security measures in the servers in which your data is kept. It is important that they are PCI or HIPAA certified and SSAE 16, SOC 2 and SAS 70 audited. Managed services like intrusion detection, firewalls and antivirus can really work out well for you by making your data, applications, and enterprise more resilient.
  4. A good way to ensure security for your data would be to check out the clients that a cloud service provider has worked with. By seeing whether the cloud provider has already worked with clients in the past requiring critical and stringent security measures, it is possible for you to make sure that your data is in good hands. Organizations operating in the financial, insurance, healthcare and government sectors are certainly good examples requiring high-end data security. By contacting these companies, you can be sure if they offer excellent data security.
  5. It is important that you also carry out detailed tests to ensure that the cloud systems are equipped with the best security features.

 

These are the top 5 and most important cloud computing security tips that many app development companies india agencies are adopting in their development and implementation processes so as to have better security for their product or services.

Read more…

Upcoming IoT Events

More IoT News

How wireless charging works

Wireless charging technology has been around for over 100 years, but it has only recently found mainstream practical use for powering electronic devices like smartphones. Learn how this technology works and what advancements we may see in the future.

IoT Career Opportunities